
Anytime Synthetic Projection:

Maximizing the Probability of Goal Satisfaction

Mark Drummond* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand John Bresinai

Sterling Federal Systems

AI Research Branch, NASA Ames Research Center

Mail Stop: 244-17, Moffett Field, CA 94035

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

This paper presents a projection algorithm for in-

cremental control rule synthesis. The algorithm

synthesizes an initial set of goal-achieving control

rules using a combination of situation probability

and estimated remaining work as a search heuris-

tic. This set of control rules has a certain probabil-

ity of satisfying the given goal. The probability is

incrementally increased by synthesizing additional

control rules to handle “ error” situations the exe-

cution system is likely to encounter when following

the initial control rules. By using situation prob-

abilities the algorithm achieves a computationally

effective balance between the limited robustness

of triangle tables and the absolute robustness of

universal plans.

Introduction

We are interested in a continuum of plan-guided sys-

tems, from those that can operate entirely off-line,

where complete plans are produced in advance and
later used by independently competent execution sys-

tems, to those systems that are embedded in the situ-

ations for which their plans are generated. These em-

bedded systems are especially interesting since they

must close the loop between plan formation and plan
execution in their environment. For an embedded sys-

tem, simply generating a plan is not enough; such a

system must instead incrementally coerce its environ-

ment to conform with its goals. The key tasks for

an embedded system are resource-bounded incremental

plan synthesis and reactive behavior using appropriate

plans in a closed-loop fashion.

The work presented in this paper extends existing

theory in the areas of temporal projection, anytime al-

gorithms, and plan synthesis for embedded systems.

The goals of this paper are to: 1) define the syntax

*This work has been partially supported by the Artificial

Intelligence Research Program of the Air Force Office of

Scientific Research.

‘Also affiliated with the Computer Science Department

at Rutgers University.

and semantics of behavioral constraints and provide

a search heuristic for their satisfaction; 2) define the

probability of behavioral constraint satisfaction; 3) de-

scribe a synthetic temporal projection algorithm with

anytime properties which heuristically maximizes the

probability of behavioral constraint satisfaction.

The next section provides relevant background infor-

mation. The synthetic temporal projection algorithm

is then presented by way of a simple example. The

paper concludes with a discussion of connections to re-

lated research.

Background

Realistic planning and control problems suggest the

need for temporally extended goals of maintenance

and prevention, in addition to the traditional plan-

ning goals of achievement. Our approach employs a

language of behavioral constraints which is based on a

branching temporal logic (cf Drummond, 1989). As an

example, consider the following behavioral constraint,

or BC.

(and
(prevent (and (drunk driver)

(has-car-keys driver))

7 12)

(achieve (or (at-home me)

(have-companion me))

?tl>>

This BC represents a conjunction of two temporally

extended goals: the first goal must be false from time
7 through time 12 and the second goal must be true

at some arbitrary time in the future. Behavioral con-

straint semantics are defined in terms of possible be-

haviors that are synthesized by our temporal projec-

tion algorithm. Intuitively, we say that a given projec-

tion path w satisfies a behavioral constraint p if and

only if all of the formulas in p are true in w over the re-

quired time intervals. See appendix A for more details

on BC syntax and semantics.

We define a behavioral constraint strategy (or BC

strategy) to be a partial order over a set of behav-

ioral constraints. The partial order, denoted by “ _<“ ,

138 AUTOMATEDREASONING

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

indicates both execution and problem solving prece-
dence. Behavioral constraint strategies for a given be-

havioral constraint are produced using domain- and

problem-specific planning expertise. The BC strategy

constructed for a given BC indicates a set of subprob-

lems for the projector to satisfy and an order in which

to satisfy them. This process is beyond the scope of

this paper; please refer to Bresina and Drummond

(1990) for more information. The way in which BC

strategies are used by the projector is made clear in

the next section.

