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a b s t r a c t

System level verification of cyber-physical systems has the goal of verifying that the whole (i.e., software +

hardware) system meets the given specifications. Model checkers for hybrid systems cannot handle sys-

tem level verification of actual systems. Thus, Hardware In the Loop Simulation (HILS) is currently the

main workhorse for system level verification. By using model checking driven exhaustive HILS, System

Level Formal Verification (SLFV) can be effectively carried out for actual systems.

We present a parallel random exhaustive HILS based model checker for hybrid systems that, by simulating

all operational scenarios exactly once in a uniform random order, is able to provide, at any time during

the verification process, an upper bound to the probability that the System Under Verification exhibits an

error in a yet-to-be-simulated scenario (Omission Probability).

We show effectiveness of the proposed approach by presenting experimental results on SLFV of the In-

verted Pendulum on a Cart and the Fuel Control System examples in the Simulink distribution. To the

best of our knowledge, no previously published model checker can exhaustively verify hybrid systems of

such a size and provide at any time an upper bound to the Omission Probability.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The cost for fixing a design error in a system becomes larger

and larger as the design proceeds from the requirement analysis

to the implementation (see, e.g., [2, Chapter 1]) since the later in

the design phase an error is detected the more reworking it may

trigger. The above observation has motivated the development of

methods and tools to verify correctness of a system already in the

early phases of its design, namely during the requirement analysis

or during the functional specification phases. The goal of all such

approaches is to catch design errors well before the system imple-

mentation begins.

Of course, all such approaches are model based, that is they

work on a model describing the system behaviour since no sys-

tem implementation exists in the early design phases. Accordingly,

System Verification is carried out by simulating a system model and

analysing its behaviour under a suitable set of simulation scenarios.

For example, in a digital hardware setting, model based ap-

proaches have been used since a long time. In fact, even before

� This paper is an extended and revised version of [1].
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considering going to silicon, a heavy simulation activity is per-

formed, aimed at verifying that the system model (defined, e.g.,

using Verilog, VHDL or SystemC1) meets the system requirements

for most (possibly all) uncontrollable inputs (that is, primary inputs

and faults the system is expected to withstand).

Along the same line of reasoning, in a purely software setting,

before generating low level code, model based approaches are used

to verify that the software model (defined, e.g., using AADL [3,4])

meets the given requirements.

If all possible simulation scenarios are considered, then we can

prove correctness of the system (i.e., absence of simulation sce-

narios violating the system requirements), otherwise we can only

show that the system design is faulty (by exhibiting a simulation

scenario violating the system requirements). In other words, a sim-

ulation campaign that does not consider all possible simulation sce-

narios can only show that the system design has a bug. To show

correctness of the system design we need an exhaustive simula-

tion campaign, that is one considering all possible simulation sce-

narios. A verification approach able to show system correctness is

usually referred to as formal verification. One of the most successful

techniques to carry out formal verification is Model Checking (see,

e.g., [5]).

1 http://www.mentor.com/products/fv/hdl_designer/
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The need for model checking stems from the high cost that

a bug may have for certain systems. This is the case for mission

critical systems, that is, systems for which a system malfunction-

ing may entail loss of money, as well as for safety critical systems,

that is, systems for which a system malfunctioning may entail loss

of human lives. Examples of mission critical systems are: decision

support systems, satellites, processors (e.g., the infamous P5 FDIV

bug costed about $475 million to INTEL). Examples of safety critical

systems are: railway interlocking, avionics control software.

Many Cyber-Physical Systems (CPSs) are indeed mission or

safety critical systems. Accordingly, in this paper we focus on for-

mal verification techniques for CPSs.

A CPS consists of hardware (e.g., motors, electrical circuits, etc.)

and software components. Thus, in order to verify a CPS design,

we need methods and tools that can model and effectively support

simulation of hardware as well as software components.

From a formal point of view, CPSs can be modelled as hybrid

systems (see, e.g., [6] and citations thereof). Many Model Based De-

sign software tools offer support for modelling and simulation of

CPSs. Well known examples are Simulink2, VisSim3 and Model-

ica4. All such tools take as input a (mathematical) model of the

behaviour of the CPS along with a simulation scenario and provide

as output the time evolution (trace or simulation run) of the system

at hand.

System Level Verification of CPSs aims at verifying that the

whole (i.e., software + hardware) system meets the given specifi-

cations. System Level Formal Verification (SLFV) has the goal of ex-

haustively verifying that the above holds for all possible operational

scenarios.

For digital circuits, formal verification is usually carried out us-

ing model checking techniques (e.g., see [7]). Unfortunately, model

checkers for hybrid systems cannot handle SLFV of real world CPSs.

Thus, HILS is currently the main workhorse for system level verifi-

cation of CPSs, and is supported by model based design tools (e.g.,

the previously mentioned Simulink, VisSim and Modelica).

In HILS, the actual software reads/sends values from/to mathe-

matical models (simulation) of the physical systems (e.g., engines,

analog circuits, etc.) it will be interacting with. Notwithstanding

the word hardware, in HILS the only hardware present is the one

devoted to support the system simulation, that is: computational

and communication devices. This is because HILS is used in a

model based design setting to validate the system design before

any hardware is built (the whole goal of model based design). For

example, Simulink, VisSim, Modelica, ESA Satellite Simulation In-

frastructure SIMULUS5 all provide simulation software supporting

HILS, where the only hardware involved is just the computer on

which the simulator is actually running.

Simulation can be very time consuming. Accordingly, in order

to reduce system design time, Opal-RT6 and dSpace7 among oth-

ers provide modelling and simulation software along with FPGA-

based hardware to support real-time simulation. We note that in

all cases the only hardware present in HILS is the one supporting

the simulation itself.

1.1. Motivations

SLFV is an exhaustive HILS where all relevant simulation sce-

narios are considered. Using a parallel model checking driven

2 http://www.mathworks.com.
3 http://www.vissim.com.
4 http://www.modelica.org.
5 http://www.esa.int/Our_Activities/Operations/gse/ESA_operations_software_

licensable_products_-_overview .
6 http://www.opal-rt.com/about-hardware-loop-simulation .
7 https://www.dspace.com/en/inc/home.cfm .

approach, exhaustive HILS enables formal verification of actual

systems. Examples of such systems are the Inverted Pendulum on

a Cart (IPC) and the Fuel Control System (FCS) in the Simulink dis-

tribution (see Section 6.1.1).

