
Anytime Control Algorithms for Embedded

Real-Time Systems

Daniele Fontanelli∗ and Luca Greco∗† and Antonio Bicchi∗ �

daniele.fontanelli,bicchi@ing.unipi.it,greco@dsea.unipi.it

1 ∗Interdepartmental Research Center “E. Piaggio”, University of Pisa
2 † University of Salerno

Abstract. In this paper we consider the problem of designing controllers
for linear plants to be implemented in embedded platforms under strin-
gent real-time constraints. These include preemptive scheduling schemes,
under which the maximum execution time allowed for control software
tasks is uncertain. We propose an “anytime control” design approach,
consisting in a hierarchy of controllers for the same plant. Higher con-
trollers in the hierarchy provide better closed-loop performance, while
typically requiring a larger worst-case execution time. We provide a pro-
cedure for the design of controllers which, together with a conditioning
process of the stochastic scheduling, provides better performance than
prevailing worst case-based design, while guaranteeing almost sure sta-
bility of the resulting switching system.

1 Introduction

A general tendency can be observed in embedded systems towards implemen-
tation of a great variety of concurrent real-time tasks on the same platform,
thus reducing the overall HW cost and development time. Among such tasks,
those implementing control algorithms are usually highly time critical, and have
traditionally imposed very conservative scheduling approaches, whereby execu-
tion time is allotted statically, which makes the overall architecture extremely
rigid, hardly reconfigurable for additions or changes of components, and often
underperforming.

Modern multitasking Real-Time Operating System (RTOS), running e.g. on
embedded ECUs in the automotive domain, schedule their tasks dynamically,
adapting to varying load conditions and Quality of Service requirements. Real-
time preemptive algorithms, such as e.g. Rate Monotonic (RM) and Earliest
Deadline First (EDF) [1–3] can suspend the execution of a task in the presence
of requests by other, higher priority tasks. Guarantees of schedulability can be
provided based on estimates of the Worst-Case Execution Time (WCET) of
tasks.
� This work was supported by the EC under contract IST 511368 (NoE) ”HYCON

- Hybrid Control: Taming Heterogeneity and Complexity of Networked Embedded
Systems” and contract IST 045359 ”PHRIENDS” - Physical Human-Robot Interac-
tion: Dependability and Safety”



However, to make a given set of tasks schedulable and to limit the number
of deadline misses, conservative assumptions are typically made which entail
underexploitation of the computational platform and, ultimately, cost inefficien-
cies: for instance, a famous result of [1] shows that RM scheduling can meet all
deadlines if the CPU utilization is not larger than 69.3%. On the other hand,
when the computational power budget is given and fixed (which is often the
case in industrial practice), then control algorithms may have to be drastically
simplified to be computable within the allotted time. This clearly reflects in a
degradation of the overall performance of the ensuing closed-loop system.

Substantial performance improvement would be gained if less conservative
assumptions could be made on the CPU utilization. In particular, it is often the
case that, for most of the CPU cycles, a time τ could be made available for a
control task which is substantially longer than τmin, although only the latter
can be guaranteed in the worst case.

In this paper we propose a strategy to design control algorithms and to
schedule their execution, so that the limits of current practice are overcome and
better performance could be obtained with the same resources.

2 Anytime Control Algorithms

The key idea is to design controllers which can be implemented so that a useful
result is guaranteed whenever the algorithm is run for at least τmin; however,
better results can be provided if longer times are allowed.

The idea is borrowed from so-called anytime algorithms, that have been pro-
posed in real-time computation [4, 5]. The characteristic of anytime algorithms
(or of imprecise computation, as they are sometimes referred to) is to always
return an answer on demand; however, the longer they are allowed to compute,
the better (e.g. more precise) an answer they will return. Thus, an anytime
algorithm can be interrupted prematurely, still providing a valid result and im-
proving the output accuracy as the available time increases. A periodic task is
split in a mandatory part and one or more optional parts. The criticality of
hard RT tasks is preserved ensuring only that the mandatory parts satisfy the
time constraints. If all mandatory parts of a set of tasks are schedulable, feasible
mandatory constraint is satisfied [4].

