
Anytime Dynamic Path-Planning
with Flexible Probabilistic Roadmaps

Khaled Belghith∗, Froduald Kabanza∗, Leo Hartman† and Roger Nkambou‡
∗Université de Sherbrooke

Email: khaled.belghith@USherbrooke.ca, kabanza@USherbrooke.ca
†Canadian Space Agency

Email: Leo.Hartman@space.gc.ca
‡Université du Québec À Montréal

Email: nkambou.roger@uqam.ca

Abstract— Probabilistic roadmaps (PRM) have been demon-
strated to be very promising for planning paths for robots with
high degrees of freedom in complex 3D workspaces. In this paper
we describe a PRM path-planning method presenting three novel
features that are useful in various real-world applications. First,
it handles zones in the robot workspace with different degrees of
desirability. Given the random quality of paths that are calculated
by traditional PRM approaches, this provides a mean to specify
a sampling strategy that controls the search process to generate
better paths by simply annotating regions in the free workspace
with degrees of desirability. Second, our approach can efficiently
re-compute paths in dynamic environments where obstacles and
zones can change shape or move concurrently with the robot.
Third, it can incrementally improve the quality of a generated
path, so that a suboptimal solution is available when required
for immediate action, but get improved as more planning time
is affordable.

I. INTRODUCTION

Path planning has been extensively studied in robotics over
the past two decades and is increasingly becoming important
in other areas such as computer animation, computer aided
design, and medical robotics equipments (e.g., for surgery).
In its traditional form, the path planning problem is to plan a
path for a moving body (typically a robot) from a given start
configuration to a given goal configuration in a workspace
containing a set of obstacles. The basic constraint on solution
paths is to avoid collision with obstacles, which we call hereby
a hard constraint. There exist numerous approaches for path
planning under this constraint (e.g., see [1]–[5]).

In many complex applications, however, in addition to
obstacles that must be avoided, we may have areas that must
be avoided as much as possible. That is, a path going through
these areas is not highly desirable, but would be acceptable
if no better path exists or can be computed efficiently. The
danger concept is relevant for example in military applications.
Some path planning techniques that deal with it have been
proposed, including [6], [7]. Conversely, it may be desirable
for a path to stay close to certain areas as much as possible.
Even if there is no explicit notion of degree of desirability
for a given path planning problem, as we demonstrate later,

c© Government of Canada, 2006

introducing it provides a mean to control the quality of a path
generated by a PRM method. Indeed, PRM paths are obtained
by connecting milestones that are randomly sampled in the free
workspace, and this tends to yield awkward paths, requiring
heuristic post-processing operations to smooth them. We can
influence the sampling strategy to generate less awkward paths
by specifying zones we prefer them to go through. We call
such constraints on desirable zones (or undesirable ones) soft
constraints on the robot path.

Our approach consists in defining a sampling strategy that
implements a balance between a random sampling of the free
workspace, keeping the robot configuration in desirable zones,
and minimizing the distance to the goal. More specifically,
the strategy emulates an anytime dynamic A* (AD* algo-
rithm [8]). We apply AD* to implement a sampling strategy
for fast replanning and anytime response in PRM approaches
and extend it further to zones with degrees of desirability.

In the next section we give the most relevant background.
We then describe our PRM approach, followed with experi-
ments that illustrate some of its merits.

II. BACKGROUND

A configuration q of an articulated robot with n degrees
of freedom (dof ) is an n element vector of the robot joint
positions. Since the robot moves by changing its joint rotations
or translations, a path between two points is a sequence of
configurations sufficiently close together connecting the two
points. A path is collision-free if the robot does not collide
with any obstacle in the workspace in any of the configurations
on the path.

Grid-based approaches provide one approach for imple-
menting path planning algorithms. The configuration space is
decomposed into an occupancy grid of cells; a path from an
initial cell to a goal cell is then found by searching a sequence
of moves between adjacent free cells, connecting the initial
configuration to the goal [4], [9], [10]. These moves corre-
spond to possible edges in a graph with nodes corresponding to
free cells in the grid. Graph-search algorithms such as AD* [8]
can be used to compute a path between two configurations.