Considering that parallel exhaustive HILS based SLFV may take

days of computation (e.g., see [8]), from a practical point of view

it would be very useful to have available at any time during the

verification process, quantitative information about the degree of

assurance attained. Such an information would enable us to eval-

uate if it is worth to continue the verification activity, or instead

stop it since the degree of assurance attained can be considered

adequate for the application at hand (graceful degradation).

The above considerations suggest looking for a HILS based

model checking approach satisfying the following requirements:

(i) it is parallel, in order to make exhaustive HILS computationally

feasible; (ii) it is exhaustive, since our focus is SLFV; (iii) it is any

time, to support graceful degradation.

The work in [9] presents a Propositional Satisfiability (SAT)

based model checker for finite state systems which returns, at any

time during the verification process, the coverage (i.e., the fraction

of operational scenarios verified so far). Unfortunately, while cov-

erage measures the amount of verification work done, it does not

provide any information about the degree of assurance attained by

the verification process. This is because formal verification aims at

finding hard to find errors, i.e., errors that were not detected while

verifying operational scenarios designed by experts. As a result,

formal verification addresses the search of errors that we are un-

likely to consider. For this reason, we can model the problem as an

adversary system, that is a system where, knowing our verification

strategy, the adversary places the error in operational scenarios we

are less likely to visit. In such a framework, any deterministic or-

dering of the operational scenarios would not increase the degree

of assurance until the end of the verification. In fact, the adversary

would choose to place the single error in the last scenario picked

by the verification procedure.

To provide a formally sound information about the degree of as-

surance attained by the verification process, approaches have been

proposed which verify the operational scenarios in a random or-

der. In particular, the work in [10] presents a Monte-Carlo based

model checker for finite state systems that provides, at any time

during the verification process, an upper bound to the probabil-

ity that the System Under Verification (SUV) exhibits an error in a

yet-to-be-simulated scenario (Omission Probability). The Omission

Probability (OP) provides indeed the information we are looking

for. Unfortunately, while Monte-Carlo based approaches guarantee

randomness (thereby enabling OP computation) they are not ex-

haustive (within a finite time).

To the best of our knowledge, no model checker is available,

neither for finite state systems nor for hybrid systems, which, at

the same time, is both random and exhaustive, thereby enabling

effective anytime SLFV. In this paper we advance the state of the

art by presenting a parallel random exhaustive HILS based model

checker along with experimental results showing its effectiveness.

1.2. Main contribution

Our System Under Verification (SUV) is a Hybrid System (e.g.,

see [6] and citations thereof) whose inputs belong to a finite set

of uncontrollable events (disturbances) modelling failures in sen-

sors or actuators, variations in the system parameters, etc. We fo-

cus on deterministic systems (the typical case for control systems)

and model nondeterministic behaviours (such as faults) with dis-

turbances. Accordingly, in our framework, a simulation scenario is

just a finite sequence of disturbances and a simulation campaign

is a finite sequence of simulation instructions (namely: save a

simulation state, restore a saved simulation state, remove a saved

http://www.mathworks.com
http://www.vissim.com
http://www.modelica.org
http://www.esa.int/Our_Activities/Operations/gse/ESA_operations_software_licensable_products_-_overview
http://www.opal-rt.com/about-hardware-loop-simulation
https://www.dspace.com/en/inc/home.cfm
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simulation state, inject a disturbance, advance the simulation of a

given time length).

A system is expected to withstand all disturbance sequences

that may arise in its operational environment. Correctness of a sys-

tem is thus defined with respect to such admissible disturbance

sequences. In our setting, the set of admissible disturbance se-

quences (disturbance model) can be defined as the language ac-

cepted by a suitable Finite State Automaton, which in turn can

be defined using the modelling language of any finite state model

checker.

In such a framework we address Bounded SLFV of safety prop-

erties. That is, given a time step τ (time quantum between dis-

turbances) and a time horizon T = τh we return PASS if there

is no admissible disturbance sequence of length h and time step

τ that violates the given safety property. We return FAIL, along

with a counterexample, otherwise. Therefore, SLFV is an exhaustive

(with respect to admissible disturbance sequences) HILS. In other

words, we are aiming at (black box) bounded model checking where

the SUV behaviour is defined by a simulator (Simulink in our

examples).

In such a setting, our main contribution can be summarised

as follows. We present an anytime parallel random exhaustive HILS

based model checker that effectively conjugates exhaustiveness

with randomness, thereby enabling the computation of the Omis-

sion Probability.

While a simulation run for digital hardware takes order of mil-

liseconds on a normal desktop computer, in our setting a simu-

lation run takes order of seconds since it entails heavy numer-

ical computations aimed at solving a system of many Ordinary

Differential Equations (modelling the hardware components of the

CPS). Indeed (see Section 6) simulation of operational scenarios

takes almost 100% of the overall verification time. Resting on such

observation we build on the SLFV approach discussed in [8]. In

particular:

1. From the disturbance model we generate all admissible sim-

ulation scenarios and evenly split them into disjoint sets

(slices).

2. For each slice, we compute a highly optimised simula-

tion campaign that exploits simulator save/restore/remove

commands in order to save on the simulation time while

scheduling execution of all simulation scenarios exactly once

and in a uniform random order. This guarantees exhaustive-

ness and allows us to compute, at any time during the veri-

fication process, an upper bound to the OP.

3. We run simulation campaigns in parallel. This guarantees a

very efficient parallelism, since no communication among

processes is needed. This step is supported by simulation

tools (Simulink in our case study).

We also show that, thanks to the fact that we have first gen-

erated all admissible simulation scenarios, attaining point 2 above

(i.e., anytime OP computation) can be done in a not-too-complicated

(from both technical and computational points of view) and non-

invasive way, by simply introducing a new module into the work-

flow of [8] that seamlessly interoperates with the others.

1.3. Summary of experimental results

We implemented our approach and present (Section 6) exper-

imental results on two case studies, namely the Inverted Pendu-

lum on a Cart (IPC) and the Fuel Control System (FCS) examples in

the Simulink distribution. Overall, we compute optimised simula-

tion campaigns under four operational environments (disturbance

models), which entail from 3 208 276 to 35 641 501 simulation

scenarios.

Each processor (actually, a core of a 8-core machine) runs an

instance of our (random) simulation campaign computation algo-

rithm and takes as input a slice of our set of simulation scenarios.

We present experimental results with 16, 32, 64 machines totalling

128, 256, 512 parallel processes. Our approach takes negligible

time to generate an optimised simulation campaign for a given

slice, with respect to the time needed to actually execute the

simulation campaign (e.g., minutes vs. hours, see Section 6).