In order to project future possible courses of action
our projector needs a causal theory for each domain of

application. A causal theory is a set of operators which

defines both the actions that the system can take and

the exogenous events that can occur in the applica-

tion environment. The difference between actions and

events is simply this: actions can be chosen for exe-

cution by the control system under construction (e.g.,

move in a direction) while the occurrence of events is

determined by the system’s environment (e.g., a gust

of wind). From the perspective of the projector how-

ever, actions and events are similar, and both can be

characterized as a situation to situation transition.

The projector explores various possible futures by re-

peatedly finding enabled operators and applying them

to produce new hypothetical situations. The projector
creates a directed acyclic graph, where each node de-

notes a domain situation and each arc is labelled with

a domain operator. Projection associates a duration

with each operator application and uses this to calcu-

late a time stamp for the resulting situation.

A path in a projection graph denotes a future pos-

sible behavior. Projection paths which satisfy a given

behavioral constraint are compiled into a set of Situ-

ated Control Rules (SCRS) similar to the way that a

STRIPS plan is transformed into a triangle table (Fikes

et al., 1972). The SCRs indicate to the reaction com-

ponent those actions which will “ lead to” the eventual

satisfaction of its current behavioral constraint. SCRs

are used by the reaction component as a set of local

instructions constituting a control program.

See Bresina and Drummond (1990) and Drummond

(1989) for more details about our overall architecture.

The algorithm described in this paper does not crit-

ically depend on the architecture, so many irrelevant

details have been suppressed. Our temporal projec-

tion algorithm can be used by a variety of systems, in

a range of architectures.

The Projection Algorithm

This section presents our anytime synthetic projection

algorithm. We start with a description of the algo-
rithm in operation and then present ways to control

the search that is inherent in this approach.

The project algorithm accepts a behavioral con-

straint and domain causal theory; it attempts to max-

imize the probability that the reaction component will

satisfy the behavioral constraint. Our algorithm is
based on the heuristic search paradigm which makes

it hard to guarantee that the actual maximum proba-

bility will be found. Instead, as is typically done with

heuristic search algorithms, we claim only that our al-

gorithm attempts to maximize the probability of goal

satisfaction, which we refer to ES heuristic maximizu-

tion.

To simplify the presentation we characterize the pro-

jector’s causal theory as a single function called trun-

sition. The function transition (s) maps a situation

description s to a set of triples < si, pi, oi > such that

P (Si 1 s, Oi) = pi, where the conditional probability ex-

pression has the following interpretation. If oi denotes

an action, then pi is the probability that si will be the

resulting situation if oi is executed in situation s. If

oi denotes an event, then pi is the probability that si
will be the resulting situation if oi occurs in situation

s. For a given s, we assume that the possible transi-

tions are mutually exclusive. Notice that this defini-

tion of trunsition(s) makes the Markov assumption by

ignoring the particular sequence of operators used to

produce s. It is difficult to achieve a complete specifi-
cation of all possible situation transitions in a realistic

domain, and the automatic incremental improvement

of the transition function specification is part of our

future research agenda.

See figure 1 for an abstract projection graph exam-

ple. The behavioral constraint strategy PI 4 / 32 has

been selected as an appropriate way to satisfy p. This

BC strategy indicates that a path which satisfies / ?I

composed with a path which satisfies & will consti-

tute a path which satisfies / 3.

Project first calls traverse to find a single path that

satisfies pr -i / 32 from its %urrent? situation, sr. Tra-

verse uses the function transition to create situations

reachable under the application of a single operator

from si. Not all possible transitions are considered: a

filter is used to select a subset of the most probable

transitions, and only these are used to produce new

successors to sr. In our example only sz survives the

probability filter. The number of survivors under this

winnowing operation is determined by a filter-width

parameter, corresponding to the filter selection func-

tion in Ow and Morton’s (1986) filtered beam search.