To obtain correct solutions, grid decompositions must use
a sufficient level of precision; the smaller the cell size is,



the more precise the solution is. This results in large search
spaces, particularly for high dimensional configuration spaces.
In this case, a better exploration strategy for the occupancy
grid, maybe to use random search [11]. While this may help
coping with the complexity of the configuration space, in very
large configuration spaces the planner spends a large amount
of time generating the occupancy grid [12].

Probalistic roadmaps (PRM), introduced in [1], avoid this
overhead of the grid decomposition by sampling configuration
space probabilistically. Given a 3D model of obstacles in the
workspace, a 3D model of the robot, a PRM planner builds
a graph of nodes corresponding to robot configurations in
the free workspace, by picking configurations randomly and
checking that they are collision-free, using a fast collision
detection method (called a local planner) to check that an edge
between two adjacent nodes is also collision-free; each time a
local planner succeeds, the corresponding edge (i.e., local path
or path segment) is inserted into the roadmap. The graph built
that way is called a probabilistic roadmap and is a simplified
representation of the free configuration space. The graph can
thus be explored using familiar graph-search methods.

In the original PRM approach, given that a roadmap was
pre-computed before searching for a path, it could be sorted
for multiple queries. However, it was later observed that PRM
planners spent most of their time performing collision checks
for edges between nodes [2], [3], therefore it was a waste
of time to pre-compute a complete roadmap. This prompted
for lazy collision PRM approaches, which delay the collision
detection along edges until a solution path is found [2], [3].
Lazy approaches re-build the roadmap for each query, that is,
they are single query approaches.

A PRM planner selects a node to expand in the free con-
figuration space according to some given sampling measure.
The efficiency of PRM approaches significantly depends on
this measure [12]. A good measure should take visibility
properties into account but such properties can be very difficult
to formalize, particularly in dynamic environments.

Another important issue is dealing with the quality of paths,
for instance paths that optimize degrees of desirability of
regions in the free configuration space. Given that PRM ap-
proaches are today considered the most efficient path planning
approaches for high dimension configuration spaces [12] as
we consider, we decided to explore a solution within the
PRM framework. We thus developed a sampling method that
takes into account degrees of desirability of regions in the
workspace.

The applications we consider involve a dynamically chang-
ing workspace. Such changes may invalidate a previously
calculated path, either because it is no longer optimal, or
simply because it now leads to a dead-end. From the roadmap
perspective, this means that the cost of a segment between
two milestones can change dynamically. We thus need to
keep track of milestones in an optimal solution to the goal.
When changes are noticed, edges costs are updated, and a new
roadmap is re-computed fast, starting from the goal, taking into
account previous traces of the path-calculation. This brings us

back to a method in between the multiple query approach
and the single query approach. The difference with a multiple
query approach is that we are just concerned with the roadmap
to a given goal, that is, the goal the robot is trying to reach in a
dynamic environment. Our new PRM path-planning algorithm
can be stopped at any time and give a solution (more precisely
anytime after the time necessary for a first solution), and the
more time it is given, the better the solution is; that is, it has
an anytime planning capability [13].

III. FADPRM PLANNER ALGORITHM

Our approach, called Flexible Anytime Dynamic PRM
(FADPRM), uses a sampling strategy that implements a bal-
ance between: an anytime dynamic A* (AD*) exploration
of the roadmap; and a random sampling as in a normal
PRM. AD* [8] is a generalization of the familiar A* graph
search algorithm, to deal with dynamically changing edges;
changes of edges in robot navigation problems correspond to
changes in the workspace. AD* has also the anytime planning
capability to provide a solution path quickly and incrementally
improve its quality if more planning time available.

A. Algorithm Sketch

FADPRM works with a free workspace that is segmented
into zones, each zone being assigned a degree of desirability
(dd), that is, a real number in the interval [0 1]. The closer is
dd to 1, the more desirable the zone is. Every configuration
in the roadmap is assigned a dd equal to the average of dd
of zones overlapping with it. The dd of a path is an average
of dd of configurations in the path. An optimal path is one
having the highest dd.