Our experimental results show that, by exploiting parallelism,

our random exhaustive simulation campaigns effectively counter-

act the simulation time overhead due to randomisation. The above

ensures feasibility of our parallel random exhaustive approach for

actual systems, such as the Inverted Pendulum on a Cart (IPC) and

Fuel Control System (FCS) examples in the Simulink distribution.

As for the Omission Probability (OP), the worst case scenario

is when just one error trace is present. Our experimental results

(Section 6.6) show that, even in such a case, our upper bound to

the OP decreases about linearly with respect to the coverage, that

is the fraction of scenarios simulated. This is the best one can hope

to obtain in our setting.

Finally, simulation of scenarios in random order allows us to

use the coverage as a reliable estimator for the completion time of

the whole verification task. Our experimental results show that the

error in the completion time estimation decreases quickly with re-

spect to coverage.

1.4. Paper outline

Section 2 gives background notions to make our paper self-

contained. Section 3 presents our formal framework, by formalis-

ing the notion of OP and by providing an upper bound for it, com-

putable from the number of the yet-to-be-simulated traces in each

slice. Section 4 outlines our algorithm which enables the compu-

tation, from a sequence (slice) of disturbance traces, a highly op-

timised simulation campaign which simulates the input traces in

uniform random order and exploits the save/restore/remove capa-

bilities of the simulator. Section 5 is devoted to the formal proofs

of our results. Finally, Section 6 presents experimental results as-

sessing effectiveness of our approach.

2. Background and preliminaries

In this section we give some background notions. Unless other-

wise stated, all definitions are based on [8,11,12]. Throughout the

paper, we use R
≥0 for the set of non-negative reals, R

+ for the set

of strictly positive reals, and Bool = {0,1} for the set of Boolean

values (0 for false and 1 for true). N
+ denotes the set of positive

natural numbers.

2.1. Modelling the operational environment

Our System Under Verification (SUV) is a Discrete Event System

(DES), namely a continuous time Input-State-Output deterministic

dynamical system [11] whose inputs are discrete event sequences.

A discrete event sequence (Definition 1) is a function u(t) associ-

ating to each (continuous) time instant t ∈ R
≥0 a disturbance event

(or, simply, disturbance). Disturbances, encoded by natural numbers

in the interval [0, d] (for a given d ∈ N
+), represent uncontrollable

events (e.g., faults). We use event 0 to represent the event carrying

no disturbance. As no system can withstand an infinite number of

disturbances within a finite time, we require that, in any time in-

terval of finite length, a discrete event sequence u(t) differs from 0

only in a finite number of time points (Fig. 1a).

Definition 1 (Discrete event sequence). Let d ∈ N
+. A dis-

crete event sequence over the natural interval [0, d] is a
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a b c

Fig. 1. (a) A discrete event sequence (d = 3); (b) Our SUV embedding a monitor; (c) The SUV monitor output.

a b c d

Fig. 2. (a) Disturbance model; (b) CMurphi-based disturbance generator; (c) Gener-

ated sequence of disturbance traces (d = 3,h = 6); (d) The discrete event sequence

associated to the trace in the black rectangle in part (c), given time quantum τ .

function u : R
≥0 → [0,d] such that, for all t ∈ R

≥0, the set
{

t̃ ∈ R
≥0 | 0 ≤ t̃ ≤ t and u(t̃) �= 0

}

has finite cardinality. We denote

with Ud the set of discrete event sequences over [0, d] (following

control engineering notation for input functions to dynamical sys-

tems, see e.g. [11]).

In Definitions 2 and 3 we specify the concepts of restriction and

concatenation, respectively, for functions belonging to Ud .

Definition 2. Let Ud be the set of discrete event sequences over the

interval [0, d]. Given a function u ∈ Ud and two real numbers 0 ≤ t1
< t2, we denote with u|[t1,t2) the function u|[t1,t2) : [t1, t2) → [0,d],

such that u|[t1,t2)(t) = u(t) for all t ∈ [t1, t2). We denote U
[t1,t2)

d
the

restriction of Ud to the domain [t1, t2).

Definition 3. Assume that t1, t2, t3 ∈ R
≥0 such that t1 < t2 < t3. If

ω ∈ U
[t1,t2)

d
and ω′ ∈ U

[t2,t3)

d
, their concatenation, denoted as ωω′, is

the function ω̃ ∈ U
[t1,t3)

d
defined as:

ω̃(t) =

{

ω(t) if t ∈ [t1, t2)
ω′(t) if t ∈ [t2, t3)

System level verification follows an Assume-Guarantee approach

aimed at showing that the SUV meets its specification (Guarantee)

as long as the SUV operational environment behaves as expected

(Assume). In this work we focus on bounded system level verifi-

cation. As a consequence, we model (Definition 4) the SUV oper-

ational environment as the sequence of disturbances our SUV is

expected to withstand within a finite time horizon, and we bound

the time quantum between two consecutive disturbances.

Definition 4 (Disturbance trace). Let h, d ∈ N
+. An (h, d) distur-

bance trace δ is a finite sequence δ : [0,h − 1] → [0,d]. Given

τ ∈ R
+ (time quantum), an (h, d) disturbance trace δ is univocally

associated to a discrete event sequence uτ
δ
, defined as follows: for

all t ∈ R
≥0, if there exists j ∈ [0,h − 1] such that t = τ j, then uτ

δ
(t)

= δ(j), else uτ
δ
(t) = 0 (no disturbance).

Thus, a disturbance trace δ defines an operational scenario

(namely, uτ
δ
) for our SUV. Fig. 2d shows the discrete event se-

quence associated to a disturbance trace. We represent our SUV

operational environment as a finite set of (h, d) disturbance traces

� = {δ0, . . . , δn−1}, since Uτ
�

= {uτ
δ0

, . . . , uτ
δn−1

} (for a given τ ∈

R
+) defines the operational scenarios our SUV should withstand.

Note that, by taking h large enough (as in Bounded Model Check-

ing BMC) and τ small enough (to faithfully model our SUV oper-

ational scenarios), we can achieve any desired precision. On such

considerations rests the effectiveness of the approach.

As it is typically infeasible to define a SUV operational en-

vironment by explicitly listing all its disturbance traces, we de-

fine an operational environment with a disturbance model which

is in turn defined as the language accepted by a suitable fi-

nite state automaton. The following example illustrates this

point.