In digital filter design [6], this philosophy has been pursued by decomposing
the full-order filter in a cascade of lower order filters whose execution is pri-
oritized. Execution of code implementing the first block is always guaranteed
within τmin; code for blocks in the cascade is then executed sequentially, until
a preemption event takes over. The latest computed block output is used as the
anytime filter output. The overall performance of the filter was shown in [6] to be
superior the the conservative solution of always using only the first filter block.

To adopt the anytime approach in the control domain, a classical monolithic
control task should be replaced by a hierarchy of control tasks of increasing
complexity, each providing a correspondingly increasing performance of the con-
trolled system. For instance, the simplest control task in the hierarchy, which



must be executable within τmin, could be designed to guarantee only stability of
the closed loop system, while whenever the scheduler provides “surplus” time,
other more sophisticated control algorithms could be executed to obtain better
“quality of control”.

However, application of the anytime algorithm idea to control is much more
challenging than it may superficially appear. The main conceptual roadblock is
that, as opposed to most anytime computation and filtering algorithms, anytime
controllers interact in feedback with dynamic systems, which fact entails issues
such as

Hierarchical Design: the design of a set of controllers as progressive approxi-
mations towards a given target design does not typically provide the desired
performance hierarchy. Indeed, performances of closed-loop systems are not
trivially related to how close approximations are to the target, as it is e.g.
in filter design;

Switched System Performance: unpredictable preemption events introduce
stochastic switching among different closed-loop systems, which can sub-
vert näıve expectations — e.g., switching between stabilizing controllers may
well result in overall instability. More generally, closed-loop performance is
strongly influenced by switching;

Practicality: implementation of both control and scheduling algorithms must
be numerically accurate, yet very simple and non-invasive, not to contradict
the very nature of the limited-resource, embedded control problem.

Composability: the computational structure of control algorithms should be
inherited through the hierarchy levels, so that the computation of higher con-
trollers in the hierarchy exploits results of computations executed for lower
controllers. Although this property is not strictly required, it can greatly
enhance effectiveness of anytime control.

3 Prior work

We will illustrate the relevance of the above issues with reference to prior work
in the field. A first attempt to use the anytime control idea is reported in [7,
8], where standard system reduction methods (balanced truncation or modal
decomposition) are used to decompose a target controller in simpler ones. Un-
fortunately, these methods do not provide any guarantee on closed-loop perfor-
mance of the simplified controllers (not even stability, indeed). Even if ad-hoc
choices are made that provide stabilizing controllers, stability under switching
is not guaranteed by the method in [7, 8], unless a substantial dwelling time is
assumed between switches, during which the constant use of the same controller
is possible.

On the other hand, the substantial literature on switching system stability
(see e.g. [9–12] and references therein) provides much inspiration and ideas for
the problem at hand, but few results can be used directly. For instance, appli-
cation of the important results of [13] would provide state-space realizations of
different stabilizing controllers such that the overall closed-loop systems would



remain stable under any switching law. Unfortunately, however, the method is
thought for a different application, and assumes all controllers are designed by
the internal-model approach, and have the same (rather heavy) computational
complexity; most importantly, at each switching instant, a state-space transfor-
mation has to be applied, which is of comparable complexity as the controllers
themselves. By the same practicality argument, algorithms for switched system
stabilization (such as e.g. [14–16]) requiring the computation of complex func-
tions of the state to ascertain which subsystem can be activated next time, are
not applicable to anytime control.

In [17], the authors proposed a framework for the stability analysis of any-
time control algorithms, based on a stochastic model for the scheduler. A set of
controllers forming a hierarchy in complexity and performance was assumed to
be given. Under these hypotheses, a switching policy capable of conditioning the
stochastic properties of the scheduler was designed, such that overall stability (in
the probabilistic sense of “almost sure” stability [18, 19]) of the resulting Markov
Jump Linear System (MJLS) can be guaranteed. This paper complements [17]
by providing a constructive design procedure for anytime controllers, and by
illustrating the application of the complete methodology to two examples. The
modelling framework and the main results of [17] are succinctly reported for the
reader’s convenience.

