
Anytime Path Planning and Replanning

in Dynamic Environments

Jur van den Berg

Department of Information and Computing Sciences

Universiteit Utrecht

The Netherlands

berg@cs.uu.nl

Dave Ferguson and James Kuffner

School of Computer Science

Carnegie Mellon University

Pittsburgh, Pennsylvania

{davef,kuffner}@cs.cmu.edu

Abstract— We present an efficient, anytime method for path
planning in dynamic environments. Current approaches to plan-
ning in such domains either assume that the environment is
static and replan when changes are observed, or assume that the
dynamics of the environment are perfectly known a priori. Our
approach takes into account all prior information about both the
static and dynamic elements of the environment, and efficiently
updates the solution when changes to either are observed. As
a result, it is well suited to robotic path planning in known or
unknown environments in which there are mobile objects, agents
or adversaries.

I. INTRODUCTION

A common task in robotics is to plan a trajectory from

an initial robot configuration to a desired goal configuration.

Depending on the nature of the problem, we may be interested

in any collision-free trajectory, or one that provides the mini-

mum (or close to minimum) overall cost, where the cost of a

trajectory may be a function of several factors including time

for traversal, traversal risk, stealth, and visibility.

Several approaches exist for generating such trajectories. A

popular technique in mobile robot navigation is to uniformly

discretize the configuration space and then plan an optimal tra-

jectory through this discretized representation using Dijkstra’s

algorithm or A* [1]. However, for more complex configuration

spaces, such as those involving robots with several degrees of

freedom, using a uniform discretization of the configuration

space is intractable in terms of both memory and computation

time. As a result, randomized approaches such as Rapidly-

exploring Random Trees (RRTs) and Probabilistic Roadmaps

(PRMs) have been widely-used in these domains [2], [3].

These approaches work by randomly sampling points in the

continuous configuration space and then growing the current

solution out towards these points.

Extensions have also been developed to the above ap-

proaches that efficiently repair the current solution when

changes are made to the configuration space [4], [5], [6], [7].

These considerations are particularly important when we are

dealing with a sensor-equipped robotic agent moving through

a partially-known environment, as the agent will be continually

updating its information through its sensors.

When there are dynamic elements in the environment (e.g.

moving obstacles or adversaries), the planning problem is

more challenging. There are again several approaches that

can be taken. First, we can assume the environment is static

and use any of the approaches above, then when changes are

observed (due to the dynamic elements) we can replan. This

can be efficient, but does not take into account any information

the agent may have concerning the dynamic elements (for

instance, their velocities and directions of movement) and

hence may produce highly suboptimal results.

There is a qualitative difference between dynamic and static

planning problems that these approaches do not address. For

instance, imagine an agent trying to cross a road on which

cars are driving. If the agent was to take a snapshot of the

environment with its sensors and assume fixed positions for

each object, then it would be in serious risk of getting runover

if it attempted to cross the road. In order to successfully

accomplish its task, the agent really needs to model the cars

as dynamic objects so that it can anticipate where they will

be at future times.

A second set of approaches does just this, by planning in

the joint configuration-time state space. In such a situation, the

trajectories of dynamic objects can be modelled explicitly and

taken into account when performing initial planning. Time-

optimal or near time-optimal approaches for computing paths

through state-time space have been developed [8], however

these algorithms are typically limited to low dimensional state

spaces and/or require significant computation time. In [9],

[10], probabilistic approaches are used for computing paths

in state-time space. These planners incrementally build a tree

of explored configurations for each planning query.

More recently, researchers have looked at reducing the

complexity of the planning problem by first constructing a

path [11] or a PRM [12] based on the static elements of

the environment, and subsequently planning a collision-free

trajectory on this path/roadmap that takes into account the

dynamic obstacles.

The combination of probabilistic sampling and deterministic

planning has been found to be particularly useful in generating

time-optimal trajectories through roadmaps with known dy-

namic elements. However, none of the approaches mentioned

above efficiently solves the general case, where an agent

may have (i) perfect information, (ii) imperfect information,

and/or (iii) no information, regarding the dynamic elements

of the environment, and the agent needs to quickly repair



its trajectory when new information is received concerning

either the dynamic or static elements of the environment.