The input for FADPRM is thus: an initial configuration, a
goal configuration, a 3D model of obstacles in the workspace,
a 3D specification of zones with corresponding dd, and a 3D
model of the robot. Given this input:

1) To find a path connecting the input and goal configu-
ration, we search backward from the goal towards the
initial (current) robot configuration. Backward instead of
forward search is done because the robot moves, hence
its current configuration is not the initial configuration,
but the goal remains the same; we want to re-compute
a path to the same goal but from the current position
whenever the environment changes before the goal is
reached.

2) A probabilistic priority queue OPEN contains nodes
on the frontier of the current roadmap (i.e., nodes that
need to be expanded because they have no predecessor
yet; or nodes that have been previously expanded but
are not update anymore) and a list CLOSED contains
non frontier nodes (i.e., nodes already expanded)

3) Search consists in repeatedly picking a node from
OPEN , generating its predecessors and putting the new
ones and the not updated ones in OPEN .

a) Every node n in OPEN has a key priority propor-
tional to the node’s density and best estimate to the
goal. The density of a node n, density(n), reflects



the density of nodes around n and is the number
of nodes in the roadmap with configurations that
are a short distance away. The estimate to the
goal, f(n), takes into account the node’s dd and
the Euclidean distance to the goal configuration as
explained below. Nodes in OPEN are selected
for expansion in decreasing priority. With these
definitions, a node n in OPEN is selected for
expansion with priority proportional to

(1 − β)/density(n) + β ∗ f(n),

β is the inflation factor with 0 ≤ β ≤ 1.
b) To increase the resolution of the roadmap, a new

predecessor is randomly generated within a short
neighborhood radius (the radius is fixed empir-
ically based on the density of obstacles in the
workspace) and added to the list of predecessors
in the roadmap generated so far; then the entire
list of predecessors is returned.

c) Collision is delayed: detection of collisions on
the edges between the current node and its pre-
decessors is delayed until a candidate solution is
found; if colliding, we backtrack and rearrange
the roadmap by eliminating nodes involved in this
collision.

4) The robot may start executing the first path found.
5) Concurrently, the path continues being improved.
6) Changes in the environment (moving obstacles and

zones or changes in dd for zones) cause update of the
roadmap and replanning.

With β equal to 0, the selection of a node to expand is
totally blind to zone degrees of desirability and to edges costs
(Euclidian distance). Assuming OPEN is the entire roadmap,
this case corresponds to a normal PRM, and the algorithm
probabilistically converges towards an optimal solution as is
the case for a normal PRM [3]. With β = 1, the selection of a
node is a best-first strategy and by adopting an A*-like f(n)
implementation, we can guarantee finding an optimal solution
within the resolution of the roadmap sampled so far. Therefore
the expression (1 − β)/density(n) + β ∗ f(n) implements a
balance between fast-solution search and best-solution search
by choosing different values for β.

Values of β closer to 1 give better solutions, but take more
time. An initial path is generated fast assuming a value close
to 0, then β is increased by a small quantity, a new path is
computed again, and so on. At each step, we have a higher
probability of getting a better path (probability 1 when β
reaches 1). This is the key in the anytime capability of our
algorithm.

The heuristic estimate is separated into two components
g(n) (the quality of the best path so far from n to the
goal configuration) and h(n) (estimate of the quality of the
path from n to the initial configuration), that is, f(n) =
g(n) + h(n)/2; we divide by 2 to normalize f(n) to values
between [0, 1]. This definition of f(n) is as in a normal A*
except that:

• We do backward search, hence g(n) and h(n) are re-
versed (here we follow the AD* [8] strategy).

