
Anytime Dynamic A*: An Anytime, Replanning Algorithm

Maxim Likhachev†, Dave Ferguson†, Geoff Gordon†, Anthony Stentz†, and Sebastian Thrun‡

† School of Computer Science ‡ Computer Science Department
Carnegie Mellon University Stanford University

Pittsburgh, PA, USA Stanford, CA, USA

Abstract

We present a graph-based planning and replanning al-
gorithm able to produce bounded suboptimal solutions
in an anytime fashion. Our algorithm tunes the quality
of its solution based on available search time, at every
step reusing previous search efforts. When updated in-
formation regarding the underlying graph is received,
the algorithm incrementally repairs its previous solu-
tion. The result is an approach that combines the bene-
fits of anytime and incremental planners to provide ef-
ficient solutions to complex, dynamic search problems.
We present theoretical analysis of the algorithm, exper-
imental results on a simulated robot kinematic arm, and
two current applications in dynamic path planning for
outdoor mobile robots.

Introduction

Planning for systems operating in the real world involves
dealing with a number of challenges not faced in many sim-
pler domains. Firstly, the real world is an inherently un-
certain and dynamic place; accurate models for planning are
difficult to obtain and quickly become out of date. Secondly,
when operating in the real world, time for deliberation is
usually very limited; agents need to make decisions and act
upon these decisions quickly.

Fortunately, a number of researchers have worked on
these challenges. To cope with imperfect information and
dynamic environments, efficient replanning algorithms have
been developed that correct previous solutions based on up-
dated information (Stentz 1994; 1995; Koenig & Likhachev
2002b; 2002a; Ramalingam & Reps 1996; Barto, Bradtke,
& Singh 1995). These algorithms maintain optimal solu-
tions for a fraction of the computation required to generate
such solutions from scratch.

However, when the planning problem is complex, it
may not be possible to obtain optimal solutions within the
deliberation time available to an agent. Anytime algo-
rithms (Zilberstein & Russell 1995; Dean & Boddy 1988;
Zhou & Hansen 2002; Likhachev, Gordon, & Thrun 2003)
have shown themselves to be particularly appropriate in such
settings, as they usually provide an initial, possibly highly-
suboptimal solution very quickly, then concentrate on im-

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

proving this solution until the time available for planning
runs out.

As of now, there has been relatively little interaction be-
tween these two areas of research. Replanning algorithms
have concentrated on finding a single solution with a fixed
suboptimality bound, and anytime algorithms have con-
centrated on static environments. But the most interest-
ing problems, for us at least, are those that are both dy-
namic (requiring replanning) and complex (requiring any-
time approaches). For example, our current work focuses on
path planning in dynamic, relatively high-dimensional state
spaces, such as trajectory planning with velocity considera-
tions for mobile robots navigating partially-known outdoor
environments.

In this paper, we present a heuristic-based, anytime re-
planning algorithm that bridges the gap between these two
areas of research. Our algorithm, Anytime Dynamic A*
(AD*), continually improves its solution while deliberation
time allows, and corrects its solution when updated informa-
tion is received. A simple example of its application to robot
navigation in an eight-connected grid is shown in Figure 1.

This paper is organised as follows. We begin by
discussing current incremental replanning algorithms, fo-
cussing in particular on D* and D* Lite (Stentz 1995;
Koenig & Likhachev 2002a). Next, we present existing any-
time algorithms, including the recent Anytime Repairing A*
algorithm (Likhachev, Gordon, & Thrun 2003). We then
introduce our novel algorithm, Anytime Dynamic A*, and
provide an example real-world application in dynamic path
planning for outdoor mobile robots. We demonstrate the
benefits of the approach through experimental results and
conclude with discussion and extensions.

Incremental Replanning

As mentioned above, often the information an agent has con-
cerning its environment (e.g. its map) is imperfect or incom-
plete. As a result, any solution generated using its initial
information may turn out to be invalid or suboptimal as it
receives updated information through, for example, an on-
board or offboard sensor. It is thus important that the agent is
able to replan optimal paths when new information arrives.

A number of algorithms exist for performing this re-
planning (Stentz 1995; Barbehenn & Hutchinson 1995;
Ramalingam & Reps 1996; Ersson & Hu 2001; Huim-



ǫ = 2.5 ǫ = 1.5 ǫ = 1.0

Figure 1: A simple robot navigation example. The robot starts in the bottom right cell and uses Anytime Dynamic A* to quickly
plan a suboptimal path to the upper left cell. It then takes one step along this path, improving the bound on its solution, denoted
by ǫ, as it moves. After it has moved two steps along its path, it observes a gap in the top wall. Anytime Dynamic A* is able
to efficiently improve its current solution while incorporating this new information. The states expanded by Anytime Dynamic
A* at each of the first three stages of the traverse are shown shaded.

ing et al. 2001; Podsedkowski et al. 2001; Koenig &
Likhachev 2002a; Ferguson & Stentz 2005). Focussed
Dynamic A* (D*) (Stentz 1995) and D* Lite (Koenig
& Likhachev 2002a) are currently the most widely used
of these algorithms, due to their efficient use of heuris-
tics and incremental updates. D* has been shown to be
up to two orders of magnitude more efficient than plan-
ning from scratch with A*, and it has been used exten-
sively by fielded robotic systems (Stentz & Hebert 1995;
Hebert, McLachlan, & Chang 1999; Matthies et al. 2000;
Thayer et al. 2000; Zlot et al. 2002). D* Lite is a simpli-
fied version of D* that has been found to be slightly more
efficient by some measures (Koenig & Likhachev 2002a). It
has been used to guide Segbots and ATRV vehicles in urban
terrain (Likhachev 2003). Both algorithms guarantee opti-
mal paths over graphs. D* Lite has also been found useful in
other domains. For example, it has been used to construct an
efficient heuristic search-based symbolic replanner (Koenig,
Furcy, & Bauer 2002).