Further, most of these approaches assume that the only factor

influencing the overall quality of a solution is the time taken

for the agent to traverse the resulting path. In fact, we are often

concerned with minimizing a more general cost associated

with the path that may incorporate, for example, traversal risk,

stealth, and visibility, as well as time of traverse.

In this work, our goal is to combine some of the positive

characteristics of several previous algorithms with new ideas to

generate an approach that provides an effective solution to the

general problem of planning low-cost trajectories in dynamic

environments. Our approach uses probabilistic sampling to

create a robust roadmap encoding the planning space, then

plans and replans over this graph in an anytime, deterministic

fashion. The resulting algorithm is able to generate and repair

solutions very efficiently, and improve the quality of these

solutions as deliberation time allows.

We begin by describing the problem we are trying to solve.

In Section III we introduce our new algorithm and describe

how it relates to current approaches. We present a number

of results in Section IV. We conclude with discussion and

extensions.

II. PROBLEM DESCRIPTION

Consider a mobile robot navigating a complex, outdoor

environment in which adversaries or other agents exist (such

as the one presented in Fig. 1). Imagine that this environment

contains terrain of varying degrees of traversability, as well as

desirable and undesirable areas based on other metrics (such

as proximity to adversaries or friendly agents, communication

access, or resources). Imagine further that this agent is trying

to reach some goal location in the environment, while incur-

ring the minimum possible combined cost according to all

of the above metrics, as well as (perhaps) time. Specifically,

imagine the agent is trying to minimize the cost of its trajectory

according to some function C, defined as:

C(path) = wt · tpath + wc · cpath,

where tpath is the time taken to traverse the path, cpath is the

cost of the path based on all relevant metrics other than time,

and wt and wc are the weight factors specifying the extent to

which each of these values contributes to the overall cost of

the path (wt + wc = 1).

In a real world scenario it is likely that the agent will

not have perfect information concerning the environment, and

there may be dynamic elements in the environment that are

not under the control of the agent. It is important that the agent

is able to plan given various degrees of uncertainty regarding

both the static and dynamic elements of the environment.

Further, as the agent navigates through this environment,

it receives updated information through onboard sensors con-

cerning both the environment itself and the dynamic elements

within. Thus, the planning problem is continually changing

and it is important that the agent can repair its previous

solution or generate a new one to account for the latest

Fig. 1. Data acquired from Fort Benning and used for testing.

Fig. 2. A roadmap overlaid onto the Fort Benning data, along with 12
dynamic obstacles (in red).

information. This planning must be performed in a very timely

manner, as the best solutions may require immediate action

and so that solutions are not out-of-date when they are finally

generated.

Our aim in this work is to do just this by combining

the efficient replanning ability of deterministic incremental

planning algorithms with the efficient representations produced

by probabilistic sampling approaches. Further, we would like

our resulting approach to be anytime, so that solutions can

be generated very quickly when deliberation time is limited,

and these solutions can be improved while deliberation time

allows.

III. APPROACH

Our approach consists of three separate stages. In the first, a

roadmap is built representing the static portion of the planning

space. Next, an initial trajectory is planned over this roadmap

in state-time space, taking into account any known dynamic

obstacles. This trajectory is planned in an anytime fashion

and is continually improved until the time for deliberation

is exhausted. Further, while the agent executes its traverse,

its trajectory continues to be improved upon. Finally, when

changes are observed, either to the static or dynamic elements

of the environment, the current trajectory is repaired to reflect

these changes. Again, this is done in an anytime fashion, so

that at any time a solution can be extracted.



A. Constructing the roadmap

As in other recent approaches dealing with dynamic en-

vironments (e.g. [12], [7]), we begin by creating a PRM

taking into account the static portion of the environment. This

PRM encodes any internal constraints placed on the robot’s

motion (such as degrees of freedom, kinematic limitations,

etc) and takes into account the known costs associated with

traversing different areas of the environment. It also includes

cycles to allow for many alternative routes to the goal [13].