A heuristic value is calculated for each successor sit-

uation based on the situation’s probability and an esti-

mate of the remaining work required to satisfy Pr from

that situation. (This estimation function is explained

in more detail below.) Another winnowing process is
used to select a subset of these situations that have

the highest heuristic value. For our example, this set

contains only ~2. In general, however, this set will con-
tain a subset of all possible frontier search nodes in the

developing projection graph. The number of elements

in this set is limited by a beam-width parameter, cor-

responding to Qw and Morton’s (1986) beam selection

function. This set of frontier nodes is passed on to a

DRUMMONDANDBRESINA 139

01 04

8; - &j - 87

05 06 .

Figure 1: A Simple Projection Graph Example

recursive call of traverse.

Traverse continues to extend projection paths by se-
lecting possible transitions until it finds a path which

satisfies / ?I. In the figure, the first satisfactory path

discovered iS slols2o2s30364. Situated control Rules
are now compiled for each situation in this path. The

reaction component will thus be given a set of rules of

the form: IF si AND pl THEN oi, for i = 1,2,3. At this
point, traverse focuses its search for a solution path

to fl2 in the subspace anchored at s4. This is accom-

plished by collapsing the set of frontier nodes to the

singleton set (~4). Such a collapse has the effect of re-

quiring any solution path for / 32 to start in the situation

terminating the satisfactory path for PI. Winnowing
the set of possibilities in this way helps to control the

projector’s search by reducing the number of alterna-

tive situations in the expanding search frontier.

We call this strategy cut-and-commit, and it is one

aspect of the algorithm’s anytime operation. The con-

ditions under which this approach is advisable are dis-

cussed below.

Traverse continues its search to satisfy p by find-

ing a projection path which satisfies ,82 from s4. In

our figure, the eventual satisfactory path for p2 is

s@&o5s6o6sr. This path is passed to the SCR com-

piler producing another set of SCRs for the satisfaction

of ,82. The probability for the path si through s7 can

be calculated from p(si+llsi, oi), i = 1,. . . ,6 (as de-

fined below). This number gives us a lower bound on
the probability that the reaction component will satisfy

/ ?. Assuming that there is still time before the reac-

tion component must take action, we can increase this
probability by finding additional paths which also sat-

isfy p. Each additional path will serve to increase the

lower bound on the reaction component’s probability
of satisfying p.

Robustify is our algorithm for finding additional pro-
jection paths. The algorithm finds high-probability de-

viations from the single existing solution path and calls

140 AUTOMATED REASONING

traverse to find alternative paths which recover from

each deviation. A deviation is a transition in a situa-

tion which produces a new situation from which there

does not yet exist a satisfactory path. For example,

when robustify is applied to the path slols2o2s3o364,

it finds that the transition to ss via operator 07 has a
high probability of occurring in s2. Traverse is used

to recover from this deviation by synthesizing an alter-

nate path, s1ois2orssosss@s4, which also satisfies pi.

Similarily, robust& finds that the transition from 95

to sic via 016 has high probability and calls traverse to

synthesize the path ~~~~~~~~~~~~~~~~~~~~~~ Each ad-
ditional path serves to increase the probability that

p will be satisfied by increasing the probability that

each of its component constraints, / ?I and p2, will be

satisfied.

Situated Control Rules are compiled for each new

subpath synthesized by traverse; in our example, new

SCRs are created for 52, ss, ss, s5, and sre. This incre-

mental deviate-and-recover strategy is another aspect

of the algorithm’s anytime operation. As each new

path is found, SCRs are given to the reaction com-

ponent to help it deal with ever more of the possible

domain situations in which it might find itself.