Both D* and D* Lite maintain least-cost paths between
a start state and any number of goal states as the cost of
arcs between states change. Both algorithms can handle in-
creasing or decreasing arc costs and dynamic start states.
They are both thus suited to solving the goal-directed mo-
bile robot navigation problem, which entails a robot moving
from some initial state to one of a number of goal states
while updating its map information through an onboard sen-
sor. Because the two algorithms are fundamentally very sim-
ilar, we restrict our attention here to D* Lite, which has been
found to be slightly more efficient for some navigation tasks
(Koenig & Likhachev 2002a) and easier to analyze. More
details on each of the algorithms can be found in (Stentz
1995) and (Koenig & Likhachev 2002a).

D* Lite maintains a least-cost path from a start state
sstart ∈ S to a goal state sgoal ∈ S, where S is the set of

states in some finite state space1. To do this, it stores an

1As mentioned previously, any number of goals can be incor-
porated. When there is more than one, sgoal is the set of goals

estimate g(s) of the cost from each state s to the goal. It
also stores a one-step lookahead cost rhs(s) which satisfies:

rhs(s) =

{

0 if s = sgoal

mins′∈Succ(s)(c(s, s
′) + g(s′)) otherwise,

where Succ(s) ∈ S denotes the set of successors of s and
c(s, s′) denotes the cost of moving from s to s′ (the arc
cost). A state is called consistent iff its g-value equals
its rhs-value, otherwise it is either overconsistent (if
g(s) > rhs(s)) or underconsistent (if g(s) < rhs(s)).

As with A*, D* Lite uses a heuristic and a priority queue
to focus its search and to order its cost updates efficiently.
The heuristic h(s, s′) estimates the cost of an optimal path
from state s to s′, and needs to satisfy h(s, s′) ≤ c∗(s, s′)
and h(s, s′′) ≤ h(s, s′) + c∗(s′, s′′) for all states s, s′, s′′ ∈
S, where c∗(s, s′) is the cost associated with a least-cost
path from s to s′. The priority queue OPEN always holds
exactly the inconsistent states; these are the states that need
to be updated and made consistent.

The priority, or key value, of a state s in the queue is:

key(s) = [k1(s), k2(s)]
= [min(g(s), rhs(s)) + h(sstart, s),

min(g(s), rhs(s))].

A lexicographic ordering is used on the priorities, so
that priority key(s) is less than priority key(s′), denoted
key(s) <̇ key(s′), iff k1(s) < k1(s

′) or both k1(s) = k1(s
′)

and k2(s) < k2(s
′). D* Lite expands states from the queue

in increasing priority, updating their g-values and the rhs-
values of their predecessors, until there is no state in the
queue with a key value less than that of the start state. Thus,
during its generation of an initial solution path, it performs
in exactly the same manner as a backwards A* search.

If arc costs change after this initial solution has been gen-
erated, D* Lite updates the rhs-values of each state imme-
diately affected by the changed arc costs and places those

rather than a single state. The algorithm as presented here remains
unchanged.



key(s)

01. return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s))];

UpdateState(s)

02. if s was not visited before

03. g(s) = ∞;

04. if (s 6= sgoal) rhs(s) = mins′∈Succ(s)(c(s, s′) + g(s′));

05. if (s ∈ OPEN) remove s from OPEN;

06. if (g(s) 6= rhs(s)) insert s into OPEN with key(s);

ComputeShortestPath()

07. while (min
s∈OPEN(key(s)) <̇ key(sstart) OR rhs(sstart) 6= g(sstart))

08. remove state s with the minimum key from OPEN;

09. if (g(s) > rhs(s))

10. g(s) = rhs(s);

11. for all s′ ∈ Pred(s) UpdateState(s′);

12. else

13. g(s) = ∞;

14. for all s′ ∈ Pred(s) ∪ {s} UpdateState(s′);

Main()

15. g(sstart) = rhs(sstart) = ∞; g(sgoal) = ∞;

16. rhs(sgoal) = 0; OPEN = ∅;

17. insert sgoal into OPENwith key(sgoal);

18. forever

19. ComputeShortestPath();

20. Wait for changes in edge costs;

21. for all directed edges (u, v) with changed edge costs

22. Update the edge cost c(u, v);

23. UpdateState(u);

Figure 2: The D* Lite Algorithm (basic version).

states that have been made inconsistent onto the queue. As
before, it then expands the states on the queue in order of
increasing priority until there is no state in the queue with a
key value less than that of the start state. By incorporating
the value k2(s) into the priority for state s, D* Lite ensures
that states that are along the current path and on the queue
are processed in the most efficient order. Combined with the
termination condition, this ordering also ensures that a least-
cost path will have been found from the start state to the goal
state when processing is finished. The basic version of the
algorithm is given in Figure 2.