Example 1. Consider a disturbance model consisting of one dis-

turbance (namely, a fault) which is always recovered within 4 s

(i.e., 4 seconds). Let us assume that between two consecutive dis-

turbances (faults) there must be at least 5 s and that disturbances

can arise only at time steps multiple of τ = 1 s (time quantum). We

also assume that the verification time horizon is set to 6 s.

In Fig. 3a we show disturbance traces represented as strings of

zeros (no disturbance) and ones (disturbance), with time flowing

from left to right. The 8 strings terminated by denote all the

disturbance traces accepted by the disturbance model (admissible

Fig. 3. Example 1.
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a b c d e

Fig. 4. Parallel HILS based dSLFV [8]: k parallel processes are run on m multi-core machines (we show a possible deployment with machines having c cores each, i.e.,

k = mc).

disturbance traces). The 14 strings terminated by are the shortest

non-admissible sequences of disturbances, that is disturbance se-

quences that cannot be extended to admissible disturbance traces.

Fig. 3b shows the pseudo-code for a finite state automaton

recognising such a language.

We define a finite state automaton for a disturbance model us-

ing the modelling language of a finite state model checker (namely,

CMurphi [13]), along the lines of [8].

2.2. Modelling the property to be verified

Along the lines of [14], we model the property to be verified

with a continuous-time monitor which observes the state of the

system to be verified and checks whether the property under ver-

ification is satisfied (Fig. 1b). The output of the monitor is 0 as

long as the property under verification is satisfied and becomes

and stays 1 (sustain) as soon as the property fails, thus ensuring

that we never miss a property failure report, even when sampling

the monitor output only at discrete time points (Fig. 1c). The use

of monitors gives us a flexible approach to model the property

to be verified. In particular, it is easy to model bounded safety

and bounded liveness properties as monitors. Figs. 8 and 9 show

the Simulink/Stateflow representations of our two case studies (In-

verted Pendulum on a Cart and Fuel Control System, respectively),

along with their property monitors (see Section 6).

2.3. Modelling the SUV

Since the monitor output is all we need to carry out our ver-

ification task, we can model our SUV along with the property to

be verified as a DES with an embedded monitor (Fig. 1b). We call

Monitored Discrete Event System (MDES) such a DES.

According to our black-box approach to SUV modelling, given

a time quantum τ ∈ R
+, Definition 5 formalises an (h, d) MDES

as a function H associating, to each (h, d) disturbance trace δ, a
Boolean value H(δ) representing the output of the SUV monitor

at time T = τh (the time horizon), when the system (starting from

its initial state) is given as input the discrete event sequence uτ
δ
(t)

associated to δ. For any disturbance trace δ, H(δ) is 1 (error) if and

only if uτ
δ
(t) violates the property under verification within time

horizon T = τh (with the SUV starting from its initial state).

Definition 5. ((h, d) Monitored DES) Let h, d ∈ N
+. A (h, d)

Monitored Discrete Event System (MDES) is a function H :

([0,h − 1] → [0,d]) → Bool mapping all (h, d) disturbance traces to

Boolean values.

2.4. System Level Formal Verification (SLFV)

Definition 6 formalises our bounded System Level Formal Veri-

fication problem.

Definition 6. A System Level Formal Verification (SLFV) problem is a

tuple P = (h, d, �, H) where: h, d ∈ N
+, � = {δ0, . . . , δn−1} is an

(h, d) set of disturbance traces, and H is a (h, d) MDES.

The answer to SLFV problem P is FAIL if there exists a distur-

bance trace δ in � such that H(δ) = 1 (in such a case also the

counterexample δ is returned), PASS otherwise.

Note that, notwithstanding the fact that the number of states

of our SUV is infinite and we are in a continuous time setting, to

answer a SLFV problem we only need to check a finite number of

disturbance traces. This is because we are bounding: (a) our time

horizon to T = τh, and (b) the set of time points at which distur-

bances can take place, by taking τ as the time quantum among

disturbance events.

2.5. Parallel HILS based deterministic SLFV

In the black-box parallel approach shown in [8], the MDES H

defining our SUV (plus the property to be verified) is defined us-

ing the modelling language of a suitable simulator (e.g., MatLab and

Stateflow for Simulink). The answer to a SLFV problem (h, d, �, H)

is computed by simulating each operational scenario δ in the op-

erational environment �, thus by performing an exhaustive (with

respect to �) Hardware In the Loop Simulation (HILS). The over-

all workflow is shown in Fig. 4 and described in the remainder of

this section. We will refer to this approach as Deterministic SLFV

(dSLFV), where the word “deterministic” stems from the fact that

the disturbance traces are verified in a deterministic order.



T. Mancini et al. /Microprocessors and Microsystems 41 (2016) 12–28 17

Fig. 5. Labelled disturbance traces and optimised simulation campaign.

2.5.1. Disturbance trace generation and splitting

Our CMurphi-based trace generator (see Section 2.1 and Fig. 4a)

works in Depth-First Search (DFS) mode, and, given the set of dis-

turbances, produces a sequence � of n disturbance traces. Each

generated trace δ in � is annotated with labels and is of the form

δ = (l0, d0, l1, d1, . . . , lh−1, dh−1, lh), where δ = (d0, . . . ,dh−1) is

a sequence of disturbances satisfying the disturbance model and

l0, . . . , lh belong to a countable set of labels L.

Labels are defined by an injective map λ from finite sequences

of disturbances (including the empty sequence) to L. Label l0 is

common to all traces and it is associated to the simulator initial

state. Prefixes of disturbance sequences (d̂0, . . . , d̂p−1) common to

multiple disturbance traces in � are followed by the same label

l̂p = λ(d̂0, . . . , d̂p−1). Fig. 5a shows a short sequence of labelled dis-

turbance traces.

Labels identifying common disturbance prefixes are essential in

the efficient computation of optimised simulation campaigns. Note

that, given that our CMurphi-based generator runs in DFS mode,

disturbance traces can be labelled at no additional computational

cost during generation. Trace labelling during generation greatly

increases the efficiency of the simulation campaign optimiser, as

shown in [8].

In the following, we will use δλ instead of δ (respectively, �λ

instead of �) when we want to emphasise that a trace δ is anno-

tated (respectively, all traces in set � are annotated) with labels, or

when we need such labels. In order to enable parallel verification

via k ∈ N
+ processes, we evenly partition the sequence of labelled

disturbance traces �λ into k ∈ N
+ sequences of disturbance traces

�λ
0 , . . . , �λ

k−1
(called slices).

