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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

This paper presents a projection algorithm for in- 

cremental control rule synthesis. The algorithm 

synthesizes an initial set of goal-achieving control 

rules using a combination of situation probability 

and estimated remaining work as a search heuris- 

tic. This set of control rules has a certain probabil- 

ity of satisfying the given goal. The probability is 

incrementally increased by synthesizing additional 

control rules to handle “ error”  situations the exe- 

cution system is likely to encounter when following 

the initial control rules. By using situation prob- 

abilities the algorithm achieves a computationally 

effective balance between the limited robustness 

of triangle tables and the absolute robustness of 

universal plans. 

Introduction 

We are interested in a continuum of plan-guided sys- 

tems, from those that can operate entirely off-line, 

where complete plans are produced in advance and 
later used by independently competent execution sys- 

tems, to those systems that are embedded in the situ- 

ations for which their plans are generated. These em- 

bedded systems are especially interesting since they 

must close the loop between plan formation and plan 
execution in their environment. For an embedded sys- 

tem, simply generating a plan is not enough; such a 

system must instead incrementally coerce its environ- 

ment to conform with its goals. The key tasks for 

an embedded system are resource-bounded incremental 

plan synthesis and reactive behavior using appropriate 

plans in a closed-loop fashion. 

The work presented in this paper extends existing 

theory in the areas of temporal projection, anytime al- 

gorithms, and plan synthesis for embedded systems. 

The goals of this paper are to: 1) define the syntax 
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and semantics of behavioral constraints and provide 

a search heuristic for their satisfaction; 2) define the 

probability of behavioral constraint satisfaction; 3) de- 

scribe a synthetic temporal projection algorithm with 

anytime properties which heuristically maximizes the 

probability of behavioral constraint satisfaction. 

The next section provides relevant background infor- 

mation. The synthetic temporal projection algorithm 

is then presented by way of a simple example. The 

paper concludes with a discussion of connections to re- 

lated research. 

Background 

Realistic planning and control problems suggest the 

need for temporally extended goals of maintenance 

and prevention, in addition to the traditional plan- 

ning goals of achievement. Our approach employs a 

language of behavioral constraints which is based on a 

branching temporal logic (cf Drummond, 1989). As an 

example, consider the following behavioral constraint, 

or BC. 

(and 
(prevent (and (drunk driver) 

(has-car-keys driver)) 

7 12) 

(achieve (or (at-home me) 

(have-companion me) ) 

?tl>> 

This BC represents a conjunction of two temporally 

extended goals: the first goal must be false from time 
7 through time 12 and the second goal must be true 

at some arbitrary time in the future. Behavioral con- 

straint semantics are defined in terms of possible be- 

haviors that are synthesized by our temporal projec- 

tion algorithm. Intuitively, we say that a given projec- 

tion path w satisfies a behavioral constraint p if and 

only if all of the formulas in p are true in w over the re- 

quired time intervals. See appendix A for more details 

on BC syntax and semantics. 

We define a behavioral constraint strategy (or BC 

strategy) to be a partial order over a set of behav- 

ioral constraints. The partial order, denoted by “ _<“ , 

138 AUTOMATEDREASONING 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



indicates both execution and problem solving prece- 
dence. Behavioral constraint strategies for a given be- 

havioral constraint are produced using domain- and 

problem-specific planning expertise. The BC strategy 

constructed for a given BC indicates a set of subprob- 

lems for the projector to satisfy and an order in which 

to satisfy them. This process is beyond the scope of 

this paper; please refer to Bresina and Drummond 

(1990) for more information. The way in which BC 

strategies are used by the projector is made clear in 

the next section. 

In order to project future possible courses of action 
our projector needs a causal theory for each domain of 

application. A causal theory is a set of operators which 

defines both the actions that the system can take and 

the exogenous events that can occur in the applica- 

tion environment. The difference between actions and 

events is simply this: actions can be chosen for exe- 

cution by the control system under construction (e.g., 

move in a direction) while the occurrence of events is 

determined by the system’s environment (e.g., a gust 

of wind). From the perspective of the projector how- 

ever, actions and events are similar, and both can be 

characterized as a situation to situation transition. 