4 Scheduling Problem Formulation and Solution

Let Σ � (A, B, C) be the given strictly proper linear, discrete time, invariant
plant to be controlled, and let Γi � (Fi, Gi, Hi, Li), i ∈ I � {1, 2, . . . , n} be
a family of feedback controllers for Σ. Assume that all controllers Γi stabilize
Σ and are ordered by increasing computational time complexity, i.e. WCETi >
WCETj if i > j. Let the closed-loop systems thus obtained be Σi � (Âi, B̂i, Ĉi),
where

Âi =
[

A + BLiC BHi

GiC Fi

]
; B̂ =

[
Bi

0

]
; Ĉi =

[
Ci 0

]
.

Problems related to jitter and delay are not considered in this work since they can
be tackled in the design of the single controllers ([20]). Therefore, we assume that
measurements are acquired and control inputs are released at every sampling
instant tTg, t ∈ N, where Tg is a fixed sampling time. Let γt ∈ [τmin, τmax],
τmax < Tg, denote the time allotted to the control task during the t-th sampling
interval. By hypothesis, WCET1 ≤ τmin and WCETn ≤ τmax.

Define an event set Lτ � {τ1, . . . , τn}, and a map

T : [τmin, τmax] → Lτ

γt �→ τ(t)



where

τ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ1, if γt ∈ [τmin, WCET2)
τ2, if γt ∈ [WCET2, WCET3)
... if

...
τn, if γt ∈ [WCETn, τmax]

Assume a stochastic description of the scheduling process to be given by

Pr {τ(t) = τi} = π̄τi , 0 < π̄τi < 1,
∑
i∈I

π̄τi = 1,

where π̄τi denotes the probability associated to the event that the time slot
γt is such that all controllers Γj , j ≤ i, but no controller Γk, k > i, can be
executed. The distribution π̄τ = [π̄τ1 , π̄τ2 , · · · , π̄τn ]T can be regarded simply as
an i.i.d. process, or, in a slightly more complex but general way, as the invariant
probability distribution of a finite state discrete-time homogeneous irreducible
aperiodic Markov chain given by

π(t + 1) = PT π(t), π(0) = π0.

where P = (pij)n×n is the transition probability matrix and pij is the transition
probability from state i to state j of the Markov chain (e.g. from controller Γi

to Γj).
Under these hypotheses, the switching process generates a discrete-time Markov

Jump Linear System (MJLS)

xt+1 = Âτtxt (1)

Definition 1. [19] The MJLS (1) is said almost surely stable (AS-stable) if
there exists μ > 0 such that, for any x0 ∈ R

N and any initial distribution π0,
the following condition holds

Pr
{

lim sup
t→∞

1
t

ln ‖xt‖ ≤ −μ

}
= 1.

Let ‖ · ‖ be a matrix norm induced by some vector norm. The following
sufficient condition for AS-stability was proved in [18]:

Theorem 1 (1–step average contractivity). [18] If

ξ1 =
∏
i∈I

‖Âτi‖πτi < 1 (2)

then the MJLS (1) is AS-stable.



4.1 Stochastic Schedule Conditioning

We define a switching policy to be a map s : N → I, t �→ s(t), which determines
an upper bound to the index i of the controller to be executed at time t, i.e.
i ≤ s(t). In other terms, at time tTg, the system starts computing the controller
algorithm until it can provide the output of Γs(t), unless a preemption event
occurs forcing it to provide only Γτ(t), i.e. the highest controller computed before
preemption. Application of a switching policy s to a set of feedback systems Σi,
i ∈ I under a scheduler τ generates a switching linear system (Σi, τ, s) which,
under suitable hypotheses, is also a MJLS. The stochastic characterization of
the chain τ is assumed to be a-priori known. Furthermore, in a real application
(e.g. automotive domain) different working conditions lead to different stochastic
descriptions, thus different Markov chains for the scheduler can be considered.