The objective in this initial phase is to reduce the continuous

planning space into a discrete graph that is compact enough to

be planned over while still being extensive enough to provide

low-cost paths. Fig. 2 illustrates a PRM constructed from the

outdoor environment presented in Fig. 1.

B. Planning over the roadmap

We then plan a path over this PRM from the agent’s initial

location to its goal location, taking into account any known

dynamic elements. To do this, we add the time dimension

to our search space, so that each state s consists of a node

on the PRM n and a time t. This allows us to represent

trajectories of dynamic elements. We discretize the time-axis

into small steps of δt, and allow transitions from state (n, t)
to state (n, t + δt) and to states (n′, t + ct(n, n′)), where n′

is a successor of n in the roadmap and ct(n, n′) is the time

it takes to traverse the edge between them. This allows the

robot to wait at a particular location as well as to transition to

an adjacent roadmap location. The total cost of transitioning

between state s = (n, t) and some successor s′ = (n′, t′) is

defined as:

c(s, s′) = wt · (t
′ − t) + wc · cr(n, n′),

where cr(n, n′) is the cost of traversing the edge between n

and n′ in the roadmap.

Because the robot may not have perfect information con-

cerning the dynamic elements in the environment, it is impor-

tant that it adequately copes with partial information. There are

a number of existing methods for dealing with this scenario

[14], [10]. In particular, we can estimate future trajectories

based on current behavior, or we can assume worst-case

trajectories. Whichever of these we choose, we end up with

some trajectory or set of trajectories that we can represent as

3D objects in our state-time space (see Fig. 3). We can then

avoid these objects as we plan a trajectory for the agent.

Planning a least-cost path through this space can be compu-

tationally expensive, and although the agent may have time to

generate its initial path, if the agent is continuously receiving

new information as it moves, replanning least-cost paths over

and over again from scratch may be infeasible.

Instead, it would be much better if the agent could repair

its previous solution incrementally, e.g. as in D* and D* Lite

[4], [5]. In order to do this, it needs to plan in a backwards

direction from the goal to the start, so that when the agent

moves, the stored paths and path costs of all the states in

the search space that have already been computed are not

Fig. 3. Different dynamic obstacles based on information. On the far left is a
known trajectory, on the center-left an assumed-static obstacle, on the center-
right an extrapolated trajectory based on previous motion, and on the far right
a worst-case trajectory based on current position and maximum velocity.

affected1. Since we don’t know in advance at what time the

goal will be reached, we seed the search with multiple goal

states. For our implementation,

GOALS = [(ngoal, ht(nstart, ngoal)),
(ngoal, ht(nstart, ngoal) + δt),

...

(ngoal, max-arrival-time)]

where ngoal is the goal node in the PRM, max-arrival-time

is the maximum time allowed for traveling to the goal, and ht

is described below.

To improve the efficiency of the search, we use two impor-

tant heuristic values. First, we compute the minimum possible

time ht(nstart, n) for traversing from the current start position

nstart to any particular position n in the PRM. Second, we

compute the minimum possible cost hc(nstart, n) from the

current start position to any particular position n on the PRM.

We then use the time heuristic to prune states added to the

search and the cost heuristic to focus the search.

Specifically, if we are searching backwards from the goals

and come across some state s = (ns, ts), then if ts − tstart <

ht(nstart, ns) we know that it is not possible to plan a

trajectory from the initial location and initial time to this

location by time ts, so this state cannot be part of a solution

and can be ignored. If the state passes this test, then we insert

it into our search queue with a priority based on a heuristic

estimate of the overall cost of a path through this state:

key(s) = rhs(s) + wt · (ts − tstart) + wc · hc(nstart, ns),

where rhs(s) is the current cost-to-goal value of state s.

This overall heuristic estimate serves the same purpose as the

f -value in classic A* search: it focuses the search towards the

most relevant areas of the search space.