The projector explores various possible futures by re- 

peatedly finding enabled operators and applying them 

to produce new hypothetical situations. The projector 
creates a directed acyclic graph, where each node de- 

notes a domain situation and each arc is labelled with 

a domain operator. Projection associates a duration 

with each operator application and uses this to calcu- 

late a time stamp for the resulting situation. 

A path in a projection graph denotes a future pos- 

sible behavior. Projection paths which satisfy a given 

behavioral constraint are compiled into a set of Situ- 

ated Control Rules (SCRS) similar to the way that a 

STRIPS plan is transformed into a triangle table (Fikes 

et al., 1972). The SCRs indicate to the reaction com- 

ponent those actions which will “ lead to”  the eventual 

satisfaction of its current behavioral constraint. SCRs 

are used by the reaction component as a set of local 

instructions constituting a control program. 

See Bresina and Drummond (1990) and Drummond 

(1989) for more details about our overall architecture. 

The algorithm described in this paper does not crit- 

ically depend on the architecture, so many irrelevant 

details have been suppressed. Our temporal projec- 

tion algorithm can be used by a variety of systems, in 

a range of architectures. 

The Projection Algorithm 

This section presents our anytime synthetic projection 

algorithm. We start with a description of the algo- 
rithm in operation and then present ways to control 

the search that is inherent in this approach. 

The project algorithm accepts a behavioral con- 

straint and domain causal theory; it attempts to max- 

imize the probability that the reaction component will 

satisfy the behavioral constraint. Our algorithm is 
based on the heuristic search paradigm which makes 

it hard to guarantee that the actual maximum proba- 

bility will be found. Instead, as is typically done with 

heuristic search algorithms, we claim only that our al- 

gorithm attempts to maximize the probability of goal 

satisfaction, which we refer to ES heuristic maximizu- 

tion. 

To simplify the presentation we characterize the pro- 

jector’s causal theory as a single function called trun- 

sition. The function transition (s) maps a situation 

description s to a set of triples < si, pi, oi > such that 

P (Si 1 s, Oi) = pi, where the conditional probability ex- 

pression has the following interpretation. If oi denotes 

an action, then pi is the probability that si will be the 

resulting situation if oi is executed in situation s. If 

oi denotes an event, then pi is the probability that si 
will be the resulting situation if oi occurs in situation 

s. For a given s, we assume that the possible transi- 

tions are mutually exclusive. Notice that this defini- 

tion of trunsition(s) makes the Markov assumption by 

ignoring the particular sequence of operators used to 

produce s. It is difficult to achieve a complete specifi- 
cation of all possible situation transitions in a realistic 

domain, and the automatic incremental improvement 

of the transition function specification is part of our 

future research agenda. 

See figure 1 for an abstract projection graph exam- 

ple. The behavioral constraint strategy PI 4 / 32 has 

been selected as an appropriate way to satisfy p. This 

BC strategy indicates that a path which satisfies / ?I 

composed with a path which satisfies & will consti- 

tute a path which satisfies / 3. 

Project first calls traverse to find a single path that 

satisfies pr -i / 32 from its %urrent? situation, sr. Tra- 

verse uses the function transition to create situations 

reachable under the application of a single operator 

from si. Not all possible transitions are considered: a 

filter is used to select a subset of the most probable 

transitions, and only these are used to produce new 

successors to sr. In our example only sz survives the 

probability filter. The number of survivors under this 

winnowing operation is determined by a filter-width 

parameter, corresponding to the filter selection func- 

tion in Ow and Morton’s (1986) filtered beam search. 