D* Lite is efficient because it uses a heuristic to restrict
attention to only those states that could possibly be relevant
to repairing the current solution path from a given start state
to the goal state. When arc costs decrease, the incorporation
of the heuristic in the key value (k1) ensures that only those
newly-overconsistent states that could potentially decrease
the cost of the start state are processed. When arc costs
increase, it ensures that only those newly-underconsistent
states that could potentially invalidate the current cost of the
start state are processed.

Anytime Planning

When the planning problem is complex and the time avail-
able to an agent for planning is limited, generating opti-
mal solutions can be infeasible. In such situations, the
agent must be satisfied with the best solution that can
be generated within the available computation time. A

key(s)

01. return g(s) + ǫ · h(sstart, s);

ImprovePath()

02. while (min
s∈OPEN(key(s)) < key(sstart))

03. remove s with the minimum key from OPEN;

04. CLOSED = CLOSED ∪ {s};

05. for all s′ ∈ Pred(s)

06. if s′ was not visited before

07. g(s′) = ∞;

08. if g(s′) > c(s′, s) + g(s)

09. g(s′) = c(s′, s) + g(s);

10. if s′ 6∈ CLOSED

11. insert s′ into OPEN with key(s′);

12. else

13. insert s′ into INCONS;

Main()

14. g(sstart) = ∞; g(sgoal) = 0;

15. ǫ = ǫ0;

16. OPEN = CLOSED = INCONS = ∅;

17. insert sgoal into OPEN with key(sgoal);

18. ImprovePath();

19. publish current ǫ-suboptimal solution;

20. while ǫ > 1

21. decrease ǫ;

22. Move states from INCONS into OPEN;

23. Update the priorities for all s ∈ OPEN according to key(s);

24. CLOSED = ∅;

25. ImprovePath();

26. publish current ǫ-suboptimal solution;

Figure 3: The ARA* Algorithm (backwards version).

useful set of algorithms for generating such solutions are
known as anytime algorithms (Zilberstein & Russell 1995;
Dean & Boddy 1988; Zhou & Hansen 2002; Likhachev,
Gordon, & Thrun 2003). Typically, these start out by com-
puting an initial, potentially highly suboptimal solution, then
improve this solution as time allows.

A*-based anytime algorithms make use of the fact that
in many domains inflating the heuristic values used by A*
(resulting in the weighted A* search) often provides sub-
stantial speed-ups (Bonet & Geffner 2001; Korf 1993; Zhou
& Hansen 2002; Edelkamp 2001; Rabin 2000; Chakrabarti,
Ghosh, & DeSarkar 1988) at the cost of solution optimal-
ity. A* also has the nice property that if the heuristic used
is consistent, and the heuristic values are multiplied by an
inflation factor ǫ > 1, then the cost of the generated solu-
tion is guaranteed to be within ǫ times the cost of an optimal
solution (Pearl 1984). Zhou and Hansen take advantage of
this property to present an anytime algorithm that begins by
quickly producing such an ǫ bounded solution, then gradu-
ally improves this solution over time (Zhou & Hansen 2002).
However, their algorithm has no control over the subopti-
mality bound while the initial solution is improved upon.
Likhachev, Gordon, and Thrun present an anytime algorithm
that performs a succession of A* searches, each with a de-
creasing inflation factor, where each search reuses efforts
from previous searches (Likhachev, Gordon, & Thrun 2003).
This approach provides suboptimality bounds for each suc-



key(s)

01. if (g(s) > rhs(s))

02. return [rhs(s) + ǫ · h(sstart, s); rhs(s)];

03. else

04. return [g(s) + h(sstart, s); g(s)];

UpdateState(s)

05. if s was not visited before

06. g(s) = ∞;

07. if (s 6= sgoal) rhs(s) = mins′∈Succ(s)(c(s, s′) + g(s′));

08. if (s ∈ OPEN) remove s from OPEN;

09. if (g(s) 6= rhs(s))

10. if s 6∈ CLOSED

11. insert s into OPEN with key(s);

12. else

13. insert s into INCONS;

ComputeorImprovePath()

14. while (min
s∈OPEN(key(s)) <̇ key(sstart) OR rhs(sstart) 6= g(sstart))

15. remove state s with the minimum key from OPEN;

16. if (g(s) > rhs(s))

17. g(s) = rhs(s);

18. CLOSED = CLOSED ∪ {s};

19. for all s′ ∈ Pred(s) UpdateState(s′);

20. else

21. g(s) = ∞;

22. for all s′ ∈ Pred(s) ∪ {s} UpdateState(s′);

Figure 4: Anytime Dynamic A*: ComputeorIm-
provePath function.

cessive search and has been shown to be much more efficient
than competing approaches (Likhachev, Gordon, & Thrun
2003).

Their algorithm, Anytime Repairing A*, uses the notion
of consistency introduced above to limit the processing per-
formed during each search by only considering those states
whose costs at the previous search may not be valid given
the new ǫ value. It begins by performing an A* search with
an inflation factor ǫ0, but during this search it only expands
each state at most once2. Once a state has been expanded
during a particular search, if it becomes inconsistent due to a
cost change associated with a neighboring state then it is not
reinserted into the queue of states to be expanded. Instead, it
is placed into the INCONS list, which contains all inconsis-
tent states already expanded. Then, when the current search
terminates, the states in the INCONS list are inserted into
a fresh priority queue (with new priorities based on the new
inflation factor ǫ), which is used by the next search. This im-
proves the efficiency of each search in two ways. Firstly, by
only expanding each state at most once a solution is reached
much more quickly. Secondly, by only reconsidering states
from the previous search that were inconsistent, much of the
previous search effort can be reused. Thus, when the infla-
tion factor is reduced between successive searches, a rela-
tively minor amount of computation is required to generate
a new solution.