As an example, the most conservative policy is to set s(t) ≡ 1, i.e. forcing
always the execution of the simplest controller Γ1, regardless of the probable
availability of more computational time. By assumption, this (non-switching)
policy guarantees stability of the resulting closed loop system.

On the opposite, a “greedy” strategy would set s(t) ≡ n, which leads to
providing Γτ(t) for all t. Although this policy attempts at maximizing the uti-
lization of the most performing controller, it is well known that switching arbi-
trarily among asymptotically stable systems Σi may easily result in an unstable
behavior [21].

A sufficient condition for the greedy switching policy to provide an AS-stable
system is provided by Theorem 1. This condition however is rarely satisfied. In-
deed, the fact that each matrix Âτi is Schur guarantees the existence of a specific
norm ‖·‖wi such that ‖Âτi‖wi < 1, but no single norm ‖·‖w exist in general such
that ‖Âτi‖w < 1 ∀τi

3. The AS stability condition of theorem 1 would require
that, for a chosen norm, for all controllers with ‖Âτi‖w > 1 π̄τi is sufficiently
small, i.e. they are scheduled by the OS sufficiently rarely.

A switching policy that suitably conditions the scheduler to provide AS-
stability was studied in [17], which is illustrated below. Introduce a homogeneous
irreducible aperiodic Markov chain σ with the same number n of states as the
scheduler chain τ . The states are labelled as σi, with the meaning that if the
associated process form σ(t) is equal to σi, then s(t) = i, i.e. in the next sampling
interval tTg at most the i–th controller is computed (this will actually happen
if no preemption occurs). We will refer to σ as the conditioning Markov chain.
The synthesis of such a conditioning Markov chain can be formulated as the

3 When this happens, such norm is a common Lyapunov function and the system
remains stable for all switching sequences. It is well known that this is rarely the
case.



Comp. Compl. Num. Reliab.

Generic N (N + 2) –
Companion 2N bad
Jordan 2N to 3N good

Table 1. Computational complexity (considered as the number of multiplications ex-
cept by 0 or 1) and numerical reliability of different state-space realizations of a strictly
proper transfer function G(z) with N poles. The generic case assumes no particular
structure in the systems matrices.

following Linear Programming problem:

Find a vector πσ =
[
πσ1 · · · πσn

]T such that

1)
n∑

i=1

ciπσi < 0

2) 0 < πσi < 1

3)
n∑

i=1

πσi = 1,

(3)

where

ci =
n∑

h=1

πτh
ln

(∥∥∥Âmin(τh,σi)

∥∥∥)
.

Should this problem not have a feasible solution, multi–step switching policies
can be considered, whereby the conditioning Markov chain suggests the sequence
of controllers to be executed in the next m steps (see [17] for details). This way,
some control patterns, i.e. substrings of symbols in I, are preferentially used
with respect to others.

5 Design of a Control Algorithm Hierarchy

In this section we address the problem of designing an ordered set of con-
trol algorithms providing increasing closed-loop performance. A top-down de-
sign approach to this problem would start with the design of a complex, high-
performance controller Γn (by e.g. a H∞ technique); progressively simpler con-
trollers Γi, n − 1 ≥ i ≥ 1 may then be obtained by e.g. model reduction tech-
niques. As already remarked, however, this approach does not systematically
guarantee closed-loop performance under switching. Moreover, most model re-
duction techniques require state-space realizations with full dynamic matrices
Fi, which makes them impractical in real-time embedded applications.

Indeed, practicality requirements imply careful consideration of algorithmic
implementations of control laws [22]. Table 1 reports a comparison among three
different state space representations for SISO systems.



yr +

)(1 zC

)(1 zF
-

)(zG

yr +

)(1 zC

)(1 zF
-

)(zG

)(2 zC

)(2 zF
-

+

a) b)

Fig. 1. Two stages of a classical cascade design procedure

We propose here a simple, bottom-up design technique which is suitable for
addressing the main requirements of anytime control algorithms. The method is
based on classical cascade design. Consider the two design stages illustrated in
fig. 1, in which controllers are designed to ensure increasing performance by any
classical synthesis technique. The scheme in fig. 1 cannot be implemented as a
composable anytime control, because after computation of the a) scheme, the
input to the F1(z) block needs to be recomputed completely if the b) scheme is
to be applied. However, by simple block manipulations, the scheme in fig. 2 can
be obtained, where we set

Ĉ2(z) = F1(z)C2(z).