Controlling the Search

Situation probability and estimated remaining work
were used in traverse to define a heuristic evalua-

tion function. The heuristic value for a situation s,

with respect to a BC p, is computed as: h (s,p) =

clip + K2.rwt(s,P), where p(s) is the probability

of situation s and nut (s, p) is the estimated remaining

work required to satisfy p from s. The user-provided
weights, Kl and K2, determine the relative importance

of low-cost and high-probability in the computation of

hand, hence, affect the type of solutions synthesized by
traverse. These parameters must be tuned as required

for each domain of application. This section gives def-

rur(s, (maintain $ rs 7,))
m$Ll Tzu(S,pi)

=

mu(s, (prevent II) 5 7,))

KW l min-true (4, s) . (7, - 7,) + min-false ($, s) . (cw + Kw l (7, - r6))
=

rw(s, (maintain II) ys cp))
KW . ??Iin-tTUt? (+, S) . (TV - TV) + m in-fah? ($, S) l (CW + KW . (7, - T#))

=

rzu(s, (prevent 4 cp $4)

KW . min-true (?j, 5) + CW = man-false ($, s)

= KW l min-true (?j, s) + CW l min-false ($, s)

Table 1: Definition of no(s,p)

initions for estimated remaining work and path proba-

bility, and more clearly explains the role of behavioral

constraint strategies in controlling search.

Estimated remaining work

For planners concerned only with conjunctive goals of

achievement, a heuristic based on situation difference

gives reasonable results (Nilsson, 1980); to handle be-

havioral constraints we have generalized the notion of

situation difference to that of remaining work per time.

Our heuristic uses two global parameters, KW (kep

work) and cw (change work), which relate predicate

truth value to work. The parameter KW denotes the

minimum work per unit time to keep the truth value

of a predicate constant. The parameter cw denotes
the minimum number of work units required to change

the truth value of a predicate. We assume that facts

change instantaneously and cw estimates the mini-

mum work required to change the truth value of a

randomly selected predicate. A user must set these

parameters as required for each application domain.

be
We define the remaining work per time rwt (s,p) to

rw(s,p)/rt (s,/ ?); where rw(s,@ is the remaining

work necessary to satisfy p from s and rt (s,p) is the

remaining time in which to do the work. The remain-

ing time can be easily estimated from / 3 and s. Let

s be a situation, and let rn be the time stamp of s.

The numerator of our equation, TW (s,p), can then be

defined as shown in table 1.

The function min-true($, s) gives the minimum

number of predicates in the formula $ that are true in

situation s. Similarly, min-faZse(+, s) gives the mini-

mum number of false predicates. These terms, together

with cw and KW, produce an optimistic estimate of the

amount of remaining work.

For example, consider the evaluation of rw(s,
(maintain $ rs 7,)). The formula ?c) must be main-

tained from time point rs through time point r,, from

situation s with time stamp 7,. The appropriate defi-

nition in table 1 has two terms: the first term describes

the work required to keep the minimum number of true

predicates in $ true from r, through 7,; the second
term deals with the work required to change the min-

imum number of false predicates in 1c, to be true, and

the work required to keep these predicates true from
r6 through 7,. The classical situation difference heuris-

tic is a degenerate form of these measures, where work

is measured in the number of predicates that must be

made true and where there is no cost for keeping pred-

icates true over time.

Goal Sat isfact ion Probability

Our description of traverse depended on the ability to

combine individual transition probabilities into aggre-

gate projection path probabilities; this section explains

how this is accomplished.

Let G = (S,T) b e a projection graph, where S is a
set of possible situations and T is a set of situation-

to-situation transitions; let s E S be a particular sit-

uation, and let 20 = s1ors202.. .o,-IS, be a path

in G. The path probability of w is defined to be the

product of the transition probabilities in w: p (w) =

P (31) ’ nr;fP (%+l 1 Si7 Oi)-

For a situation s, the situation probability is defined

as the sum of the path probabilities of all paths from

the unique starting situation of G, ss, to s: p (s) =

C p (w) summed over {w : w = ~101. . .on-rs,, is a

path in G, s1 = ss, and s, = s}.