2It is proved in (Likhachev, Gordon, & Thrun 2003) that this
still guarantees an ǫ0 suboptimality bound.

Main()

01. g(sstart) = rhs(sstart) = ∞; g(sgoal) = ∞;

02. rhs(sgoal) = 0; ǫ = ǫ0;

03. OPEN = CLOSED = INCONS = ∅;

04. insert sgoal into OPEN with key(sgoal);

05. ComputeorImprovePath();

06. publish current ǫ-suboptimal solution;

07. forever

08. if changes in edge costs are detected

09. for all directed edges (u, v) with changed edge costs

10. Update the edge cost c(u, v);

11. UpdateState(u);

12. if significant edge cost changes were observed

13. increase ǫ or replan from scratch;

14. else if ǫ > 1

15. decrease ǫ;

16. Move states from INCONS into OPEN;

17. Update the priorities for all s ∈ OPEN according to key(s);

18. CLOSED = ∅;

19. ComputeorImprovePath();

20. publish current ǫ-suboptimal solution;

21. if ǫ = 1

22. wait for changes in edge costs;

Figure 5: Anytime Dynamic A*: Main function.

A simplified (backwards-searching) version of the algo-
rithm is given in Figure 3. Here, the priority of each state s
in the OPEN queue is computed as the sum of its cost g(s)
and its inflated heuristic value ǫ ·h(sstart, s). CLOSED con-
tains all states already expanded once in the current search,
and INCONS contains all states that have already been ex-
panded and are inconsistent. Other notation should be con-
sistent with that described earlier.

Anytime Dynamic A*

As shown in the previous sections, there exist efficient algo-
rithms for coping with dynamic environments (e.g. D* and
D* Lite), and complex planning problems (ARA*). How-
ever, what about when we are facing both complex planning
problems and dynamic environments at the same time?

As a motivating example, consider motion planning for a
kinematic arm in a populated office area. A planner for such
a task would ideally be able to replan efficiently when new
information is received indicating that the environment has
changed. It may also need to generate suboptimal solutions,
as optimality may not be possible if it is subject to limited
deliberation time.

Given the strong similarities between D* Lite and ARA*,
it seems appropriate to look at whether the two could be
combined into a single anytime, incremental replanning al-
gorithm that could provide the sort of performance required
in this example.

Our novel algorithm, Anytime Dynamic A* (AD*), does
just this. It performs a series of searches using decreasing
inflation factors to generate a series of solutions with im-
proved bounds, as with ARA*. When there are changes in
the environment affecting the cost of edges in the graph, lo-
cally affected states are placed on the OPEN queue with pri-



orities equal to the minimum of their previous key value and
their new key value, as with D* Lite. States on the queue are
then processed until the current solution is guaranteed to be
ǫ-suboptimal.

The Algorithm

The algorithm is presented in Figures 4 and 5. The Main
function first sets the inflation factor ǫ to a sufficiently high
value ǫ0, so that an initial, suboptimal plan can be generated
quickly (lines 02 − 06, Figure 5). Then, unless changes in
edge costs are detected, the Main function decreases ǫ and
improves the quality of its solution until it is guaranteed to
be optimal, that is, ǫ = 1 (lines 14 − 20, Figure 5). This
phase is exactly the same as for ARA*: each time ǫ is de-
creased, all inconsistent states are moved from INCONS to
OPEN and CLOSED is made empty.

When changes in edge costs are detected, there is a chance
that the current solution will no longer be ǫ-suboptimal. If
the changes are substantial, then it may be computation-
ally expensive to repair the current solution to regain ǫ-
suboptimality. In such a case, the algorithm increases ǫ so
that a less optimal solution can be produced quickly (lines 12
- 13, Figure 5). Because edge cost increases may cause some
states to become underconsistent, a possibility not present in
ARA*, states need to be inserted into the OPEN queue with
a key value reflecting the minimum of their old cost and their
new cost. Further, in order to guarantee that underconsistent
states propagate their new costs to their affected neighbors,
their key values must use uninflated heuristic values. This
means that different key values must be computed for un-
derconsistent states than for overconsistent states (lines 01 -
04, Figure 4).

By incorporating these considerations, AD* is able to
handle both changes in edge costs and changes to the in-
flation factor ǫ. It can also be slightly modified to handle the
situation where the start state sstart is changing, as is the
case when the computed path is being traversed by an agent.
To do this, we replace line 07, Figure 5 with the following
lines:

07a. fork(MoveAgent());
07b. while (sstart 6= sgoal)

Here, MoveAgent is another function executed in parallel
that shares the variable sstart and steps the agent along the
current path, at each step allowing the path to be repaired
and improved by the Main function:

MoveAgent()
01. while (sstart 6= sgoal)
02. wait until a plan is available;
03. sstart = argmins∈Succ(sstart)

(c(sstart, s) + g(s));
04. move agent to sstart;

Here, argmins′∈Succ(s)f() returns the successor of s for

which function f is minimized, so in line 03 the start state
is updated to be one of its neighbors on the current path to
the goal. Since the states on the OPEN queue have their key
values recalculated each time ǫ is changed, processing will
automatically be focussed towards the updated agent state
sstart. This conveniently allows the agent to improve and
update its solution path while it is being traversed.