The scheme in fig. 2 is suitable for anytime implementation. Indeed the se-

)(1 zΓ

)(2 zΓ

)(1 zΦ
y+

)(1 zC

-
)(zG

)(ˆ
2 zC

)(2 zF
r

)(1 zF

)(2 zΦ

2=i

2=i 2=i

1=i 1=i +

+

Fig. 2. A switched control scheme suitable for anytime control implementation. The
scheme is equivalent to fig. 1-a when the switches are in the i = 1 position, and to
fig. 1-b for i = 2.

ries of F1(z) and F2(z) is in open-loop (hence equivalent to an anytime filter),
while the parallel connection in the feedback loop is simply obtained by sum-
ming the new result by Ĉ2(z) to the previous one by C1(z). Using Jordan form
realizations of the blocks provides good numerical accuracy as well as low com-
putational complexity. The cascade design method can be applied iteratively to
provide a complete hierarchy of controllers, satisfactorily addressing the issues
of hierarchical design, practicality, and composability.



6 Tracking Control and Bumpless Transfer

The schedule conditioning technique of section 4.1 is able to address the switched
system performance issue satisfactorily when a regulation problem is considered.
However, in reference tracking tasks, the performance can be severely impaired
by switching between different controllers. This section is devoted to analyze this
problem and propose a simple technique to assist in making smooth transitions
for the system switching between controllers.

Consider the problem of tracking a constant or slowly-varying set-point r.
With reference to the design scheme in fig. 2, the problem can be solved by scaling
the reference input r by the steady state gain of each controller Γi, 1 ≤ i ≤ n. Let
xs denote the state of the controlled plant, and xci the state of the i–th controller
component Ci(z), and let x̄s, x̄ci denote the corresponding equilibrium values
reached when the reference r is applied. Suppose now that, at some instant in
time tTg, the i–th level controller is active and the system components are at the
equilibrium state x̄s, x̄c1 , · · · , x̄ci ; and that, at time (t+1)Tg, the execution of the
j–th level controller is imposed by a preemption event or a conditioned schedule.
If j ≤ i, it can be easily verified that the active part of the system state remains
at an equilibrium x̄s, x̄c1 , · · · , x̄cj . If instead j > i (low-to-high level switching),
the state is perturbed from the equilibrium. Indeed, the activation of a higher
level controller abruptly introduces the dynamics of the re-activated (sleeping)
states.

Sleeping states can be managed such that they are kept constant during
their idle period, or they can be zeroed instantaneously or progressively with a
simple and computationally inexpensive dynamics. No matter on how they are
managed, their re-activation can produce a jump in the state value. Notice that
keeping constant their values results in no jumps only if also the reference does
not change. These jumps produce an undesirable behavior from a performance
point of view. The use of a bumpless-like technique is advisable to cope with this
issue. According to this approach, the idle states are re-set to suitable values
before re-activation to avoid jumps and to leave the system at its equilibrium, if
such was the case before the switching occurs. The sleeping state initialization
value is computed as

xsleepingj
= ucj(I − Acj )

−1Bcj = ucjW

where ucj is the current input to the j–th part of the controller. Notice that
the switching logic introduces negligible overhead, since the vector W can be
computed off–line.

7 Examples

The control of the two mechanical systems depicted in fig. 3 will be used to
illustrate the application of the proposed technique. We report in table 2 the
sampled-time linearized dynamics of the two systems (continuous-time models
are readily available in the literature, see e.g. [23, 24]).



a) b)

Fig. 3. Mechanical systems adopted for the anytime controller simulations: a Furuta
pendulum with zero offset ([23] - a) and a Translational Oscillator/Rotational Actuator
(TORA) system ([24] - b)

In both examples, the first controller C1(z) is designed to ensure the stability
requirement. The controllers C2(z) and C3(z) for the Furuta pendulum example
are obtained applying twice in cascade an LQG design technique. For the TORA
example, the controllers are instead carefully designed by hand to achieve per-
formance enhancement with minimal complexity increase, i.e more practical in
the sense of section 2). Prefilters Fi(z) (depicted in fig. 2) are constants used
to adapt the steady-state gain and ensure static requirements. The scheduler
process is modeled simply by its steady-state probability distribution, which is
assumed equal in the two examples and given by π̄τ = [1/20, 5/20, 14/20].