The splitting process produces slices containing ⌈n/k⌉ traces

each, except the last slice, which may contain fewer traces if n is

not a multiple of k.

2.5.2. Computation of optimised simulation campaigns

In the next phase of the workflow in Fig. 4, we use the k

slices �λ
0 , . . . ,�λ

k−1
generated so far to compute, independently

and in parallel, k highly optimised simulation campaigns (Fig. 4b).

Such simulation campaigns can be simulated, again independently

and in parallel, using k simulators, each one running (e.g., on a

different core of a bunch of multi-core machines) a model for

H (Fig. 4c–d).

The answer to the SLFV problem is FAIL if one of the simula-

tion campaigns raises the simulator output function to 1 (in this

case the disturbance trace δ which raised the error is returned as

a counterexample, see Fig. 4e). The answer is PASS otherwise.

Each simulator accepts four basic commands: store, load, free,

run. Command store(l) stores in memory the current state of the

simulator and labels with l such a state. Command load(l) loads

into the simulator the stored state labelled with l. Command free(l)

removes from the memory the state labelled with l. Command

run(e, t) (with e ∈ [0, d] and t ∈ R
+) injects disturbance e and then

advances the simulation of time t. A simulation campaign is thus a

sequence of simulator commands.

The simulation campaign χ i (0 ≤ i < k) computed from input

slice �λ
i

steers the simulator as to execute all disturbance traces

in �λ
i
according to their order in the slice (this is the reason why

we refer to this approach as Deterministic SLFV).

Each disturbance trace is executed as if starting from the sim-

ulator initial state. However, by using commands store and load,

the optimiser avoids revisiting simulation states as much as possi-

ble (as in explicit model checking). Using command free the opti-

miser removes from the simulator memory states that will never

be needed in the remaining part of the simulation campaign. This

is needed since each state may require many KB of memory (150–

300 KB in the case studies presented in this paper).

Fig. 5b shows the optimised simulation campaign computed

from the sequence of labelled disturbance traces in Fig. 5a, in the

simple case where we ignore any limit on number of states that

can be kept simultaneously stored in the simulator memory.

3. Omission Probability

This section formally defines the notion of Omission Probabil-

ity (OP) (Definitions 7 and 8) and provides an upper bound for

it, which can be computed anytime during the parallel verification

process from the number of the yet-to-be-simulated traces in each

slice (Theorem 1).

Notation 1 (Set of permutations of a set). Let � = {δ0, . . . , δn−1}
be a finite non-empty set. We denote with Perm(�) the set of per-

mutations of elements of �:

Perm(�) = {(θ0, . . . , θn−1) | (∀i ∈ [0,n − 1] θi ∈ �)

∧(∀i, j ∈ [0,n − 1] i �= j → θi �= θ j)
}

If �̂ = (δ0, . . . , δn−1) ∈ Perm(�) we write also �̂(i) for δi.

A Random Sequence Generator (RSG) models the extraction of a

random permutation from a given finite non-empty set (which, in

our case, will be the set of admissible disturbance traces �). This

is formalised in Definition 7.

Definition 7 (Random Sequence Generator). Let � be a finite non-

empty set. A Random Sequence Generator (RSG) for � is a proba-

bility space (	,F ,Pr), where:

• 	 (the space of outcomes) is the set of permutations of �, that

is 	 = Perm(�).

• F (the space of events) is the set of subsets of 	, that is: F =

2	 = {E | E⊆	}.

• Pr : F → [0,1] is a probability measure such that, for all ω ∈ 	,

Pr(ω) = 1
|�|!

. That is, permutations of � are extracted with

uniform probability. Since 	 is countable (actually finite),

the probability of any event E ∈ F is defined as Pr(E) =
∑

ω∈E Pr(ω).

Let (�0, . . . , �k−1) be a partition of � into k ∈ N
+ disjoint

non-empty sets. For any 0 ≤ i < k, let (	i,Fi,Pri) be a RSG

for �i. A Random Sequence Generator for (�0, . . . , �k−1) is a
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probability space (	,F ,Pr), where: 	 = ×k−1
i=0

	i, F = ×k−1
i=0

Fi and,

for each event E0 × · · · × Ek−1 ∈ F (Ei ∈ Fi for each 0 ≤ i < k),

P(E0 × · · · × Ek−1) =
∏k−1

i=0 Pri(Ei).

Note that, by Definition 7, a RSG for a partition (�0, . . . , �k−1)

of � models the extraction of k permutations of, respectively,

�0, . . . , �k−1. For all 0 ≤ i < k, the extracted permutation of �i is

chosen uniformly among all possible permutations of �i. Also, the

k permutations are extracted independently from each other.

Definition 8 defines the probability of omitting the simulation

of a trace δ̄ ∈ � containing an error (i.e., H(δ̄) = 1) when the veri-

fication process has already examined qi disturbance traces, where

qi ∈ {0, . . . , |�i|}, from a random permutation of slice �i, for all

0 ≤ i < k. Thus qi represents the state of advancement of the com-

putation on the ith slice �i. Hence (q0, . . . , qk−1) defines the state

of advancement (stage) of the computation on all slices. We denote

this probability as Omission Probability (OP).

Definition 8 (Omission Probability). Let (h, d, �, H) be a System

Level Formal Verification (SLFV) problem and (�0, . . . , �k−1) be a

partition of � into k ∈ N
+ disjoint non-empty sets. Let (	,F ,Pr)

be a RSG for (�0, . . . , �k−1), and (q0, . . . , qk−1) a tuple such that

qi ∈ {0, . . . , |�i|} for each 0 ≤ i < k.

The Omission Probability (OP) for (�0, . . . , �k−1) at stage

(q0, . . . , qk−1), is defined as:

OPH(|�0|, . . . , |�k−1|, q0, . . . , qk−1)

= Pr

({

(ω0, . . . ,ωk−1)|
∀i ∈ [0, k − 1] ωi ∈ 	i ∧

AB((ω0, . . . ,ωk−1), (q0, . . . , qk−1))

})

where:

• AB is defined as A((ω0, . . . ,ωk−1), (q0, . . . , qk−1)) ∧

B((ω0, . . . ,ωk−1), (q0, . . . , qk−1))

• A (After) is: A((ω0, . . . ,ωk−1), (q0, . . . , qk−1)) = ∃i ∈ [0, k −

1] ∃ j ∈ [qi, |�i|] H(ωi( j)) = 1;

• B (Before) is: B((ω0, . . . ,ωk−1), (q0, . . . , qk−1)) = ∀i ∈

[0, k − 1] ∀ j ∈ [0, qi − 1] H(ωi( j)) = 0.