• The quality of a path is a combination of its dd and its
cost in terms of distance traveled by the robot. Given
pathCost(n, n′) the cost between two nodes, g(n) is
defined as follows:
g(n) = pathdd(ngoal, n)/(1 + γ.pathCost(ngoal, n))

with 0 ≤ γ ≤ 1.
• The heuristic h(n) is expressed in the same way as g(n)

and estimates the cost of the path remaining to reach
nstart:
h(n) = pathdd(n, nstart)/(1 + γ.pathCost(n, nstart))

The factor γ determines the influence of the dd on g(n)
and on h(n). With γ = 0, nodes with high dd are privileged,
whereas with γ = 1 and with the dd of all nodes equal to 1,
nodes with least cost to the goal are privileged. In the last case,
if the cost between two nodes pathCost(n, n′)) is chosen
to be the Euclidean distance, then we have an admissible
heuristic and the algorithm guarantees converge to the optimal
solution (this follows from a property of AD*, which in turn
is inherited from A*). When dds are involved, and since
zones can have arbitrary configurations, it’s difficult to define
admissible heuristics. The algorithm guarantees improvement
of the solution, but it’s impossible to verify optimality. Since
the dd measures the quality of the path, the idea is to run
the algorithm until a satisfactory dd is reached. The functions
pathdd and pathCost are implemented by attaching these
values to nodes and updating them on every expansion.

B. Detailed Algorithm

The detailed description of FADPRM is shown in Algo-
rithm 1, adopting the same structure as AD* [8].

FADPRM stores a one-step lookahead cost rhs(n) which
satisfies the following two conditions:

rhs(n) = maxn′∈Succ(n)(c(n, n′) + g(n′))
rhs(ngoal) = 0,

with Succ(n) the set of successors of n in the roadmap. A
node n is then consistent if g(n) equals rhs(n). Otherwise
it is overconsistent (if g(n) < rhs(n)) or underconsistent (if
g(n) > rhs(n)).

Nodes in OPEN are expanded in decreasing priority in
order to update their g-values and their predecessors’s rhs-
values. When edge costs change within the roadmap, FAD-
PRM updates the rhs-values of the nodes affected by these
changes and put those that have been made inconsistent into
OPEN , so that they become considered again by further
state expansions, and hence have their optimal path to the
goal updated. The ordering of nodes in OPEN is based on
a node priority key(n), which is a pair [k1(n), k2(n)] defined
as follows:

key(n) = [(1−β)/density(n)+β×f(n), max(g(n), rhs(n))],

with f(n) = (max(g(n), rhs(n)) + h(nstart, n))/2 and
key(n) ≤ key(n′) if k1(n) ≤ k1(n′) or (k1(n) = k1(n′)
and k2(n) ≤ k2(n′)).



Algorithm 1 The FADPRM Algorithm

01. KEY(n)
02. f(n) = [max(g(n), rhs(n)) + h(n)]/2;
03. if(g(n) < rhs(n))
04. return [(1 − β)/density(n) + β.f(n); max(g(n), rhs(n))]
05. else
06. return [f(n); max(g(n), rhs(n))]

07. UPDATESTATE(n)
08. if n was not visited before
09. g(n) = 0;
10. if (n �= sgoal)rhs(n) = maxs′∈Succ(n)(c(n, n′) + g(n′));
11. if (n ∈ OPEN) remove n from OPEN ;
12. if (g(n) �= rhs(n))
13. if (n �∈ CLOSED)
14. insert n into OPEN with key(n);
15. else
16. insert n into INCONS;

17. COMPUTEORIMPROVEPATH()
18. while (NoPathfound)
19. remove n with the maximum key from OPEN ;
20. if (Connect(u, nstart))
21. return β-suboptimal path ;
22. break;
23. else
24. expandnode(n);
25. if (g(n) < rhs(n))
26. g(n) = rhs(n);
27. CLOSED = CLOSED

⋃{s};
28. For all n′ ∈ Pred(n)
29. UpdateState(n′);
30. else
31. g(n) = 0;
32. For all n′ ∈ Pred(n)

⋃{s}
33. UpdateState(n′);