For the Furuta pendulum example in fig. 3-a, solving the LP problem 3 leads
to a steady state conditioning probability distribution π̄σ = [0.017, 0.98, 0.003].
The resulting conditioned distribution π̄d = [0.058, 0.94, 0.002] thus satisfies the
1-step average contractivity condition (2), hence AS-stability is guaranteed.

In fig. 4-a, the Root Mean Squares (RMS) of the regulation error for dif-
ferent controllers is shown, corresponding to perturbed initial conditions x0 =
[0, π/10, 0]T . Plots labeled Controller 1, 2, and 3, corresponding to results ob-
tained without switching, are reported for reference. Notice the performance
increase obtained by more complex controllers. Fig. 4-b shows a sample real-
ization of the stochastic process used to model the OS scheduler. The RMS
obtained by the greedy switching policy applied to this schedule shows instabil-
ity. Notice that the axis labels on the right apply to this plot in fig. ??-a. On the
same figure ??-a, the plot labeled “Markov” shows the RMS error obtained by
the stochastically conditioned scheduler. Sample realizations of the conditioning
and conditioned stochastic schedules used in simulations are reported in fig. 4-b.

The example shows how the proposed stochastic switching policy ensures the
AS-stability of the closed loop system (which is not guaranteed by the greedy
policy), while it obtains a definite performance increase (of the order of 50%)
with respect to the conservative scheduler (corresponding to using only Con-



Furuta Pendulum System

G(z) = 1.2 10−3(z+3.7)(z+0.3)

(z−1)(z2−1.7z+1)

C1(z) = 31.6(z2−1.8z+1.1)
(z−0.1)(z−0.5)

F1(z) = 21.28

C2(z) = 117.7(z−1.3)(z−4.7 10−3)(z2−1.4z+0.7)

(z−0.5)(z+0.2)(z−0.1)(z2+0.4z+0.9)
F2(z) = 0.54

C3(z) = 1370.9(z−0.4)(z−0.6)(z−0.2)(z+0.2)(z−4.7 10−3)(z2−0.7z+0.2)(z2−0.4z+0.3)

(z−0.5)2(z+0.3)2(z−0.1)2(z2+0.6z+0.8)(z2+3.4z+4.7)
F3(z) = 2.73

Tora System

G(z) = 0.27266(z+1)(z2−1.967z+1)

(z−1)2(z2−1.964z+1)

C1(z) = 2.0895(z−0.75)
(z+0.3761)

F1(z) = 0.38

C2(z) = 0.8(z−0.4)
(z+0.6)

F2(z) = 1.79

C3(z) = 0.73(z2−0.76z+0.2228)

(z+0.3)2
F3(z) = 1.29

Table 2. Sampled-time transfer functions for systems in fig. 3 and hierarchical con-
trollers used in simulations.

troller 1, see fig. 4-a).

Fig. 5 reports similar plots to illustrate application of the proposed method-
ology to the TORA example (fig. 3-b), with controllers chosen according to
table 2. No solution to the 1-step average contractivity condition could be found
in this case. A four-steps lifted version of the problem admits a solution, accord-
ing to which the conditioning sequence of controllers is a concatenation of the 34

possible combinations of length 4 of the three controllers. The steady state con-
ditioning probability distribution π̄σ ∈ (0, 1)3

4
is not reported here; it is however

worth noticing that the particular controller sequence Γ2 − Γ2 − Γ2 − Γ3 is by
far the most likely, being used in the 89, 204% of cases (except for preemptions).
In figure 5-b, the scheduled and the conditioned controllers are depicted: the
prevalence of the preferred pattern is apparent.