However, as already mentioned, the agent may not have time

to plan and replan optimal paths across the PRM. Instead, it

may need to be satisfied with the best solutions that can be

generated in the time available. To this end, we make use

of a recently developed algorithm, Anytime D* (AD*), that

incrementally plans and replans in an anytime fashion [15].

1If we store a cost-to-goal (as in D*) rather than a cost-to-start (as in A*),
then when the robot state (start) changes, the costs are still valid, as the goal
to which the costs refer remains unchanged.



AD* begins by quickly generating an initial, highly-

suboptimal solution, by inflating the heuristic value for each

state by some ǫ > 1. It then works on efficiently improving

this solution while deliberation time allows, by decreasing

ǫ. At any point during its processing, the current solution

can be extracted and traversed. Then, as the agent begins its

execution, AD* is able to continually improve the solution.

key(s)

1 if (g(s) ≥ rhs(s))

2 return [rhs(s) + ǫ · (wt · (ts − tstart) + wc · hc(nstart, ns)); rhs(s)];

3 else

4 return [g(s) + wt · (ts − tstart) + wc · hc(nstart, ns); g(s)];

UpdateSetMembership(s)

5 if (g(s) 6= rhs(s))

6 if (s 6∈ CLOSED) insert/update s in OPEN with key(s);

7 else if (s 6∈ INCONS) insert s into INCONS;

8 else

9 if (s ∈ OPEN) remove s from OPEN;

10 else if (s ∈ INCONS) remove s from INCONS;

ComputePath()

11 while (mins∈OPEN(key(s)) <̇ key(sstart) OR rhs(sstart) > g(sstart))

12 remove state s with the smallest key(s) from OPEN;

13 if (g(s) > rhs(s))

14 g(s) = rhs(s); CLOSED = CLOSED ∪ {s};

15 for each predecessor s′ of s

16 if s′ was not visited before

17 g(s′) = rhs(s′) = ∞; bp(s′) = null;

18 if (rhs(s′) > g(s) + c(s′, s))

19 bp(s′) = s;

20 rhs(s′) = g(s) + c(s′, s); UpdateSetMembership(s′);

21 else

22 g(s) = ∞; UpdateSetMembership(s);

23 for each predecessor s′ of s

24 if s′ was not visited before

25 g(s′) = rhs(s′) = ∞; bp(s′) = null;

26 if (bp(s′) = s)

27 bp(s′) = argmin
s′′∈Succ(s′)(g(s′′) + c(s′, s′′));

28 rhs(s′) = g(bp(s′)) + c(s′, bp(s′)); UpdateSetMembership(s′);

Fig. 4. ComputePath function in AD*

We have included pseudocode of our approach, along with

AD*, in Figs. 4 through 6.

C. Repairing the Plan

While the agent is traveling through the environment, it will

be receiving updated information regarding its surroundings

through its onboard sensors. As a result, its current solution

trajectory may be invalidated due to this new information.

However, it would be prohibitively expensive to replan a new

trajectory from scratch every time new information arrives.

Instead, our approach is able to repair the previous solution,

in the same way as incremental replanning algorithms such as

D* and D* Lite. However, as with initial planning, it is also

able to do this repair in an anytime fashion. Thus, solutions

can be improved and repaired at the same time, allowing for

true interleaving of planning, execution, and observation.

Main()

1 construct PRM of static portion of environment;

2 use PRM and Dijkstra’s to extract predecessor and successor functions,

heuristic functions hc and ht, and goal list GOALS;

3 g(sstart) = rhs(sstart) = ∞;

4 OPEN = CLOSED = INCONS = ∅; ǫ = ǫ0;

5 for each sgoal in GOALS

6 g(sgoal) = ∞; rhs(sgoal) = 0; bp(sgoal) = null;

7 insert sgoal into OPEN with key(sgoal);

8 fork(MoveAgent());

9 while (sstart 6∈ GOALS)

10 ComputePath();

11 publish ǫ-suboptimal solution path;

12 if (ǫ = 1) wait for changes in edge costs;

13 for all directed edges (s, s′) with changed edge costs

14 cold = c(s, s′); update the edge cost c(s, s′);