An Example

Figure 6 presents an illustration of each of the approaches
addressed thus far on a simple grid world planning problem
(the same used earlier to introduce AD*). In this example
we have an eight-connected grid where black cells repre-
sent obstacles and white cells represent free space. The cell
marked R denotes the position of an agent navigating this
environment towards a goal cell, marked G (in the upper left
corner of the grid world). The cost of moving from one cell
to any non-obstacle neighboring cell is one. The heuristic
used by each algorithm is the larger of the x (horizontal) and
y (vertical) distances from the current cell to the cell occu-
pied by the agent. The cells expanded by each algorithm
for each subsequent agent position are shown in grey (each
algorithm has been optimized not to expand the agent cell).
The resulting paths are shown as dark grey arrows.

The first approach shown is backwards A*, that is, A*
with its search focussed from the goal state to the start state.
The initial search performed by A* provides an optimal path
for the agent. After the agent takes two steps along this path,
it receives information indicating that one of the cells in the
top wall is in fact free space. It then replans from scratch
using A* to generate a new, optimal path to the goal. The
combined total number of cells expanded at each of the first
three agent positions is 31.

The second approach is A* with an inflation factor of
ǫ = 2.5. This approach produces an initial suboptimal so-
lution very quickly. When the agent receives the new infor-
mation regarding the top wall, this approach replans from
scratch using its inflation factor and produces a new path,
which happens to be optimal. The total number of cells ex-
panded is only 19, but the solution is only guaranteed to be
ǫ-suboptimal at each stage.

The third approach is D* Lite, and the fourth is D* Lite
with an inflation factor of ǫ = 2.5. The bounds on the qual-
ity of the solutions returned by these respective approaches
are equivalent to those returned by the first two. However,
because D* Lite reuses previous search results, it is able to
produce its solutions with fewer overall cell expansions. D*
Lite without an inflation factor expands 27 cells (almost all
in its initial solution generation) and always maintains an
optimal solution, and D* Lite with an inflation factor of 2.5
expands 13 cells but produces solutions that are suboptimal
every time it replans.

The final row of the figure shows the results of ARA* and
AD*. Each of these approaches begins by computing a sub-
optimal solution using an inflation factor of ǫ = 2.5. While
the agent moves one step along this path, this solution is im-
proved by reducing the value of ǫ to 1.5 and reusing the re-
sults of the previous search. The path cost of this improved
result is guaranteed to be at most 1.5 times the cost of an
optimal path. Up to this point, both ARA* and AD* have
expanded the same 15 cells each. However, when the robot
moves one more step and finds out the top wall is broken,
each approach reacts differently. Because ARA* cannot in-
corporate edge cost changes, it must replan from scratch
with this new information. Using an inflation factor of 1.0 it
produces an optimal solution after expanding 9 cells (in fact
this solution would have been produced regardless of the in-



left: A*
right: A* with ǫ = 2.5

ǫ = 1.0 ǫ = 1.0 ǫ = 1.0 ǫ = 2.5 ǫ = 2.5 ǫ = 2.5

left: D* Lite
right: D* Lite with ǫ = 2.5

ǫ = 1.0 ǫ = 1.0 ǫ = 1.0 ǫ = 2.5 ǫ = 2.5 ǫ = 2.5

left: ARA*
right: Anytime Dynamic A*

ǫ = 2.5 ǫ = 1.5 ǫ = 1.0 ǫ = 2.5 ǫ = 1.5 ǫ = 1.0

Figure 6: A simple robot navigation example. The robot starts in the bottom right cell and plans a path to the upper left cell.
After it has moved two steps along its path, it observes a gap in the top wall. The states expanded by each of six algorithms
(A*, A* with an inflation factor, D* Lite, D* Lite with an inflation factor, ARA*, and AD*) are shown at each of the first three
robot positions.

flation factor used). AD*, on the other hand, is able to repair
its previous solution given the new information and lower
its inflation factor at the same time. Thus, the only cells that
are expanded are the 5 whose cost is directly affected by the
new information and that reside between the agent and the
goal.

Overall, the total number of cells expanded by AD* is 20.
This is 4 less than the 24 required by ARA* to produce an
optimal solution, and much less than the 27 required by D*
Lite. Because AD* reuses previous solutions in the same
way as ARA* and repairs invalidated solutions in the same
way as D* Lite, it is able to provide anytime solutions in
dynamic environments very efficiently.

Theoretical Properties

We can prove a number of properties of AD*, including its
termination and ǫ-suboptimality. The proofs of the proper-
ties below, along with others, can be found in (Likhachev
et al. 2005). In what follows, we use g∗(s) to denote the
cost of an optimal path from s to sgoal. Let us also de-
fine a greedy path from sstart to s as a path that is com-
puted as follows: starting from sstart, always move from
the current state sc to a successor state s′ that satisfies
s′ = argmins′∈Succ(sc)(c(s

c, s′) + g(s′)) until sc = s.

Theorem 1 Whenever the ComputeorImprovePath
function exits, for any consistent state s with
key(s)≤̇mins′∈OPEN (key(s′)), we have g∗(s) ≤ g(s) ≤
ǫ ∗ g∗(s), and the cost of a greedy path from s to sgoal is no
larger than g(s).

This theorem guarantees the ǫ-suboptimality of the solu-
tion returned by the ComputeorImprovePath function, since,

when it terminates, sstart is consistent and the key value of
sstart is at least as large as the minimum key value of all
states on the OPEN queue.