A heuristic value is calculated for each successor sit- 

uation based on the situation’s probability and an esti- 

mate of the remaining work required to satisfy Pr from 

that situation. (This estimation function is explained 

in more detail below.) Another winnowing process is 
used to select a subset of these situations that have 

the highest heuristic value. For our example, this set 

contains only ~2. In general, however, this set will con- 
tain a subset of all possible frontier search nodes in the 

developing projection graph. The number of elements 

in this set is limited by a beam-width parameter, cor- 

responding to Qw and Morton’s (1986) beam selection 

function. This set of frontier nodes is passed on to a 
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Figure 1: A Simple Projection Graph Example 

recursive call of traverse. 

Traverse continues to extend projection paths by se- 
lecting possible transitions until it finds a path which 

satisfies / ?I. In the figure, the first satisfactory path 

discovered iS slols2o2s30364. Situated control Rules 
are now compiled for each situation in this path. The 

reaction component will thus be given a set of rules of 

the form: IF si AND pl THEN oi, for i = 1,2,3. At this 
point, traverse focuses its search for a solution path 

to fl2 in the subspace anchored at s4. This is accom- 

plished by collapsing the set of frontier nodes to the 

singleton set (~4). Such a collapse has the effect of re- 

quiring any solution path for / 32 to start in the situation 

terminating the satisfactory path for PI. Winnowing 
the set of possibilities in this way helps to control the 

projector’s search by reducing the number of alterna- 

tive situations in the expanding search frontier. 

We call this strategy cut-and-commit, and it is one 

aspect of the algorithm’s anytime operation. The con- 

ditions under which this approach is advisable are dis- 

cussed below. 

Traverse continues its search to satisfy p by find- 

ing a projection path which satisfies ,82 from s4. In 

our figure, the eventual satisfactory path for p2 is 

s@&o5s6o6sr. This path is passed to the SCR com- 

piler producing another set of SCRs for the satisfaction 

of ,82. The probability for the path si through s7 can 

be calculated from p(si+llsi, oi), i = 1,. . . ,6 (as de- 

fined below). This number gives us a lower bound on 
the probability that the reaction component will satisfy 

/ ?. Assuming that there is still time before the reac- 

tion component must take action, we can increase this 
probability by finding additional paths which also sat- 

isfy p. Each additional path will serve to increase the 

lower bound on the reaction component’s probability 
of satisfying p. 

Robustify is our algorithm for finding additional pro- 
jection paths. The algorithm finds high-probability de- 

viations from the single existing solution path and calls 
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traverse to find alternative paths which recover from 

each deviation. A deviation is a transition in a situa- 

tion which produces a new situation from which there 

does not yet exist a satisfactory path. For example, 

when robustify is applied to the path slols2o2s3o364, 

it finds that the transition to ss via operator 07 has a 
high probability of occurring in s2. Traverse is used 

to recover from this deviation by synthesizing an alter- 

nate path, s1ois2orssosss@s4, which also satisfies pi. 

Similarily, robust& finds that the transition from 95 

to sic via 016 has high probability and calls traverse to 

synthesize the path ~~~~~~~~~~~~~~~~~~~~~~ Each ad- 
ditional path serves to increase the probability that 

p will be satisfied by increasing the probability that 

each of its component constraints, / ?I and p2, will be 

satisfied. 

Situated Control Rules are compiled for each new 

subpath synthesized by traverse; in our example, new 

SCRs are created for 52, ss, ss, s5, and sre. This incre- 

mental deviate-and-recover strategy is another aspect 

of the algorithm’s anytime operation. As each new 

path is found, SCRs are given to the reaction com- 

ponent to help it deal with ever more of the possible 

domain situations in which it might find itself. 