34. MAIN()
35. g(nstart) = rhs(nstart) = 0; g(ngoal) = 0;
36. rhs(ngoal) = ∞; β = β0;
37. OPEN = CLOSED = INCONS = ∅
38. insert ngoal into OPEN with key(ngoal);
39. while (Not collision-free Path)
40. Rearrange Tree;
41. ComputeorImprovePath();
42. publish current β−suboptimal solution;
43. while (nstart is not in the neighborhood of ngoal)
44. if nstart changed
45. if addtoTree(nstart)
46. publish current β−suboptimal solution;
47. if changes in edge costs are detected
48. for all edges (u, v) with changed edge costs
49. Update the edge cost c(u, v);
50. UpdateState(u);
51. if significant edge cost changes were observed
52. decrease β or replan from scratch;
53. if β < 1
54. increase β;
55. Move states from INCONS to OPEN ;
56. Update the priorities for all n ∈ OPEN
57. according to Key(n);
58. CLOSED = ∅;
59. while (Not collision-free Path)
60. Rearrange Tree;
61. ComputeorImprovePath();
62. publish current β−suboptimal solution;
63. if β = 1
64. wait for changes in edges cost;

The function Main in FADPRM first sets the inflation factor
β to a low value β0, so that a suboptimal plan can be
generated quickly (lines 35-42). Then if no changes in edge
costs are detected, β is increased to improve the quality of its
solution (lines 53-62). This will continue until the maximum
of optimality is reached with β = 1 (lines 63-64).

According to the function UpdateState(n), when a node has
been chosen for expansion during a particular search, if it
becomes inconsistent due to a cost change in a neighboring
node, it is not inserted into OPEN . Instead, it is placed
into INCONS which contains all inconsistent states. Then,
when the current search terminates, all nodes in INCONS
are moved to a new OPEN list (lines 55-56).

In the function ComputeorImprovePath(), when a node n
with maximum key is extracted from OPEN , we first try to
connect it to nstart using a fast local planner as in SBL [3]. If
it succeeds, a path is then returned (Line 21). The expansion
on a node n with maximum key from the OPEN (Line 24)
consists, as we said in the previous section, in sampling a
new collision-free node in the neighborhood of n [3], then the
sampled node takes apart in the set Pred(n).

Every time a β-suboptimal path is returned by Compute-
orImprovePath(), it is checked for collision. If a collision
is detected on one of the edges constituting the path, a
rearrangement of the roadmap is then needed to eliminate
nodes involved in this collision (Lines 39-41 and 59-61). This
refers to the concept of Lazy collision checking as defined
in PRM approaches (in instance with SBL [3]: the collision
checking on edges is delayed until a solution path is found).

FADPRM also handles the case of floating nstart where the
robot is moving towards ngoal: since all the nodes in OPEN
have their key values recalculated each time β is changed, the
updated new nstart will be automatically taken into account.

IV. EXPERIMENTAL RESULTS

The following experiments were run on a 2 GHZ Pentium
IV with 512 MB of RAM. We consider paths with a dd of
0.5 to be neutral, below 0.5 to be dangerous and above to be
desirable. More specifically, dangerous zones are given a dd
of 0.2 and desirable ones a dd of 0.8. A free configuration of
the robot not having any contact with zones is assigned a dd
of 0.5. We use path − dd as a measure for path quality. We
assume γ = 0.7 in all experiments. PRM refers to MPK, the
implementation of SBL [3]. The implementation of FADPRM
is built on top of MPK.

We did experiments on a simulation of the Space Station
Remote Manipulator System (SSRMS), that is, a 17 meter long
articulated robot manipulator with seven rotational joints, cur-
rently mounted on the International Space Station (ISS) [14].
This is a very complex environment: SSRMS has 7 degrees
of freedom and our ISS model contained almost 50 obstacles
and 85000 triangles.