Theorem 2 Within each call to ComputeorImprovePath() a
state is expanded at most twice and only if it was inconsistent
before the call to ComputeorImprovePath() or its g-value
was altered during the current execution of ComputeorIm-
provePath().

This second theorem proves that the ComputeorIm-
provePath function will always terminate. Since the value
of ǫ is decreased after each call to ComputeorImprovePath()
unless edge costs have changed, it then follows from Theo-
rem 1 that in the absence of infinitely-changing edge costs,
AD* will always eventually publish an optimal solution
path.

Theorem 2 also highlights the computational advantage
of AD* over D* Lite and ARA*. Because AD* only pro-
cesses exactly the states that were either inconsistent at the
beginning of the current search or made inconsistent during
the current search, it is able to produce solutions very effi-
ciently. Neither D* Lite nor ARA* are able to both improve
and repair existing solutions in this manner.

Robotic Application

The main motivation for this work was efficient path plan-
ning for land-based mobile robots. In particular, those op-
erating in dynamic outdoor environments, where velocity
considerations are important for generating smooth, timely
trajectories. We can frame this problem as a search over a
state space involving four dimensions: the (x.y) position of
the robot, the robot’s orientation, and the robot’s velocity.



Figure 7: The ATRV robotic platform. Also shown are two images of the robot moving from the left side to the right side of an
initially-unknown outdoor environment using AD* for updating and improving its solution path.

Solving this initial 4D search in large environments can be
computationally costly, and an optimal solution may be in-
feasible if the initial processing time of the robot is limited.

Once the robot starts moving, it is highly unlikely that it
will be able to replan an optimal path if it discovers changes
in the environment. But if the environment is only partially-
known or is dynamic, either of which is common in the ur-
ban areas we are interested in traversing, changes will cer-
tainly be discovered. As a result, the robot needs to be able
to quickly generate suboptimal solutions when new infor-
mation is gathered, then improve these solutions as much as
possible given its processing constraints.

We have used AD* to provide this capability for two
robotic platforms currently used for outdoor navigation. To
direct the 4D search in each case, we use a fast 2D (x, y)
planner to provide the heuristic values. Figure 7 shows our
first system, an ATRV vehicle equipped with two laser range
finders for mapping and an inertial measurement unit for po-
sition estimation. Also shown in Figure 7 are two images
taken of the map and path generated by the robot as it tra-
versed from one side of an initially-unknown environment to
the other. The 4D state space for this problem has roughly 20
million states, however AD* was able to provide fast, safe
trajectories in real-time.

We have also implemented AD* on a Segway Robotic
Mobility Platform, shown in Figure 8. Using AD*, it has
successfully navigated back and forth across a substantial
part of the Stanford campus.

Experimental Results

To evaluate the performance of AD*, we compared it to
ARA* and D* Lite (with an inflation factor of ǫ = 20) on
a simulated 3 degree of freedom (DOF) robotic arm manip-
ulating an end-effector through a dynamic environment (see
Figures 9 and 10). In this set of experiments, the base of
the arm is fixed, and the task is to move into a particular
goal configuration while navigating the end-effector around
fixed and dynamic obstacles. We used a manufacturing-like
scenario for testing, where the links of the arm exist in an
obstacle-free plane, but the end-effector projects down into a
cluttered space (such as a conveyor belt moving goods down
a production line).

In each experiment, we started with a known map of the

Figure 8: The Segbot robotic platform.

end-effector environment. As the arm traversed each step of
its trajectory, however, there was some probability Po that
an obstacle would appear in its path, forcing the planner to
repair its previous solution.

We have included results from two different initial envi-
ronments and several different values of Po, ranging from
Po = 0.04 to Po = 0.2. In these experiments, the agent
was given a fixed amount of time for deliberation, T d = 1.0
seconds, at each step along its path. The cost of moving each
link was nonuniform: the link closest to the end-effector had
a movement cost of 1, the middle link had a cost of 4, and
the lower link had a cost of 9. The heuristic used by all al-
gorithms was the maximum of two quantities; the first was
the cost of a 2D path from the current end-effector position
to its position at the state in question, accounting for all the
currently known obstacles on the way; the second was the
maximum angular difference between the joint angles at the
current configuration and the joint angles at the state in ques-
tion. This heuristic is admissible and consistent.

In each experiment, we compared the cost of the path tra-
versed by ARA* with ǫ0 = 20 and D* Lite with ǫ = 20 to



Optimal Solution End-effector Trajectory Probability of Obstacle Appearing Probability of Obstacle Appearing

S
o
lu

ti
o
n

C
o
st

S
ta

te
E

x
p
an

si
o
n
s

Figure 9: Environment used in our first experiment, along with the optimal solution and the end-effector trajectory (without any
dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of the
three algorithms compared.

that of AD* with ǫ0 = 20, as well as the number of states
expanded by each approach. Our first environment had only
one general route that the end-effector could take to get to its
goal configuration, so the difference in path cost between the
algorithms was due to manipulating the end-effector along
this general path more or less efficiently. Our second exper-
iment presented two qualitatively different routes the end-
effector could take to the goal. One of these had a shorter
distance in terms of end-effector grid cells but was narrower,
while the other was longer but broader, allowing for the links
to move in a much cheaper way to get to the goal.