In Definition 8, formula A (After) states that there exists a yet-

to-be-simulated trace δ̄ (some trace j ≥ qi of some slice i) contain-

ing an error, i.e., such that H(δ̄) evaluates to 1. Formula B (Before)

states that none of the already simulated traces contains an error,

i.e., function H evaluates to 0 for all of them.

The following Theorem 1 gives an upper bound to the OP, after

having simulated qi randomly extracted traces from slice �i (for

each 0 ≤ i < k). In particular, Theorem 1 provides a bound to the

probability of omitting the simulation of a trace δ̄ ∈ � containing

an error when the verification process has already examined qi dis-

turbance traces from the (the permutation of) slice �i (for all 0 ≤

i < k). Importantly, the bound provided does not depend on H, i.e.,

it is independent of the system model. The proof of the theorem is

in Section 5.

Theorem 1. Let (h, d, �, H) be a SLFV problem and (�0, . . . , �k−1)

be a partition of � into k ∈ N
+ disjoint non-empty sets. Let (	,F ,Pr)

be a Random Sequence Generator for (�0, . . . , �k−1) and (q0, . . . ,

qk−1) a tuple such that qi ∈ {0, . . . , |�i|} for each 0 ≤ i < k. We

have:

OPH(|�0|, . . . , |�k−1|, q0, . . . , qk−1) ≤ 1 − min
{

qi
|�i|

|0 ≤ i < k

}

(1)

Note that the construction of the slices �0, . . . ,�k−1 from � is

non-deterministic (i.e., any partitioning of � would work), whereas,

for each slice, the selection of a permutation is a probabilistic pro-

cess, modelled as a RSG. Accordingly, Theorem 1 bounds the OP

using the worst case distribution, i.e., the distribution yielding the

greatest OP. From this stems the min function in the right member

of the inequality in Theorem 1.

Finally, we observe that, from Theorem 1, it follows that

OPH(|�0|, . . . , |�k−1|, |�0|, . . . , |�k−1|) = 0, that is, our verification

task terminates after max {|�i| | 0 ≤ i < k} parallel steps, having

simulated all traces in �.

4. Enabling Omission Probability computation: random

exhaustive SLFV

Our disturbance trace generator (see Section 2.1) produces a

sequence of disturbance traces �λ, whose order is deterministi-

cally chosen by the employed algorithm (in our case, Depth-First

Search (DFS)). As a consequence, no information about the Omis-

sion Probability (OP) can be inferred during the verification pro-

cess if the simulation campaign computed from each slice veri-

fies the sequence of disturbance traces therein according to their

order (as done by the Deterministic SLFV (dSLFV) approach of

Section 2.5), or according to any deterministic order, as argued in

Section 1.1.

From Section 3 it follows that it is possible to enable OP com-

putation (and hence, graceful degradation during the computation-

ally very expensive simulation phase) by simulating the distur-

bance traces within each slice in an order uniformly chosen at

random.

Here we show how we can add support to OP computation in

the workflow of Fig. 4 in a not-too-complicated and non-invasive

way, by introducing an additional step, in the parallel portion of

the workflow, which implements a Random Sequence Generator

(RSG).

The new workflow, which we refer to as random exhaustive

SLFV (rSLFV), is shown in Fig. 6. All slices are given as input, in

parallel, to instances the new Random Sequence Generator mod-

ule, shown as Algorithm 1. The Random Sequence Generator mod-

ule reads a sequence of disturbance traces and computes a ran-

dom permutation of it, uniformly chosen among all possible per-

mutations, thus implementing a RSG (Definition 7). We argue that

the introduction of the new Random Sequence Generator module

is non-too-complicated for what concerns both its implementation

(Algorithm 1) and its computational viability (see Section 6.3). It

is also non-invasive, as it seamlessly interoperates with the dSLFV

workflow of Section 2.5.

As the input sequence can be too large to be kept in main

memory, the Random Sequence Generator module implements a

disk-based multi-round algorithm (shown as Algorithm 1) which

takes efficiency into account by using, in each round, as much

main memory as possible and by reading/writing the input/output

trace files sequentially.

Let n = |�λ| be the number of disturbance traces in the in-

put sequence. Given parameter z ∈ N
+ for the maximum num-

ber of disturbance traces which can be simultaneously stored in

main memory, the algorithm, at each round r ≥ 1, selects the z

traces which will have output positions in the interval [(r − 1)z,

min(n, rz − 1)].

The above selection is performed by computing the first z ele-

ments of a random permutation of the traces not yet in the out-

put file �λ
rnd

, chosen uniformly among all possible permutations.

Such a permutation prefix is computed by function rndPermPrefix()

(Algorithm 1, from line 20). Function rndPermPrefix() performs a

swap-based computation of a permutation of integers [0, |�λ
in
| −

1] (uniformly chosen at random) and interrupts the computation

as soon as the first z elements (see variable result) have been

determined. During its operation, function rndPermPrefix() repre-

sents the partially computed permutation as an associative ar-

ray perm, which, at any step of the function execution, represents
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Fig. 6. Parallel HILS based rSLFV.

permutation π of [0,n − 1] such that, for each j ∈ [0,n − 1]:

π ( j) =

{

v if ( j, v) ∈ perm
j otherwise, i.e., � ∃v ( j, v) ∈ perm

The main algorithm then appends the z randomly selected

traces (as chosen by function rndPermPrefix()) to �λ
rnd

(according

to their output positions), and dumps all the others to a tempo-

rary file, which becomes the input of the next round. Algorithm 1

terminates in ⌈n/z⌉ rounds.

The following theorem asserts that Algorithm 1, when applied

to a sequence of disturbance traces �λ, produces a uniformly cho-

sen permutation over the set of all permutations. The proof of the

theorem is in Section 5.

Theorem 2. Let �λ be a file containing n disturbance traces. For

any z ≥ 1, Algorithm 1 stores in file �λ
rnd

a permutation of the

traces in �λ extracted with uniform probability among all possible

permutations.

The k output randomised slices (computed in parallel by k in-

stances of the Random Sequence Generator algorithm from k input

slices) are then given as input to k parallel instances of the sim-

ulation campaign computation module described in Section 2.5.2

which compute k highly optimised simulation campaigns (Fig. 6).