Results of simulations of the different controllers and scheduling policies are
reported in fig. 5-a, for a regulation problem from perturbed initial conditions
X0 = [0, 0, 0.1, 0]T .

The RMS performance plots in fig. 5-a show that the greedy policy (in this
particular case) does not lead to divergence. However, it is quite remarkable that
our proposed policy performs better than both the greedy and the conservative
policies (indeed, slightly better than even using always Controller 2, which is not
a feasible choice).

Finally, results of application of the proposed technique for a tracking con-
trol problem for the TORA example are reported in fig. 6. The reference to
be tracked is a piecewise constant signal of amplitude π/4, period 10 seconds
and pulse width of 30%. The comparison of RMS performance shows that direct
application of the conditioned switching policy performs poorly in the tracking
case. This is due to the re-activation issues pointed out earlier. Using the simple



0 1 2 3 4 5
0

0.05

0.1

sec

R
M

S

RMS comparison

0 1 2 3 4 5
0

5

10
x 10

5

Markov
Controller 1
Controller 2
Controller 3
Greedy

0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

sec

T
im

e

Scheduled, conditioning and conditioned execution time for Markov policy

Scheduled
Conditioning
Conditioned

a) b)

Fig. 4. Regulation results for the Furuta pendulum example: a) RMS error of the closed
loop system with different control schedulings b) allowable execution times provided
by the OS scheduler, and the conditioning and conditioned processes.

bumpless switching technique proposed in Section 6, a significant performance
improvement is achieved, as shown in both figures 6-a,b. The RMS performance
of the bumpless conditioned switching policy is better than both the greedy and
the conservative approaches.

8 Conclusions

We have shown that underexploitation of CPU time caused by conservative
control scheduling policies can be effectively reduced, and control performance
can be significatively enhanced, by adopting a schedule conditioning algorithm
that uses a stochastic model of a preemptive RTOS scheduler.

We also discussed ideas for the design of controllers which, together with
a conditioning process of the stochastic scheduling, provide better performance
than prevailing worst case-based design, while guaranteeing almost sure stability
of the resulting switching system. A practical and effective technique for bump-
less switching has been introduced, to reduce the negative effects of switching in
tracking problems.

Much work remains to be done on a systematic design procedure for arriving
at a hierarchical, composable, practical design of controllers for anytime imple-
mentation, and on numerical apects involved in the solution of the (multi-step)
average contractivity equation.

References

1. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the Association for Computing Machinery 20(1)
(1973)



0 1 2 3 4 5
0.04

0.06

0.08

0.1

0.12

0.14

0.16

sec

R
M

S

RMS comparison

Markov
Controller 1
Controller 2
Controller 3
Greedy

0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

sec

T
im

e

Scheduled, conditioning and conditioned execution time for Markov policy

Scheduled
Conditioning
Conditioned

a) b)

Fig. 5. Regulation results for the TORA example: a) RMS error of the closed loop
system with different control schedulings b) allowable execution times provided by the
OS scheduler, and the conditioning and conditioned processes.

2. Liu, J.W.S.: Real–Time Systems. Prentice Hall Inc., Upper Saddle River, NJ
(2000)

3. Buttazzo, G.: Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Kluwer Academic Publishers, Boston (1997)

4. Liu, J.W.S., Shih, W.K., Lin, K.J., Bettati, R., Chung, J.Y.: Imprecise computa-
tion. Proceedings of the IEEE 82(1) (January 1994) 83–93

5. Liu, J.W.S., Lin, K.J., Shih, W.K., Yu, A.C.S., Chung, J.Y., Zhao, W.: Algorithms
for scheduling imprecise computations. Computer 24(5) (1991) 58–68

6. Perrin, N., Ferri, B.: Digital filters with adaptive length for real–time applications.
In Le Royal Meridien, K.E., ed.: Proc. IEEE Real-Time and Embedded Technology
and Applications Symposium, Toronto, Canada (May 2004)

7. Bhattacharya, R., Balas, G.J.: Implementation of control algorithms in an envi-
ronment of dynamically scheduled CPU time using balanced truncation. In: AIAA
Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA (Au-
gust 2002)