Finally, we can define the probability that a behav-

ioral constraint, p, is satisfied by a projection graph,

6, as the sum of the probabilities of all paths in G
anchored at the unique starting situation ss which

rtisfy / 3: p (p 1 6) = C p (w) summed over

ard ‘w ~a%~?~ j:
o,-rs, is a path in G, sr = 83,

The probability that the reaction component will

satisfy a BC p under the guidance of the SCR,s com-

piled from a projection graph G is bounded below by

p (p 1 G). The probability p (p 1 G) is a lower bound

because the reaction component might have access to

other SCRS relevant to p which cover situations that

are not in G.

Behavioral Constraint Strategies

As mentioned above, a behavioral constraint strategy
is a partial order over a set of behavioral constraints.

A given BC strategy controls search by giving the pro-

jector a set of behavioral constraints to satisfy and an

order in which to satisfy them. A BC strategy is satis-

fied when each of its component constraints is satisfied

in an order consistent with the given partial order.

To make this idea more precise, let (I’ , 4) be a BC
strategy, where I’ contains n behavioral constraints; let

0 be the set of all total orders over I’ compatible with

DRUMMOND AND BRESINA 141

4. Th; obj?tive for traverse is to synthesize a path
W =w 020 o*--0w n, such that there exists a total

order 6 E 0 where for each wi, wi+l in w, there exists
p + / 3’ E 8 such that wi satisfies / 3 and wi+l satisfies

/ ?I. Furthermore, each p E I’ must be satisfied by one

wi in 20. The “ 0” operator represents path composition

defined as follows: w o W’ = ~101~202. . . sie{s&e& . . . 54,

where w = sro152oz . . . si and w’ = sieis&ei . . . si, if

the union of si and si is consistent, else w o 20’ is un-

defined.

Consider the simple example used above where the

BC strategy is / ?I 4 &. In the ideal case, for each

path w1 that satisfies &, there exists a path w2 that

satisfies / 32 such that w1 o w2. In this case, our cut-

and-commit strategy will never be forced to backtrack

over the first solution found for & , and the policy of

immediate SCR compilation is risk-free. However, it is

not always possible to construct such ideal BC strate-

gies. More typically only a subset of the paths which

satisfy / 3r can be extended to also satisfy &. In this

case, the projector might have to backtrack to find an-

other solution to &. If such backtracking occurs, then

(at least some of) the SCRs that were compiled from a

rejected solution to pr are not appropriate in the con-

text of / 3r + pz. However, they may be appropriate

in the context of another BC strategy and hence could

still prove useful.

In this paper, we do not address what the reactor
does when more than one SCR is applicable. This

issue is part of our current research effort; we are de-

veloping a SCR conflict resolution strategy based on

the BC strategy context for which an SCR is appro-

priate in combination with the transition probability

and the remaining work estimates associated with an

SCR. In our ongoing research on the interaction be-

tween the projector and the automatic production of
behavioral constraint strategies, one future topic will

be techniques for assessing and reducing the risk of

backtracking over the inter-behavioral constraint “ cut”

points.

Discussion

A. triangle table (Fikes et al., 1972) is analogous to

what you get after running traverse only once, a uni-

versal plan (Schoppers, 1987) is analogous to what you

get by doing exhaustive search of the space of possible

domain situations. A triangle table is like a set of SCRs

designed to deal with each situation in a sequence of

situations, and a universal plan is like a set of SCRs
which has 100% coverage of the space of situations.

Ginsberg (1989) h as argued against the practicality of

universal plans. He has suggested that for “ cognitive

tasks” , a system should be able to enhance its perfor-

mance by expending additional mental resources. Our
projection algorithm does exactly this. Under our ap-
proach, additional computation time serves to increase

the probability of goal satisfaction.

There are various architectures addressing the real-
time embedded control problem. Representative ap-

proaches include Brooks’ (1985) subsumption architec-

ture, Nilsson’s action nets (Nilsson, et al., 1990), Maes’

(1990) spreading activation approach, and the situ-

ated automata of Rosenschein and Kaelbling (Rosen-

schein, 1989; Rosenschein & Kaelbling 1986; Kaelbling,

1987a,b, 1988). Each of these approaches gives a de-

signer a language and methodology for specifying a

control system.