15 if s 6∈ GOALS

16 if s was not visited before

17 g(s) = rhs(s) = ∞; bp(s) = null;

18 if (c(s, s′) > cold AND bp(s) = s′)

19 bp(s) = arg min
s′′∈Succ(s) g(s′′) + c(s, s′′);

20 rhs(s) = g(bp(s)) + c(s, bp(s)); UpdateSetMembership(s);

21 else if (rhs(s) > g(s) + c(s, s′))

22 bp(s) = s′;

23 rhs(s) = g(s′) + c(s, s′); UpdateSetMembership(s);

24 if significant edge cost changes were observed

25 increase ǫ or re-plan from scratch;

26 else if (ǫ > 1) decrease ǫ;

27 Move states from INCONS into OPEN;

28 Update the priorities for all s ∈ OPEN according to key(s);

29 CLOSED = ∅;

Fig. 5. Main function in AD*

MoveAgent()

1 while (sstart 6∈ GOALS)

2 update sstart to be successor of sstart in current solution path;

3 use Dijkstra’s to recompute hc and ht given the new value of sstart;

4 while agent is not at sstart

5 move agent towards sstart;

6 if new information is received concerning the static environment

7 update the affected edges in the PRM;

8 update the successor and predecessor functions;

9 use Dijkstra’s to recompute hc and ht;

10 mark the affected edges in the AD* search as changed

11 (so that these edges are triggered in Fig. 5 line 14);

12 if new information is received concerning the dynamic elements

13 mark the affected edges in the AD* search as changed

14 (so that these edges are triggered in Fig. 5 line 14);

Fig. 6. Agent Traverse Function

To do this, it first updates the heuristic values of states on the

roadmap based on the current position of the robot. This can

be done very quickly as it only concerns the static roadmap. It

then finds the states in the search tree that have been affected

by the new information and updates these states. As we discuss

in the following section, this can also be performed efficiently.

IV. EXPERIMENTS AND RESULTS

A. Implementation Details

As said in the previous section, when the agent observes

changes regarding the trajectory of the dynamic obstacles, we



should first find all edges in state-time space considered so far

whose collision status must be updated. This can potentially

be rather expensive, but if we model both the agent and the

dynamic obstacles as discs moving in the plane, we can do this

very efficiently. First, we add the radius of the agent to the radii

of each obstacle, so that we can treat the agent as a point. Next,

we mathematically describe the state-time volumes carved

out by each dynamic obstacle. For instance, if the estimated

trajectory of a dynamic obstacle is an extrapolation of its

current velocity, this volume becomes a slanted cylinder, which

can be described as

((x − x0) − (t − t0)vx)2 + ((y − y0) − (t − t0)vy)2 = r2,

where (x0, y0) is the current position of the obstacle,

(vx, vy) its current velocity, r its radius, and t0 the current

time. If we assume the obstacles to be static, this volume

becomes a vertical cylinder, and if we model worst-case

trajectories, this volume becomes a cone (provided that the

maximal velocity of the obstacle is given). In any case, it

is easily checked whether or not an edge in state-time space

intersects these volumes. Experiments show that it is also very

fast; over 50000 edges can be checked within 0.01 seconds.

As the environment is dynamic, these estimated future

trajectories may change over time. For instance, if we use

the extrapolation method, whenever an obstacle changes its

velocity we should re-check all edges against its new volume.

However, given an indication of the frequency of trajectory

changes (the dynamicity of the environment) we can set some

horizon on the validity of the estimated trajectory such that

only edges in the near future are collision-checked. Edges

in the far future are simply considered to be collision-free.

As time goes by, these edges are eventually checked as well.

This facilitates replanning as collision-checks become faster

and less state-time space becomes (unnecessarily) inaccessible

when searching for a path.

B. Experimental Setup

We experimented with our method in the environment of

Figs. 1 and 2. The agent (a point) has to move from the

lower-rightmost node in the roadmap to the upper-leftmost

node. The roadmap consists of 4000 vertices and 6877 edges.