Each environment consisted of a 50 × 50 grid, and the
state space for each consisted of slightly more than 2 mil-
lion states. The results for the experiments, along with 95%
confidence intervals, can be found in Figures 9 and 10. As
can be seen from these graphs, AD* was able to generate
significantly better trajectories than ARA* while processing
far fewer states. D* Lite processed very few states, but its
overall solution quality was much worse than either of the
anytime approaches. This is because it is unable to improve
its suboptimality bound.

We have also included results focussing exclusively on
the anytime behavior of AD*. To generate these results,
we repeated the above experiments without any randomly-
appearing obstacles (i.e., Po = 0). We kept the deliberation
time available at each step, T d, set at the same value as in
the original experiments (1.0 seconds). Figure 11 shows the
total path cost (the cost of the executed trajectory so far plus
the cost of the remaining path under the current plan) as a
function of how many steps the agent has taken along its
path. Since the agent plans before each step, the number of
steps taken corresponds to the number of planning episodes
performed. These graphs show how the quality of the so-
lution improves over time. We have included only the first
20 steps, as in both cases AD* has converged to the optimal
solution by this point.

We also ran the original experiments using D* Lite with
no inflation factor and unlimited deliberation time, to get an
indication of the cost of an optimal path. On average, the
path traversed by AD* was about 10% more costly than the
optimal path, and it expanded roughly the same number of
states as D* Lite with no inflation factor. This is particularly

encouraging: not only is the solution generated by AD* very
close to optimal, but it is providing this solution in an any-
time fashion for roughly the same total processing as would
be required to generate the solution in one shot.

Discussion and Future Work

There are a few details and extensions of the algorithm worth
expanding on. Firstly, lines 12 - 13 of the Main function
(Figure 5) state that if significant changes in edge costs are
observed, then either ǫ should be increased or we should
replan from scratch. This is an important consideration,
as it is possible that repairing a previous solution will in-
volve significantly more processing than planning over from
scratch. Exactly what constitutes “significant changes” is
application-dependent. For our outdoor navigation plat-
forms, we look to see how much the 2D heuristic cost from
the current state to the goal has changed: if this change is
large, there is a good chance replanning will be time con-
suming. In our simulated robotic arm experiments, we never
replanned from scratch, since we were always able to replan
incrementally in the allowed deliberation time. However,
in general it is worth taking into account how much of the
search tree has become inconsistent, as well as how long it
has been since we last replanned from scratch. If a large por-
tion of the search tree has been affected and the last complete
replanning episode was quite some time ago, it is probably
worth scrapping the search tree and starting fresh. This is
particularly true in very high-dimensional spaces where the
dimensionality is derived from the complexity of the agent
rather than the environment, since changes in the environ-
ment can affect a huge number of states.

Secondly, every time we change ǫ the entire OPEN queue
needs to be reordered to take into account the new key values
of all the states on it (line 17 Figure 5). This can be a rather
expensive operation. It is possible to avoid this full queue
reorder by extending an idea originally presented along with
the Focussed D* algorithm (Stentz 1995), where a bias term
is added to the key value of each state being placed on the
queue. This bias is used to ensure that those states whose
priorities in the queue are based on old, incorrect key val-
ues are at least as high as they should be in the queue. In



Optimal Solution End-effector Trajectory Probability of Obstacle Appearing Probability of Obstacle Appearing

S
o
lu

ti
o
n

C
o
st

S
ta

te
E

x
p
an

si
o
n
s

Figure 10: Environment used in our second experiment, along with the optimal solution and the end-effector trajectory (without
any dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of
the three algorithms compared.

other words, by adding a fixed value to the key of each new
state placed on the queue, the old states are given a rela-
tive advantage in their queue placement. When a state is
popped off the queue whose key value is not in line with
the current bias term, it is placed back on the queue with an
updated key value. The intuition is that only a small num-
ber of the states previously on the queue may ever make
it to the top, so it can be much more efficient to only re-
order the ones that do. We can use the same idea when ǫ
decreases (from ǫo to ǫn, say) to increase the bias term by
(ǫo − ǫn) ·maxs∈OPEN h(sstart, s). The key value of each
state becomes

key(s) = [min(g(s), rhs(s)) + ǫ · h(sstart, s) + bias,
min(g(s), rhs(s))].

By using the maximum heuristic value present in the queue
to update the bias term, we are guaranteeing that each state
already on the queue will be at least as elevated on the queue
as it should be relative to the new states being added. It is
future work to implement this approach but it appears to be
a promising modification.

Finally, it may be possible to reduce the effect of un-
derconsistent states in our repair of previous solution paths.
With the current version of AD*, underconsistent states need
to be placed on the queue with a key value that uses an un-
inflated heuristic value. This is because they could reside on
the old solution path and their true effect on the start state
may be much more than the inflated heuristic would suggest.
This means, however, that the underconsistent states quickly
rise to the top of the queue and are processed before many
overconsistent states. At times, these underconsistent states
may not have any effect on the value of the start state (for
instance when they do not reside upon the current solution
path). We are currently looking into ways of reducing the
number of underconsistent states examined, using ideas very
recently developed (Ferguson & Stentz 2005). This could
prove very useful in the current framework, where much of
the processing is done on underconsistent states that may not
turn out to have any bearing on the solution.

Conclusions

We have presented Anytime Dynamic A*, a heuristic-based,
anytime replanning algorithm able to efficiently generate so-

lutions to complex, dynamic path planning problems. The
algorithm works by continually decreasing a suboptimal-
ity bound on its solution, reusing previous search efforts as
much as possible. When changes in the environment are
encountered, it is able to repair its previous solution incre-
mentally. Our experiments and application of the algorithm
to two real-world robotic systems have shown it to be a valu-
able addition to the family of heuristic-based path planning
algorithms, and a useful tool in practise.