As each simulation campaign verifies the traces in its input slice

according to the their order, the introduction of the Random Se-

quence Generator module effectively enforces a random order in

the disturbance trace verification within each slice, satisfying the

requirements stated in Theorem 1 in order to compute, during sim-

ulation, an upper bound to the OP.

5. Proof of results

Theorem 1. Let (h, d, �, H) be a System Level Formal Verifica-

tion (SLFV) problem and (�0, . . . , �k−1) be a partition of � into

k ∈ N
+ disjoint non-empty sets. Let (	,F ,Pr) be a Random Sequence

Generator for (�0, . . . , �k−1) and (q0, . . . , qk−1) a tuple such that

qi ∈ {0, . . . , |�i|} for each 0 ≤ i < k. We have:

OPH(|�0|, . . . , |�k−1|, q0, . . . , qk−1) ≤ 1 − min
{

qi
|�i|

|0 ≤ i < k

}

(1)

Proof. If, for all δ ∈ �, H(δ) = 0, then the left member of (1) is

Pr(∅) = 0 and the thesis follows.

Otherwise, let E be a nonempty set containing error traces, that

is E = {δ | δ ∈ � ∧ H(δ) = 1} �= ∅. OPH(|�0|, . . . , |�k−1|, q0, . . . ,

qk−1) can be rewritten as (see Definition 8):

Pr({(ω0, . . . ,ωk−1)

∣

∣

∣
∀i ∈ [0, k − 1] ωi ∈ 	i

∧ ∀i ∈ [0, k − 1] ∀ j ∈ [0, qi − 1] ωi( j) �∈ E}) (2)

because (�0, . . . , �k−1) is a partition of �.

Consider any δ̄ ∈ E. Probability (2) is less than or equal to

Pr({(ω0, . . . ,ωk−1)

∣

∣

∣
∀i ∈ [0, k − 1] ωi ∈ 	i

∧ ∀i ∈ [0, k − 1] ∀ j ∈ [0, qi − 1] ωi( j) �= δ̄}) (3)

Given that δ̄ belongs to exactly one of �0, . . . , �k−1, say �
ī
,

and given the definition of Pr(ω0, . . . ,ωk−1) in Definition 7, expres-

sion (3) is equal to:
⎛

⎜

⎝

k−1
∏

i=0
i �=ī

Pr ({ωi ∈ 	i})

⎞

⎟

⎠

× Pr({ωī ∈ 	ī | ∀ j ∈ [0, qī − 1] ωī( j) �= δ̄})

which is equal to

Pr(
{

ωī ∈ 	ī | ∀ j ∈ [0, qī − 1] ωī( j) �= δ̄
}

) (4)

as, for each i �= ī (0 ≤ i < k), Pr ({ωi ∈ 	i}) = 1.

Probability (4) is the probability of picking a permutation ω
ī

of �
ī
which does not have δ̄ in the first q

ī
positions, and eval-

uates to 1 −
q
ī
(|�

ī
|−1)!

|�
ī
|!

= 1 −
q
ī

|�
ī
|
which is less than or equal to

1 − min{
qi

|�i|
|0 ≤ i < k}. The thesis follows. �

Theorem 2. Let �λ be a file containing n disturbance traces. For

any z ≥ 1, Algorithm 1 stores in file �λ
rnd

a permutation of the

traces in �λ extracted with uniform probability among all possible

permutations.

Proof. We prove the following: (i) all traces in the input sequence

(file �λ) will occur in the output sequence (file �λ
rnd

) exactly once

(i.e., the algorithm computes a permutation); (ii) for each δ occur-

ring in �λ, the probability that δ occurs in �λ
rnd

at any position

is 1
n (i.e., the computed permutation is uniformly extracted among

all possible permutations).
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Algorithm 1 Random Sequence Generator.

Point (i) is immediate: at each round, z traces are appended to

�λ
rnd

, all the others are appended to �λ
tmp, which becomes the in-

put of the next round. Also, the algorithm terminates only if the

�λ
tmp produced at the previous round is empty.

To prove point (ii), for any p, q in [0,n − 1], we compute the

probability that trace δ having position p in the input sequence

(file �λ) will have position q in the output sequence (file �λ
rnd

).

We omit to prove that function rndPermPrefix(n,z) actu-

ally computes the first z elements of a permutation of the

integer interval [0,n − 1] uniformly selected at random, as

the function interrupts a well-known swap-based permuta-

tion algorithm as soon as the first z elements have been

determined.

Given that, at each round r ≥ 1, the main algorithm selects

the z input traces which will have output positions (r − 1)z to

min(n, rz − 1), δ is selected only at round rδ = ⌈(q + 1)/z⌉. Thus,
the probability that δ, having input position p, will have output

position q is:

Pr

((

rδ−1
⋂

r=1

¬Er

)

∩ Oq′

rδ

)

(5)

where, for all r, ¬Er denotes the event “δ is not selected at round

r” and O
q′

rδ
denotes the event “δ is the q′th trace selected in round

rδ ,” where q′ = (q − z(rδ − 1)).

By the chain rule, (5) becomes:
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Pr (¬E1) × · · · × Pr
(

¬Erδ−1|¬Erδ−2, . . . ¬E1
)

× Pr
(

Oq′

rδ
|¬Erδ−1, . . . ¬E1

)

. (6)

For all 1 ≤ r ≤ rδ − 1:

Pr (¬Er|¬Er−1, . . . ¬E1) =
n − z(r − 1) − 1

n − z(r − 1)
× · · ·

×
n − z(r − 1) − z

n − z(r − 1) − (z − 1)

where, for all 0 ≤ i < z, the ith factor is the number of ways we

can choose a trace different from δ out of n − z(r − 1) − i (where

n − z(r − 1) is the number of traces still not selected at the begin-

ning of round r). The expression simplifies to:

Pr (¬Er|¬Er−1, . . . ¬E1) =
n − zr

n − z(r − 1)

and the product Pr (¬E1) × · · · × Pr
(

¬Erδ−1|¬Erδ−2, . . . ¬E1
)

is:

Pr (¬E1) × · · · × Pr
(

¬Erδ−1|¬Erδ−2, . . . ¬E1
)

=

rδ−1
∏

r=1

n − zr

n − z(r − 1)

=
n − z(rδ − 1)

n
. (7)

As for Pr
(

O
q′

rδ
|¬Erδ−1, . . . ¬E1

)

, i.e., the probability that δ is the

q′th selected trace in round rδ provided that it has not been se-

lected in previous rounds, it can be computed as:

n − z(rδ − 1) − 1

n − z(rδ − 1)
× · · · ×

n − z(rδ − 1) − (q′ − 1)

n − z(rδ − 1) − (q′ − 2)

×
1

n − z(rδ − 1) − (q′ − 1)
=

1

n − z(rδ − 1)
(8)

where, for all 0 ≤ i < q′ − 1, the ith factor is the number of ways

we can choose a trace different from δ out of n − z(rδ − 1) − i

(where n − z(rδ − 1) is the number of traces still not selected at

the beginning of round rδ). The last factor is the probability of se-

lecting δ (still unselected) out of n − z(rδ − 1) − (q′ − 1) traces.