Twelve disc-shaped dynamic obstacles (see Fig. 2) start in

the centre of the scene and spread out in random directions

with random velocities. During the traversal of the path by the

agent, the obstacles may change their course. These changes

are randomly generated and are not known by the agent. In

our experiments the total number of course changes varies

around 100. Moreover, when an obstacle hits the boundary

of the scene, it is bounced backwards, which accounts for

additional course changes. The obstacles heavily impede the

agent in its attempt to reach the goal node. For the sake of

experimentation, the cost values for traversing edges in the

roadmap were chosen to be random variations of their length.

The time axis was discretized into intervals of 0.1 seconds.

The initial value of ǫ is 10, and this is gradually decreased

to 1 as deliberation time allows. After every 0.1 seconds, we

Fig. 7. An example path (in black) planned through state-time space from
the initial robot position (in green) to the goal (shown as a vertical blue line
extending from the goal location upwards through time). Also shown are the
extrapolated trajectories of the dynamic obstacles (in yellow). The underlying
PRM has been left out for clarity but can be seen in Fig. 2.

check whether the collision status of any edge in state-time

space encountered thus far has changed with respect to the

obstacles. Each time this occurs, ǫ is reset to 10 to quickly

repair the path. Meanwhile, the position of the agent along

its path is updated every 0.1 seconds according to the best

available path. This continues until the agent has reached

the goal. The experiments were performed on a Pentium IV

3.0GHz with 1 Gbyte of memory.

In our experiments we used two models for estimating

the future course of the obstacles: the extrapolation method

and the assumed-static method (see Fig. 3). In the extrap-

olation method we assume that the current course of an

obstacle (a linear motion) is also its future course. This

gives a slanted cylindrical obstacle in state-time space, which

is avoided during planning. In the assumed-static case, we

assume the obstacles to be static (analogous to several previous

approaches), giving vertical cylindrical state-time obstacles. In

each iteration of the algorithm the position of the obstacle is

updated according to its actual trajectory. For both models

the horizon was set to 10 seconds. We also implemented the

worst-case model (assuming a maximum velocity for each

obstacle), but this approach was not useful for this problem,

as the obstacles could move so quickly that their worst-case

conical volumes quickly grew so large that no feasible paths

existed. Fig. 7 shows an example path planned through state-

time space, along with the extrapolated trajectories of the

dynamic obstacles.

C. Results

In our experiments we compared the PRM-based Anytime

D* method (in which ǫ is regularly reset to 10) to a PRM-

based D* Lite method (in which ǫ is always 1). The Anytime

D* method was run in real-time, so that the agent was moved

along its current path regardless of whether it had finished



TABLE I

RESULTS (AVERAGED OVER 50 RUNS)

Obstacle Model Approach Cost Max.time Invalid

Extrapolation Anytime D* 81.07 0.19s 22%
Extrapolation D* Lite 80.20 0.74s 18%

Assumed-Static Anytime D* 85.09 0.22s 52%
Assumed-Static D* Lite 81.08 0.67s 58%

repairing or improving the path. The D* Lite method was

not run in real-time and the agent was allowed as much time

for planning as it needed in between movements (in other

words, time was ‘paused’ for the planner). We included this

latter approach simply to demonstrate the relative efficiency

and solution quality of Anytime D* compared to an optimal

planner.

For each run (in which the path is improved and repaired

many times) we measured the maximum time needed to

improve or repair the path. As the obstacle trajectories are

randomly generated, we performed 50 runs using each method

with the same random sequence, and averaged the maximal

planning times.

In addition, we measured the average overall cost of the

path, and the number of times the generated path was not safe

(i.e. in which there was a collision between the agent and

the obstacles). Results are reported for both the extrapolation

model and the static model in Table I.

From the results we can see that for both models the

maximal amount of time needed to replan the path is on

average three to four times less for Anytime D* than for D*

Lite. The path quality did not suffer much from the anytime-

characteristic: for both Anytime D* and D* Lite the average

path costs are about the same.