8. Bhattacharya, R., Balas, G.J.: Anytime control algorithm: Model reduction ap-
proach. Journal of Guidance, Control, and Dynamics 27(5) (2004) 767–776

9. Branicky, M.S.: Stability of hybrid systems: State of the art. In: Proc. 36th IEEE
Conf. On Decision and Control, San Diego, California, USA (December 1997) 120–
125

10. DeCarlo, R.A., Branicky, M.S., Pettersson, S., Lennartson, B.: Perspectives and
results on the stability and stabilizability of hybrid systems. IEEE Proceedings
88(7) (2000) 1069–1082

11. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched
systems. IEEE Contr. Syst. Mag. 19(5) (1999) 59–70

12. Ye, H., Michel, A.N., Hou, L.: Stability theory for hybrid dynamical systems. IEEE
Trans. Automat. Contr. 43(4) (1998) 461–474

13. Hespanha, J.P., Morse, A.S.: Switching between stabilizing controllers. Automatica
38(11) (2002) 1905–1917



0 5 10 15 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sec

O
ut

pu
t

Output comparisons

Markov
Controller 1
Controller 2
Controller 3
Greedy
Markov
Bumpless

0 5 10 15 20
0

2

4

6

8

10

12

14

sec

R
M

S

RMS comparison

Markov
Controller 1
Controller 2
Controller 3
Greedy
Markov
Bumpless

a) b)

Fig. 6. Tracking results for the Tora system: a) output signals; b) RMS errors.

14. Wicks, M.A., Peleties, P., DeCarlo, R.: Construction of piecewise Lyapunov func-
tions for stabilizing switched systems. In: Proc. 33rd IEEE Conf. On Decision and
Control, Lake Buena Vista, FL (December 1994) 3492–3497

15. Wicks, M., DeCarlo, R.: Solution of coupled Lyapunov equations for the stabiliza-
tion of multimodal linear systems. In: Proc. American Control Conf., Albuquerque,
NM (June 1997) 1709–1713

16. Pettersson, S., Lennartson, B.: Stabilization of hybrid systems using a min-
projection strategy. In: Proc. American Control Conf., Arlington, Virginia (June
2001) 223–228

17. Greco, L., Fontanelli, D., Bicchi, A.: Almost sure stability of anytime controllers
via stochastic scheduling. In: Proc. IEEE Int. Conf. on Decision and Control, New
Orleans, LO (December 2007)

18. Fang, Y., Loparo, K., Feng, X.: Almost sure and δ-moment stability of jump linear
systems. Int. J. Control 59(5) (1994) 1281–1307

19. Bolzern, P., Colaneri, P., Nicolao, G.D.: On almost sure stability of discrete-time
Markov jump linear systems. In: Proc. 43rd IEEE Conf. On Decision and Control.
Volume 3. (2004) 3204–3208

20. Cervin, A., Lincoln, B., Eker, J., Årzén, K.E., Buttazzo, G.: The jitter margin and
its application in the design of real-time control systems. In: Proc. 10th Int. Conf.
on Real-Time and Embedded Computing Systems and Applications, Gothenburg,
Sweden (August 2004)

21. Liberzon, D., Hespanha, J.P., Morse, A.S.: Stability of switched systems: A Lie-
algebraic condition. Systems & Control Letters 37(3) (1999) 117–122

22. Åström, K., Wittenmark, B.: Computer Controlled Systems. Prentice Hall Inc.
(November 1996)

23. Furuta, K., Yamakita, M., Kobayashi, S.: Swing-up control of inverted pendulum
using pseudo-state feedback. Proceedings of the Institution of Mechanical Engi-
neers. Pt.I. Journal of Systems and Control Engineering 206(I4) (1992) 263–269

24. Bupp, R., Bernstein, D., Coppola, V.: A benchmark problem for nonlinear control
design: Problem statement, experimental testbed and passive, nonlinear compen-
sation. In: Proc. Amer. Contr. Conf. (1995) 4363–4367