Controlling the Search 

Situation probability and estimated remaining work 
were used in traverse to define a heuristic evalua- 

tion function. The heuristic value for a situation s, 

with respect to a BC p, is computed as: h (s,p) = 

clip + K2.rwt(s,P), where p(s) is the probability 

of situation s and nut (s, p) is the estimated remaining 

work required to satisfy p from s. The user-provided 
weights, Kl and K2, determine the relative importance 

of low-cost and high-probability in the computation of 

hand, hence, affect the type of solutions synthesized by 
traverse. These parameters must be tuned as required 

for each domain of application. This section gives def- 



rur(s, (maintain $ rs 7,)) 
m$Ll Tzu(S,pi) 

= 

mu(s, (prevent II) 5 7,)) 

KW l min-true (4, s) . (7, - 7,) + min-false ($, s) . (cw + Kw l (7, - r6)) 
= 

rw(s, (maintain II) ys cp)) 
KW . ??Iin-tTUt? (+, S) . (TV - TV) + m in-fah? ($, S) l (CW + KW . (7, - T#)) 

= 

rzu(s, (prevent 4 cp $4) 

KW . min-true (?j, 5) + CW = man-false ($, s) 

= KW l min-true (?j, s) + CW l min-false ($, s) 

Table 1: Definition of no(s,p) 

initions for estimated remaining work and path proba- 

bility, and more clearly explains the role of behavioral 

constraint strategies in controlling search. 

Estimated remaining work 

For planners concerned only with conjunctive goals of 

achievement, a heuristic based on situation difference 

gives reasonable results (Nilsson, 1980); to handle be- 

havioral constraints we have generalized the notion of 

situation difference to that of remaining work per time. 

Our heuristic uses two global parameters, KW (kep 

work) and cw (change work), which relate predicate 

truth value to work. The parameter KW denotes the 

minimum work per unit time to keep the truth value 

of a predicate constant. The parameter cw denotes 
the minimum number of work units required to change 

the truth value of a predicate. We assume that facts 

change instantaneously and cw estimates the mini- 

mum work required to change the truth value of a 

randomly selected predicate. A user must set these 

parameters as required for each application domain. 

be 
We define the remaining work per time rwt (s,p) to 

rw(s,p)/rt (s,/ ?); where rw(s,@ is the remaining 

work necessary to satisfy p from s and rt (s,p) is the 

remaining time in which to do the work. The remain- 

ing time can be easily estimated from / 3 and s. Let 

s be a situation, and let rn be the time stamp of s. 

The numerator of our equation, TW (s,p), can then be 

defined as shown in table 1. 

The function min-true($, s) gives the minimum 

number of predicates in the formula $ that are true in 

situation s. Similarly, min-faZse(+, s) gives the mini- 

mum number of false predicates. These terms, together 

with cw and KW, produce an optimistic estimate of the 

amount of remaining work. 

For example, consider the evaluation of rw(s, 
(maintain $ rs 7,)). The formula ?c) must be main- 

tained from time point rs through time point r,, from 

situation s with time stamp 7,. The appropriate defi- 

nition in table 1 has two terms: the first term describes 

the work required to keep the minimum number of true 

predicates in $ true from r, through 7,; the second 
term deals with the work required to change the min- 

imum number of false predicates in 1c, to be true, and 

the work required to keep these predicates true from 
r6 through 7,. The classical situation difference heuris- 

tic is a degenerate form of these measures, where work 

is measured in the number of predicates that must be 

made true and where there is no cost for keeping pred- 

icates true over time. 

Goal Sat isfact ion Probability 

Our description of traverse depended on the ability to 

combine individual transition probabilities into aggre- 

gate projection path probabilities; this section explains 

how this is accomplished. 

Let G = (S,T) b e a projection graph, where S is a 
set of possible situations and T is a set of situation- 

to-situation transitions; let s E S be a particular sit- 

uation, and let 20 = s1ors202.. .o,-IS, be a path 

in G. The path probability of w is defined to be the 

product of the transition probabilities in w: p (w) = 

P (31) ’ nr;fP (%+l 1 Si7 Oi)- 

For a situation s, the situation probability is defined 

as the sum of the path probabilities of all paths from 

the unique starting situation of G, ss, to s: p (s) = 

C p (w) summed over {w : w = ~101. . .on-rs,, is a 

path in G, s1 = ss, and s, = s}. 