If we compare the extrapolation model (in which we use

information of the current velocity of the obstacles) to the

assumed-static case, we see that the assumed static case is

not very safe. In approximately half of the cases, the agent

hits an obstacle. In the extrapolation case about one fifth of

the runs result in a collision. These collisions are explained

by the radical course changes the obstacles can make; if

the agent moves alongside an obstacle, and suddenly the

obstacle decides to take a sharp turn, the agent may not

have enough time to escape a collision (also because the

velocity of the obstacle is unbounded). We expect that more

realistic obstacle behavior in combination with slightly more

conservative trajectory estimation will remedy this.

D. Extensions

It may be possible to make this approach even more efficient

by using an expanding horizon for the dynamic obstacles.

Specifically, when producing an initial plan we set the horizon

for each obstacle to zero, so that a path is produced very

quickly. Then, as deliberation time allows, we improve the

accuracy and robustness of this path by gradually increasing

the horizon. This modification may significantly reduce the

time required to generate an initial path.

V. DISCUSSION

We have presented an approach for anytime path planning

and replanning in partially-known, dynamic environments. Our

approach handles the case where an agent may have (i) perfect

information, (ii) imperfect information, and/or (iii) no infor-

mation, regarding the dynamic elements of the environment,

and the agent needs to quickly repair its trajectory when

new information is received concerning either the dynamic

or static elements of the environment. We have shown it to be

capable of solving large instances of the navigation problem

in dynamic, non-uniform cost environments.

Our approach combines research in deterministic and prob-

abilistic path planning. We are unaware of any approaches to

date that combine the strong body of work on deterministic re-

planning algorithms with compact, probabilistically-generated

representations of the environment, and yet we believe the

union of these two areas of research can lead to very effective

solutions to a wide range of problems. As such, we are

currently looking at how some of these ideas can be applied

to other robotics domains.

REFERENCES

[1] N. Nilsson, Principles of Artificial Intelligence. Tioga Publishing
Company, 1980.

[2] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” In-

ternational Journal of Robotics Research, vol. 20, no. 5, pp. 378–400,
2001.

[3] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–
580, 1996.

[4] A. Stentz, “The Focussed D* Algorithm for Real-Time Replanning,”
in Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), 1995.
[5] S. Koenig and M. Likhachev, “Improved fast replanning for robot

navigation in unknown terrain,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2002.
[6] P. Leven and S. Hutchinson, “A framework for real-time path planning

in changing environments,” International Journal of Robotics Research,
vol. 21, no. 12, pp. 999–1030, 2002.

[7] L. Jaillet and T. Simeon, “A PRM-based motion planner for dynamically
changing environments,” in Proceedings of the IEEE International

Conference on Intelligent Robots and Systems (IROS), 2004.
[8] J. Latombe, Robot Motion Planning. Boston, MA: Kluwer Academic

Publishers, 1991.
[9] D. Hsu, R. Kindel, J. Latombe, and S. Rock, “Randomized kinody-

namic motion planning with moving obstacles,” International Journal

of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.
[10] S. Petty and T. Fraichard, “Safe motion planning in dynamic envi-

ronments,” in Proceedings of the IEEE International Conference on

Intelligent Robots and Systems (IROS), 2005.
[11] T. Fraichard, “Trajectory planning in a dynamic workspace: a ‘state-

time’ approach,” Advanced Robotics, vol. 13, no. 1, pp. 75–94, 1999.
[12] J. van den Berg and M. Overmars, “Roadmap-based motion planning in

dynamic environments,” IEEE Transactions on Robotics, vol. 21, no. 5,
pp. 885–897, 2005.

[13] D. Nieuwenhuisen and M. Overmars, “Useful cycles in probabilistic
roadmap graphs,” in Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), 2004.
[14] D. Vasquez, F. Large, T. Fraichard, and C. Laugier, “High-speed

autonomous navigation with motion prediction for unknown moving
obstacles,” in Proceedings of the IEEE International Conference on

Intelligent Robots and Systems (IROS), 2004.
[15] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Any-

time Dynamic A*: An Anytime, Replanning Algorithm,” in Proceedings

of the International Conference on Automated Planning and Scheduling

(ICAPS), 2005.