Brooks’ (1985) b su sumption architecture provides an

elegant way of organizing the functional components of

an embedded control system. The subsumption archi-

tecture “ model” of embedded execution is richer than

our simple IF-THEN Situated Control Rule view. How-

ever, we are able to synthesize SCRs automatically

from a given behavioral constraint and causal theory

describing a particular application domain. To our

knowledge, Brooks has not yet addressed the auto-

matic synthesis of subsumption architecture instances.

Nilsson’s action nets (Nilsson, et aL, 1990) provide

another methodology and language for the description

of embedded systems. Nilsson’s view of closed-loop

homeostatic servo mechanisms is appealing, and early

results are promising. Our work differs in providing

a more expressive language of behavioral constraints

and by using information about situation probability
to control search.

Maes’ (1990) system employs a spreading activa-
tion approach for dynamic action selection and can

be viewed as a form of on-line action synthesis. The

behavior of Maes’ algorithm depends on a number of

global parameters which are set by the user based on
(among other factors) characteristics of the environ-

ment and the specific goal to be achieved. Hence, if

the nature of the environment changes or if the desired

goal changes, the user will need to re-tune the param-

eters. Our work differs by explicitly searching through

the space of possible futures. A behavioral constraint

is one of the algorithm’s inputs; hence, changes in the

system’s goals are taken into account automatically.

Changes in the nature of the environment would be re-

flected in the transition probabilities; hence, updated

probabilities would appropriately influence the projec-

tion search.l

The most closely related work is that of Rosen-

schein and Kaelbling (Rosenschein, 1989; Rosenschein

& Kaelbling 1986; Kaelbling, 1987a,b, 1988). Kael-

bling’s GAPPS system is a compiler which translates

goal reduction expressions into directly executable cir-

cuits. However, a person writing GAPPS goal reduc-
tions must essentially do their own temporal projec-

tion; that is, it is the person’s responsibility to guar-

antee that the rules, once sequenced, will “ lead to” goal

satisfaction. In contrast, our approach defines a tem-

poral projection mechanism which sorts out the effects

‘We have not yet implemented
transition probabilities.

the automatic update of

142 AUTOMATEDREASONING

of various action sequences automatically. Of course,

we potentially pay a greater computational cost by car-

rying out this search. Additionally, the GAPPS sys-
tem, and the REX language on which it is based, have

a great deal to say about bounded reaction tim,e in

terms of the circuits synthesized from higher-level ex-

pressions. We are not currently addressing this issue.

We stress the synthetic nature of our projector to

distinguish it from analytic projection (Dean & Mc-

Dermott, 1987; Hanks, 1990). An analytic projector is

used by a planner to validate plans while a synthetic

projector combines operator selection and validation

in the same algorithm. The analytic/ synthetic distinc-

tion is largely one of perspective, since it is possible to

view a planner-analytic projector pair as a complete

system which performs synthetic projection.

Hanks (1990) g reatly extended the capabilities of

temporal projection systems by adding information re-

garding probability. Dean and Kanazawa (1988) also

use similar information. The techniques of Hanks,

Dean and Kanazawa can be used to judge the prob-
ability that a given fact will be true at an arbitrary

point in the future. We can imagine providing such

an inferential facility, but for now, we permit only cal-

culations of individual situation probability. The al-

gorithms of Hanks, Dean and Kanazawa can perform

more powerful inferences.

Dean and Boddy (1988) have characterized an any-

time algorithm as one which can be asked for an answer

at any point, where the algorithm’s answers are ex-

pected to improve the longer it is allowed to run. Our

use of traverse and robustify satisfy this characteriza-

tion, in the sense that a set of SCRs is available for

the reactor at any point in time, and in the sense that

the set of SCRs “ improves” over time by incremen-

tally increasing goal satisfaction probability. We have

identified two ways in which a synthetic temporal pro-

jection algorithm can be considered “ anytime” : first,

by using our cut-and-commit search strategy based on

behavioral constraint strategies; and second, by recur-

sively employing our deviate-and-recover strategy to

manage probable errors.