Acknowledgments

The authors would like to thank Sven Koenig for fruitful
discussions. This work was partially sponsored by DARPA’s
MARS program. Dave Ferguson is supported in part by an
NSF Graduate Research Fellowship.

References

Barbehenn, M., and Hutchinson, S. 1995. Efficient search
and hierarchical motion planning by dynamically maintain-
ing single-source shortest path trees. IEEE Transactions on
Robotics and Automation 11(2):198–214.

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
Act Using Real-Time Dynamic Programming. Artificial
Intelligence 72:81–138.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.

Chakrabarti, P.; Ghosh, S.; and DeSarkar, S. 1988. Ad-
missibility of AO* when heuristics overestimate. Artificial
Intelligence 34:97–113.

Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI).

Edelkamp, S. 2001. Planning with pattern databases. In
Proceedings of the European Conference on Planning.

Ersson, T., and Hu, X. 2001. Path planning and navigation
of mobile robots in unknown environments. In Proceedings
of the IEEE International Conference on Intelligent Robots
and Systems (IROS).

Ferguson, D., and Stentz, A. 2005. The Delayed D* Algo-
rithm for Efficient Path Replanning. In Proceedings of the



End-effector Trajectory Steps Taken (Planning Episodes) End-effector Trajectory Steps Taken (Planning Episodes)
S

o
lu

ti
o
n

C
o
st

S
o
lu

ti
o
n

C
o
st

Figure 11: An illustration of the anytime behavior of AD*. Each graph shows the total path cost (the cost of the executed
trajectory so far plus the cost of the remaining path under the current plan) as a function of how many steps the agent has taken
along its path, for the static path planning problem depicted to the left of the graph. Also shown are the optimal end-effector
trajectories for each problem.

IEEE International Conference on Robotics and Automa-
tion (ICRA).

Hebert, M.; McLachlan, R.; and Chang, P. 1999. Experi-
ments with driving modes for urban robots. In Proceedings
of SPIE Mobile Robots.

Huiming, Y.; Chia-Jung, C.; Tong, S.; and Qiang, B. 2001.
Hybrid evolutionary motion planning using follow bound-
ary repair for mobile robots. Journal of Systems Architec-
ture 47:635–647.

Koenig, S., and Likhachev, M. 2002a. Improved fast re-
planning for robot navigation in unknown terrain. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA).

Koenig, S., and Likhachev, M. 2002b. Incremental A*. In
Advances in Neural Information Processing Systems. MIT
Press.

Koenig, S.; Furcy, D.; and Bauer, C. 2002. Heuristic
search-based replanning. In Proceedings of the Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling, 294–301.

Korf, R. 1993. Linear-space best-first search. Artificial
Intelligence 62:41–78.

Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and
Thrun, S. 2005. Anytime Dynamic A*: The Proofs. Tech-
nical Report CMU-RI-TR-05-12, Carnegie Mellon School
of Computer Science.

Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. In
Advances in Neural Information Processing Systems. MIT
Press.

Likhachev, M. 2003. Search techniques for planning in
large dynamic deterministic and stochastic environments.
Thesis proposal.

Matthies, L.; Xiong, Y.; Hogg, R.; Zhu, D.; Rankin, A.;
Kennedy, B.; Hebert, M.; Maclachlan, R.; Won, C.; Frost,
T.; Sukhatme, G.; McHenry, M.; and Goldberg, S. 2000.
A portable, autonomous, urban reconnaissance robot. In
Proceedings of the International Conference on Intelligent
Autonomous Systems (IAS).

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.

Podsedkowski, L.; Nowakowski, J.; Idzikowski, M.; and
Vizvary, I. 2001. A new solution for path planning in par-
tially known or unknown environments for nonholonomic
mobile robots. Robotics and Autonomous Systems 34:145–
152.

Rabin, S. 2000. A* speed optimizations. In DeLoura, M.,
ed., Game Programming Gems, 272–287. Rockland, MA:
Charles River Media.

Ramalingam, G., and Reps, T. 1996. An incremental al-
gorithm for a generalization of the shortest-path problem.
Journal of Algorithms 21:267–305.

Stentz, A., and Hebert, M. 1995. A complete navigation
system for goal acquisition in unknown environments. Au-
tonomous Robots 2(2):127–145.

Stentz, A. 1994. Optimal and efficient path planning
for partially-known environments. In Proceedings of the
IEEE International Conference on Robotics and Automa-
tion (ICRA).

Stentz, A. 1995. The Focussed D* Algorithm for Real-
Time Replanning. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI).

Thayer, S.; Digney, B.; Diaz, M.; Stentz, A.; Nabbe, B.;
and Hebert, M. 2000. Distributed robotic mapping of
extreme environments. In Proceedings of SPIE Mobile
Robots.

Zhou, R., and Hansen, E. 2002. Multiple sequence align-
ment using A*. In Proceedings of the National Conference
on Artificial Intelligence (AAAI). Student Abstract.

Zilberstein, S., and Russell, S. 1995. Approximate reason-
ing using anytime algorithms. In Imprecise and Approxi-
mate Computation. Kluwer Academic Publishers.

Zlot, R.; Stentz, A.; Dias, M.; and Thayer, S. 2002. Multi-
robot exploration controlled by a market economy. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA).