The concept of dangerous and desirable zones is motivated
by a real-world application dealing with teaching astronauts
to operate the SSRMS in order to move payloads or inspect
the ISS using a camera mounted at the end effector. In this



Fig. 1. SSRMS with a dangerous zone (cube) and a desired zone (cone)

case, astronauts have to move the SSRMS remotely, within
safe corridors of operations. The definition of a safe corridor
is that it must of course avoid obstacles (hard constraint), but
also go as much as possible within regions visible through
cameras mounted on the ISS exterior (so the astronaut can see
the manipulations through a monitor on which the cameras are
mapped). Hence, safe corridors depend on view angles and
lighting conditions for cameras mounted on the ISS, which
change dynamically with the orbit of the ISS by modifying
their exposure to direct sunlight. As safe corridors are more
complex to illustrate in paper, we just picked conical zones
approximating cameras view regions and polygonal zones at
arbitrary locations. Fig. 1 illustrates the robot carrying a load
on a path calculated by FADPRM avoiding a dangerous zone
(cube on the right) and going through a desirable zone (cone
on the left), the latter corresponding to a camera field of view.

Fig. 2. FADPRM Vs PRM in Replanning

The first experiment illustrates the situation in which a
human operator is learning to manipulate the SSRMS from
a given start configuration to a given goal configuration. To
provide feedback on whether he is on the right track, from
every current configuration, we call FADPRM to calculate a
path with a high dd to the goal. If no such a path exists, we
notify the learner that he is moving the SSRMS to a dead end.
Replanning occurs because the current configuration is moved
arbitrary by the learner as he tries to reach the goal. Paths are
computed to confirm the learner is on the right track, but they
are not displayed to him. Hence the learner is not following a
previously calculated path, but a path in his mind. Fig. 2 shows

the time taken for replanning in the scenario of Fig. 1. Except
for the first few iterations, FADPRM takes less re-planning
time than PRM. In the first few iterations, the overhead
incurred by the AD*-based sampling method dominates the
planning time. In later iterations, it is outweighed by the
savings gained by re-planning from the previous roadmap.

In Fig. 3, we compare the time needed for FADPRM and
PRM to find a solution for 15 arbitrary queries in the ISS
environment. As the time (and path quality) for a path is
a random variable given the random sampling of the free
workspace, for each query we ran each of the planners 10
times and reported the average planning time (in this case
FADPRM was used in a mode not storing the roadmap
between successive runs). Before displaying the results, we
sorted the PRM setting in increasing order of complexity,
starting with queries taking less time to solve. For FADPRM,
we show results with β = 0, and β = 0.4. With β = 0,
FADPRM behaves like PRM, which validates our previous
analysis. With β = 0.4, FADPRM takes more time. On the
other hand, Fig. 4 shows that β = 0.4 yields higher quality
paths than β = 0. This validates another previous analysis
higher β values yield better paths, but take more time to
compute. On Fig. 4, FADPRM(β = 0) setting is sorted in
increasing order of path − dd.

Fig. 3. FADPRM (β = 0 , β = 0.4) Vs PRM in Replanning

Fig. 4. FADPRM (β = 0) Vs FADPRM (β = 0.4) in Path Quality

We also did experiments on a simulated Puma robot (Fig. 5),
operating on a car (from [3]), and the results are similar to
those of the SSRMS experiment. Here too the environment
is very complex: 6 degrees of freedom for the robot and
approximately 7000 triangles. To illustrate the “search control”
capability of FADPRM, in one experiment, we specified a



small desirable zone (see Fig. 5-a), and in another, we specified
a wider desirable zone (on the right) and a wide undesirable
zone (on the left) (see Fig. 5-b). In both set experiments, we
wanted to influence the sampling of the free workspace to
yield paths that move the robot in front of the car (from left
side, to the front, then to the right side). The paths shown on
Fig. 5 illustrate the ideal solutions. By specifying a desirable
zone on the right as in Fig. 5(a), and running FADPRM many
times on the same query (input/goal configuration), FADPRM
yielded better paths, on average, than PRM. On the other hand,
by enlarging the size and coverage of the desirable zone and
adding a undesirable zone (right, on the back of the car), as
shown in Fig. 5(b), we noted that the quality of paths increased
by a percentage of 50% over 100 trials.

(a) (b)

Fig. 5. Puma robot and a car

The second experiment succeeds more often because the
path is more constrained; a wider desirable zone on the front
of the car together with an undesirable zone on the back
of the car, make the probability of sampling a configuration
along the desirable region higher than in the first set-up. Given
the random quality of paths that are calculated by traditional
PRM approaches, zones with degrees of desirability provide
a mean to specify a sampling strategy that controls the search
process to generate better paths by simply annotating the 3D
workspace with region’s degrees of desirability.