Our cut-and-commit approach ameliorates the com-

plexity of the projection search. To see this, suppose

that the average branching factor in the projection is b,

and suppose that an eventual solution path is of length

n. This means that breadth-first search would have to
project, in the worst case, b”+l - 2 many situations

to find a successful path. Suppose that the projector’s

BC strategy is totally ordered and is of length c. In
the worst case, the number of situations that traverse

must project is cm b(“/“)+’ - 2~. As c approaches n, the

number of situations we must consider falls off dramat-
ically. This assumes, of course, that no backtracking

occurs. As c increases, the projection takes on the

shape of a series of small trees connected end-to-end,

rather than one large tree running from start to finish.

The larger c is, the smaller the computation’s anytime

“ grain size” becomes.

We have designed and implemented a simulator

for an experimental domain called the Reactive Tile

World. The Reactive Tile World exhibits exogenous

events and temporally extended goals of maintenance

and prevention. We are in the process of empirically

validating our projection algorithm on a suite of Reac-

tive Tile World test problems.

Acknowledgements

Other members of the ERE group, namely, Rich Levin-

son, Andy Philips, Nancy Sliwa, and Keith Swanson

have helped us develop these ideas; discussions with

Mark Boddy, Leslie Kaelbling, Stan Rosenschein, and

Steve Hanks have been useful. Thanks to John Allen,

Hamid Berenji, Guy Boy, Peter Cheeseman, Smadar

Kedar, Phil Laird, and Amy Lansky for useful com-
ments on a previous draft. Final responsibility for all

errors and omissions rests, of course, with the authors.

Thanks also to Peter Friedland for providing an excel-

lent research environment at NASA Ames.

Appendix A: Behavioral Constraint

Syntax and Semantics

A behavioral constraint (BC) is an expression con-

structed according to the following grammar. We use

the symbol p to stand for an arbitrary BC and the

symbol 1 to indicate alternatives.

;
-+ (and PI P2 --a A) I (or PIP2 -*a A)

+ (maintain $ 71 72) I (prevent $ q 72)

z

+ (maintain $ cp ‘p) I (prevent $ cp cp)

-+ (and +I he.. tin) I (or $1 qb... A)
4 + predicate

We use T/ J to denote a formula, r to denote a time

point constant, and cp to denote a time point vari-

able. Time points are natural numbers. A vari-

able is indicated by a question-mark, for instance:

?t. All variables are implicitly existentially quanti-

fied. We currently use time point variables only to

express those goals of “ achievement” or “ destruction”

which are not required to occur at a predetermined

point in time; these goals are given the following syn-
tactic forms: (maintain ~+4 cp cp) z (achieve $J cp) and

(prevent II) cp cp) G (destroy $ cp).

Behavioral constraint semantics are defined in terms
of projection graph paths. Let w = sro15202.. .on-rsn

be a projection graph path; let ts (s) denote the time

stamp of situation s; and let p be a behavioral con-
straint. Then w satisfies p under the following condi-

tions.

DRUMMONDANDBRESINA 143

PI

PI

PI

VI

PI

PI

PI

w I= .

WE
.

WE

iff

w I=
iff

w I=
iff

w I=
iff

s I=
iff

s I= .

s E

iff

(and PI . . . A)
ViE{l...n): W +/ 3i

(or Pl l -* A)

%E{l...n}: W +pi

(maintain $ 71 72)

3si E w : ts (si) 5 71 and si k +

andVsiEw,j>i:

sj j=$or ts(sj) >72

(prevent II) ~1 72)

3Si E w : ts (si) 5 71 and si k +

andVsj ~w,j>i:

Sj k $Or tS(Sj)>T2

(maintain $ cp rp)

3Si E W : Si b ?.fb

(Prevent ti cp P)
3Si E W : Si k II,

(and $1 . . . h)
Vi E {l...n}: S b$i

(or 41 l ** 348)

3iE{l...n): Sk&
predicate

predicate E s

References

Bresina, J., and Drummond, M. 1990. Integrating

Planning and Reaction: A Preliminary Report.