Finally, we can define the probability that a behav- 

ioral constraint, p, is satisfied by a projection graph, 

6, as the sum of the probabilities of all paths in G 
anchored at the unique starting situation ss which 

rtisfy / 3: p (p 1 6) = C p (w) summed over 

ard ‘w ~a%~?~ j: 
o,-rs, is a path in G, sr = 83, 

The probability that the reaction component will 

satisfy a BC p under the guidance of the SCR,s com- 

piled from a projection graph G is bounded below by 

p (p 1 G). The probability p (p 1 G) is a lower bound 

because the reaction component might have access to 

other SCRS relevant to p which cover situations that 

are not in G. 

Behavioral Constraint Strategies 

As mentioned above, a behavioral constraint strategy 
is a partial order over a set of behavioral constraints. 

A given BC strategy controls search by giving the pro- 

jector a set of behavioral constraints to satisfy and an 

order in which to satisfy them. A BC strategy is satis- 

fied when each of its component constraints is satisfied 

in an order consistent with the given partial order. 

To make this idea more precise, let (I’ , 4) be a BC 
strategy, where I’ contains n behavioral constraints; let 

0 be the set of all total orders over I’ compatible with 
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4. Th; obj?tive for traverse is to synthesize a path 
W =w 020 o*--0w n, such that there exists a total 

order 6 E 0 where for each wi, wi+l in w, there exists 
p + / 3’ E 8 such that wi satisfies / 3 and wi+l satisfies 

/ ?I. Furthermore, each p E I’ must be satisfied by one 

wi in 20. The “ 0”  operator represents path composition 

defined as follows: w  o W’ = ~101~202. . . sie{s&e& . . . 54, 

where w = sro152oz . . . si and w’ = sieis&ei . . . si, if 

the union of si and si is consistent, else w o 20’ is un- 

defined. 

Consider the simple example used above where the 

BC strategy is / ?I 4 &. In the ideal case, for each 

path w1 that satisfies &, there exists a path w2 that 

satisfies / 32 such that w1 o w2. In this case, our cut- 

and-commit strategy will never be forced to backtrack 

over the first solution found for & , and the policy of 

immediate SCR compilation is risk-free. However, it is 

not always possible to construct such ideal BC strate- 

gies. More typically only a subset of the paths which 

satisfy / 3r can be extended to also satisfy &. In this 

case, the projector might have to backtrack to find an- 

other solution to &. If such backtracking occurs, then 

(at least some of) the SCRs that were compiled from a 

rejected solution to pr are not appropriate in the con- 

text of / 3r + pz. However, they may be appropriate 

in the context of another BC strategy and hence could 

still prove useful. 

In this paper, we do not address what the reactor 
does when more than one SCR is applicable. This 

issue is part of our current research effort; we are de- 

veloping a SCR conflict resolution strategy based on 

the BC strategy context for which an SCR is appro- 

priate in combination with the transition probability 

and the remaining work estimates associated with an 

SCR. In our ongoing research on the interaction be- 

tween the projector and the automatic production of 
behavioral constraint strategies, one future topic will 

be techniques for assessing and reducing the risk of 

backtracking over the inter-behavioral constraint “ cut”  

points. 

Discussion 

A. triangle table (Fikes et al., 1972) is analogous to 

what you get after running traverse only once, a uni- 

versal plan (Schoppers, 1987) is analogous to what you 

get by doing exhaustive search of the space of possible 

domain situations. A triangle table is like a set of SCRs 

designed to deal with each situation in a sequence of 

situations, and a universal plan is like a set of SCRs 
which has 100% coverage of the space of situations. 

Ginsberg (1989) h as argued against the practicality of 

universal plans. He has suggested that for “ cognitive 

tasks” , a system should be able to enhance its perfor- 

mance by expending additional mental resources. Our 
projection algorithm does exactly this. Under our ap- 
proach, additional computation time serves to increase 

the probability of goal satisfaction. 