Fig. 6 illustrates the anytime capability of FADPRM on
these two experiments. We notice the continuous improvement
of the path quality (path−dd) for the two settings. The more
time it is given, the better the path provided by FADPRM will
be.

Fig. 6. Path quality evolution with FADPRM

V. CONCLUSION

We have just explained improvement to PRM path-planning
approaches, along three dimensions: (1) modeling zones in
the robot workspace with different degrees of desirability,
(2) efficiently re-computing paths in dynamic environments
and (3) anytime planning capability for real-time applications.
Besides extending the range of problems solvable by PRM
approaches along these dimensions, we have demonstrated that
even for traditional problems addressed by PRM approaches,
our extension can improve the quality of generated paths
and compensate for the random search by providing desirable
regions as a mean of controlling search.

In the Background section we mentioned that one key to the
efficiency of PRM approaches is the sampling measure. This
is a challenging problem and recent approaches include [5],
[15], [16]. We also plan to address this problem by developing
new sampling strategies within FADPRM.

REFERENCES

[1] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high dimensional configuration spaces,”
in IEEE Transactions on Robotics and Automation, vol. 12, 1996, pp.
566–580.

[2] R. Bohlin and L. Kavraki, “Path planning using lazy PRM,” in IEEE
International Conference on Robotics and Automation, 2000, pp. 521–
528.

[3] G. Sanchez and J.-C. Latombe, “A single-query bi-directional probabilis-
tic roadmap planner with lazy collision checking,” in Ninth International
Symposium on Robotics Research, 2001, pp. 403–417.

[4] D. Ferguson, M. Likhachev, and A. Stentz, “A guide to heuristic-based
path-planning,” in ICAPS Workshop on Planning under uncertainty for
Autonomous Systems, 2005, pp. 9–18.

[5] M. Saha and J.-C. Latombe, “Finding narrow passages with probabilistic
roadmaps : The small step retraction method,” in Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2005.

[6] D. Sent and M. Overmars, “Motion planning in environments with
dangerzones,” in IEEE International Conference on Robotics and Au-
tomation, 2001, pp. 1488–1493.

[7] P. Melchior, B. Orsoni, O. Lavialle, A. Poty, and A. Oustaloup,
“Consideration of obstacle danger level in path planning using A* and
fast-marching optimisation: comparative study,” in Signal Processing,
vol. 83, no. 11, 2003.

[8] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Any-
time dynamic A*: An anytime, replanning algorithm,” in International
Conference on Automated Planning and Scheduling (ICAPS), 2005.

[9] S. Koenig and M. Likhachev, “Improved fast replanning for robot
navigation in unknown terrain,” in IEEE International Conference on
Robotics and Automation (ICRA), 2002.

[10] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* search
with provable bounds on sub-optimality,” in Conference on Neural
Information Processing Systems (NIPS), 2003.

[11] S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the re-
lationship between classical grid search and probabilistic roadmaps,”
International Journal of Robotics Research, no. 23, pp. 673–692, 2004.

[12] D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic
foundations of probabilistic roadmap planning,” in 12th Int. Symp. on
Robotics Research, San Francisco, Oct. 2005.

[13] T. Dean and M. Boddy, “An analysis of time-dependent planning,” in
Proc. of National Conference on Artificial Intelligence, 1988.

[14] N. Currie and B. Peacock, “International space station robotic systems
operations: A human factors perspective,” in Habitability and Human
Factors Office (HHFO), NASA Johnson Space Center, 2002.

[15] D. Hsu, G. Sanchez-Ante, and Z. Sun, “Hybrid PRM sampling with a
cost-sensitive adaptive strategy,” in Proc. IEEE. Int. Conf. on Robotics
and Automation, 2005.

[16] B. Burns and O. Brock, “Sampling-based motion planning using pre-
dictive models,” in Proc. IEEE. Int. Conf. on Robotics and Automation,
2005.