Proceedings of the 1990 AAAI Spring Symposium

Series (session on Planning in Uncertain, Unpre-

dictable, or Changing Environments).

Bresina, J., Marsella, S., and Schmidt, C. 1986.

REAPPR - Improving Planning Efficiency via Ex-

pertise and Reformulation. Rept. LCSR-TR-82,

LCSR, Rutgers University, June.

Brooks, R. 1985. A Robust Layered Control Sys-

tern for a Mobile Robot. Technical Report 864, Ar-

tificial Intelligence Laboratory, Massachusetts In-

stitute of Technology, Cambridge, Massachusetts.

Dean, T., and Boddy, M. 1988. An Analysis of

Time-Dependent Planning. AAAI-88. pp. 49-54.

Dean, T., and Kanazawa, K. 1989. A Model for
Projection and Action. Proceedings of IJCAI-89.

pp. 985-990.

Dean, T., and McDermott, D. 1987. Temporal

Database Management. AI Journal. Vol. 32(l).

pp. l-55.

Drummond, M. 1989. Situated Con-
trol Rules. Proceedings of Conference on Prin-

ciples of Knowledge Representation & Reasoning.

Toronto, Canada.

PI

PI

PO1

WI

PI

WI

WI

PI

WI

WI

P81

P91

PO1

Ginsberg, M. 1989. Universal Planning: An (Al-

most) Universally Bad Idea. AI Magazine, Vol. 10,

No. 4. pp. 40-44.

Hanks, S. 1990. Projecting Plans for Uncer-

tain Worlds. Yale University, CS Department,

YALE/ CSD/ RR#756.

Fikes, R., Hart, P., and Nilsson, N. 1972. Learn-
ing and Executing Generalized Robot Plans. AI

Journal, Vol 3, pp. 251-288.

Fikes, R. and Nilsson. N. 1971. STRIPS: A New

Approach to the Application of Theorem Proving

to Problem Solving. AI Journal, Vol. 2, pp. 189-

208.

Kaelbling, L. 1987a. An Architecture for Intelli-
gent Reactive Systems. Reasoning About Actions

and Plans. M. Georgeff and A. Lansky, Eds., Mor-

gan Kauffman.

Kaelbling, L. 1988. Goals as Parallel Program
Specifications. Proceedings of the Seventh Na-

tional Conference on Artificial Intelligence. St.

Paul, Minnesota.

Maes, P. 1990. How To Do the Right Thing. Con-

nection Science Journal. (Special Issue on Hybrid
Systems. J. Hendler, editor).

Nilsson, N., Moore, R., and Torrance, M., ACT-
NET: An Action Network Language and its Inter-

preter. Draft paper, Stanford Computer Science

Department, February 1990.

Nilsson, N. 1980. Principles of Artificial Intelli-

gence. Tioga Publishing Company, CA.

Ow, P. and Morton, T. 1986. Filtered Beam
Search in Scheduling. Working paper, Graduate

School of Industrial Administration, Carnegie-

Melon University.

Rosenschein, S. 1989. Synthesizing Information-

Tracking Automata from Environment Descrip-

tions. Proceedings of Conference on Principles of

Knowledge Representation & Reasoning. Toronto,

Canada.

Rosenschein, S. and Kaelbling, L. 1986. The Syn-

thesis of Digital Machines with Provable Epis-
temic Properties. Proceedings of Workshop on

Theoretical Aspects of Knowledge. Monterey, CA

(March 13-14).

Schoppers, M. 1987. Universal Plans for Reactive
Robots in Unpredictable Environments. Proceed-

ings of the Tenth International Conference on Ar-

tificial Intelligence. pp. 1039-1046, Milan, Italy.

144 AUTOMATEDREASONING