There are various architectures addressing the real- 
time embedded control problem. Representative ap- 

proaches include Brooks’ (1985) subsumption architec- 

ture, Nilsson’s action nets (Nilsson, et al., 1990), Maes’ 

(1990) spreading activation approach, and the situ- 

ated automata of Rosenschein and Kaelbling (Rosen- 

schein, 1989; Rosenschein & Kaelbling 1986; Kaelbling, 

1987a,b, 1988). Each of these approaches gives a de- 

signer a language and methodology for specifying a 

control system. 

Brooks’ (1985) b su sumption architecture provides an 

elegant way of organizing the functional components of 

an embedded control system. The subsumption archi- 

tecture “ model”  of embedded execution is richer than 

our simple IF-THEN Situated Control Rule view. How- 

ever, we are able to synthesize SCRs automatically 

from a given behavioral constraint and causal theory 

describing a particular application domain. To our 

knowledge, Brooks has not yet addressed the auto- 

matic synthesis of subsumption architecture instances. 

Nilsson’s action nets (Nilsson, et aL, 1990) provide 

another methodology and language for the description 

of embedded systems. Nilsson’s view of closed-loop 

homeostatic servo mechanisms is appealing, and early 

results are promising. Our work differs in providing 

a more expressive language of behavioral constraints 

and by using information about situation probability 
to control search. 

Maes’ (1990) system employs a spreading activa- 
tion approach for dynamic action selection and can 

be viewed as a form of on-line action synthesis. The 

behavior of Maes’ algorithm depends on a number of 

global parameters which are set by the user based on 
(among other factors) characteristics of the environ- 

ment and the specific goal to be achieved. Hence, if 

the nature of the environment changes or if the desired 

goal changes, the user will need to re-tune the param- 

eters. Our work differs by explicitly searching through 

the space of possible futures. A behavioral constraint 

is one of the algorithm’s inputs; hence, changes in the 

system’s goals are taken into account automatically. 

Changes in the nature of the environment would be re- 

flected in the transition probabilities; hence, updated 

probabilities would appropriately influence the projec- 

tion search.l 

The most closely related work is that of Rosen- 

schein and Kaelbling (Rosenschein, 1989; Rosenschein 

& Kaelbling 1986; Kaelbling, 1987a,b, 1988). Kael- 

bling’s GAPPS system is a compiler which translates 

goal reduction expressions into directly executable cir- 

cuits. However, a person writing GAPPS goal reduc- 
tions must essentially do their own temporal projec- 

tion; that is, it is the person’s responsibility to guar- 

antee that the rules, once sequenced, will “ lead to”  goal 

satisfaction. In contrast, our approach defines a tem- 

poral projection mechanism which sorts out the effects 

‘We have not yet implemented 
transition probabilities. 

the automatic update of 
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of various action sequences automatically. Of course, 

we potentially pay a greater computational cost by car- 

rying out this search. Additionally, the GAPPS sys- 
tem, and the REX language on which it is based, have 

a great deal to say about bounded reaction tim,e in 

terms of the circuits synthesized from higher-level ex- 

pressions. We are not currently addressing this issue. 

We stress the synthetic nature of our projector to 

distinguish it from analytic projection (Dean & Mc- 

Dermott, 1987; Hanks, 1990). An analytic projector is 

used by a planner to validate plans while a synthetic 

projector combines operator selection and validation 

in the same algorithm. The analytic/ synthetic distinc- 

tion is largely one of perspective, since it is possible to 

view a planner-analytic projector pair as a complete 

system which performs synthetic projection. 

Hanks (1990) g reatly extended the capabilities of 

temporal projection systems by adding information re- 

garding probability. Dean and Kanazawa (1988) also 

use similar information. The techniques of Hanks, 

Dean and Kanazawa can be used to judge the prob- 
ability that a given fact will be true at an arbitrary 

point in the future. We can imagine providing such 

an inferential facility, but for now, we permit only cal- 

culations of individual situation probability. The al- 

gorithms of Hanks, Dean and Kanazawa can perform 

more powerful inferences. 

Dean and Boddy (1988) have characterized an any- 

time algorithm as one which can be asked for an answer 

at any point, where the algorithm’s answers are ex- 

pected to improve the longer it is allowed to run. Our 

use of traverse and robustify satisfy this characteriza- 

tion, in the sense that a set of SCRs is available for 

the reactor at any point in time, and in the sense that 

the set of SCRs “ improves”  over time by incremen- 

tally increasing goal satisfaction probability. We have 

identified two ways in which a synthetic temporal pro- 

jection algorithm can be considered “ anytime” : first, 

by using our cut-and-commit search strategy based on 

behavioral constraint strategies; and second, by recur- 

sively employing our deviate-and-recover strategy to 

manage probable errors. 

Our cut-and-commit approach ameliorates the com- 

plexity of the projection search. To see this, suppose 

that the average branching factor in the projection is b, 

and suppose that an eventual solution path is of length 

n. This means that breadth-first search would have to 
project, in the worst case, b”+l - 2 many situations 

to find a successful path. Suppose that the projector’s 

BC strategy is totally ordered and is of length c. In 
the worst case, the number of situations that traverse 

must project is cm b(“/“)+’ - 2~. As c approaches n, the 

number of situations we must consider falls off dramat- 
ically. This assumes, of course, that no backtracking 

occurs. As c increases, the projection takes on the 

shape of a series of small trees connected end-to-end, 

rather than one large tree running from start to finish. 

The larger c is, the smaller the computation’s anytime 

“ grain size”  becomes. 

We have designed and implemented a simulator 

for an experimental domain called the Reactive Tile 

World. The Reactive Tile World exhibits exogenous 

events and temporally extended goals of maintenance 

and prevention. We are in the process of empirically 

validating our projection algorithm on a suite of Reac- 

tive Tile World test problems. 
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Appendix A: Behavioral Constraint 

Syntax and Semantics 

A behavioral constraint (BC) is an expression con- 

structed according to the following grammar. We use 

the symbol p to stand for an arbitrary BC and the 

symbol 1 to indicate alternatives. 

; 
-+ (and PI P2 --a A) I (or PIP2 -*a A) 

+ (maintain $ 71 72) I (prevent $ q 72) 

z 

+ (maintain $ cp ‘p) I (prevent $ cp cp) 

-+ (and +I he.. tin) I (or $1 qb... A) 
4 + predicate 

We use T/ J to denote a formula, r to denote a time 

point constant, and cp to denote a time point vari- 

able. Time points are natural numbers. A vari- 

able is indicated by a question-mark, for instance: 

?t. All variables are implicitly existentially quanti- 

fied. We currently use time point variables only to 

express those goals of “ achievement”  or “ destruction”  

which are not required to occur at a predetermined 

point in time; these goals are given the following syn- 
tactic forms: (maintain ~+4 cp cp) z (achieve $J cp) and 

(prevent II) cp cp) G (destroy $ cp). 

Behavioral constraint semantics are defined in terms 
of projection graph paths. Let w = sro15202.. .on-rsn 

be a projection graph path; let ts (s) denote the time 

stamp of situation s; and let p be a behavioral con- 
straint. Then w satisfies p under the following condi- 

tions. 

DRUMMONDANDBRESINA 143 



PI 

PI 

PI 

VI 

PI 

PI 

PI 

w I= . 

WE 
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3si E w  : ts (si) 5 71 and si k + 
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sj j=$or ts(sj) >72 

(prevent II) ~1 72) 

3Si E w : ts (si) 5 71 and si k + 

andVsj ~w,j>i: 

Sj k $Or tS(Sj)>T2 

(maintain $ cp rp) 

3Si E W : Si b ?.fb 
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