By (7) and (8), probability (6) evaluates to 1
n , which is indepen-

dent of p and q. �

6. Experimental results

In this section we evaluate the effectiveness of our random ex-

haustive SLFV (rSLFV) approach as follows. First, we evaluate the

overhead due to the randomisation of disturbance traces needed

to enable computation of Omission Probability (OP), by compar-

ing our rSLFV approach with the Deterministic SLFV (dSLFV) ap-

proach of [8]. Second, we evaluate the behaviour of the coverage

and the OP bound with respect to simulation time. Third, we eval-

uate speed-up and efficiency of our parallel approach.

6.1. Experimental setting

In this section we describe the case studies and the computa-

tional infrastructure we used in our experiments.

6.1.1. Case studies

We experiment with two case studies, using two models in-

cluded in the Simulink distribution, namely the Inverted Pendulum

on a Cart (IPC) and the Fuel Control System (FCS).

6.1.1.1. Inverted Pendulum on a Cart (IPC). The IPC is a control loop

system where the controlled system is an inverted pendulum in-

stalled on a cart (see Fig. 7). The controller (actually a control soft-

ware) senses the angular position θ of the pendulum, and com-

putes the force F to be applied to the cart to move it left or right

Fig. 7. Inverted Pendulum on a Cart (IPC) case study (from mathworks.com).

along the x axis. The goal is to keep the pendulum in its upright

(vertical) unstable position. The physical constraint between the

cart and the pendulum gives that both the cart and the pendulum

have one degree of freedom each (x and θ , respectively).
The controlled system consists of the cart and the pendulum,

whereas the controller consists of the control software computing

F from the plant outputs (x and θ ). Accordingly, our overall System

Under Verification (SUV) model consists of the controlled system

and the controller, whose Simulink block diagram is shown in the

upper box of Fig. 8.

The system level property that we verify is that after 2 s the

pendulum is in upright position, i.e., angle θ is always between

[−0.1,0.1]. The monitor checking for this property is shown in the

lower box of Fig. 8.

We introduce disturbances by injecting irregularities in the

cart rail. We model such irregularities with a modification on the

cart weight m with respect to its nominal value of 0.455 kg. For

this, we define three disturbances representing normal rail opera-

tion (m = 0.455 kg), abnormal rail operation (m = 1.455 kg), and

stressed rail operation (m = 2.455 kg).

We consider two disturbance models for the IPC, D1
IPC and

D2
IPC. Model D1

IPC has a horizon of h = 90 and defines 3 208 276

disturbance traces. Model D2
IPC is defined extending D1

IPC with

more complex operational scenarios and defines 35 641 501

disturbance traces over a horizon of h = 200. For both models

we set τ (quantum between disturbances) to 0.1 s. A detailed

description of D1
IPC and D2

IPC is not relevant for the evaluation of

our experiments below. We only observe that, in our setting, the

complexity of answering a System Level Formal Verification (SLFV)

problem primarily depends on the number of disturbance traces

to be simulated. Thus, the worst case for our approach is when all

disturbance traces have to be simulated, i.e., when the answer to

the SLFV problem is PASS. Indeed, both D1
IPC and D2

IPC satisfy this

requirement.

6.1.1.2. Fuel Control System (FCS). The FCS is a controller for a fault

tolerant gasoline engine, which has also been used as a case study

in [8,12,15–18]).

The FCS has four sensors: throttle angle, speed, EGO (measuring

the residual oxygen present in the exhaust gas) and MAP (mani-

fold absolute pressure). The goal of the control system is to main-

tain the air-fuel ratio (the ratio between the air mass flow rate

pumped from the intake manifold and the fuel mass flow rate in-

jected at the valves) close to the stoichiometric ratio of 14.6, which

represents a good compromise between power, fuel economy, and

emissions.

From the sensor measurements, the FCS estimates the mixture

ratio and provides feedback to the closed-loop control, yielding an

increase or a decrease of the fuel rate.

The FCS sensors are subject to faults (disturbances), and the

whole control system can tolerate single sensor faults. In partic-

ular, if a sensor fault is detected, the FCS changes its control law

http://mathworks.com
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Fig. 8. Simulink block diagram for Inverted Pendulum on a Cart (from mathworks.com) with an embedded property monitor.

by operating the engine with a higher fuel rate to compensate. In

case two or more sensors fail, the FCS shuts down the engine, as

the air-fuel ratio cannot be controlled.

The control logic of the FCS is implemented by six automata,

each one with a number of states ranging from two to five. The

signal flow is further subdivided into three subsystems, which ex-

hibit several different Simulink block types, involving arithmetic,

lookup tables, integrators, filters and interpolation [19] (see [20]

for more details).

We verify one of the system level specifications for such a

model, namely: the fuel_air model variable is never 0 for more

than one second. Accordingly, our SUV consists of the Simulink

FCS model along with a monitor for the property under verifica-

tion (such a model is shown as Fig. 9).

We consider two disturbance models for the FCS, D1
FCS and D2

FCS.

Model D1
FCS has a horizon of h = 100 and defines 4 023 955 dis-

turbance traces. Model D2
FCS is defined extending D1

FCS with more

complex operational scenarios and defines 12 948 712 disturbance

traces over a horizon of h = 200. For both models we set τ (quan-

tum between disturbances) to 1 s. A detailed description of D1
FCS

and D2
FCS is not relevant for the evaluation of our experiments be-

low, and can be found in [8,21]. We only observe that, as it hap-

pens with our disturbance models for the IPC, for all disturbance

traces entailed by D1
FCS and D2

FCS, the property to be verified is sat-

isfied. This yields the worst scenario to answer our SLFV problem,

as all traces need to be simulated.

6.1.2. Computational infrastructure

We ran experiments on multiple Linux PCs, each one equipped

with 2 Intel Xeon 3.0 GHz CPUs with 4 cores each and 8 GB RAM.

We executed 8 processes (optimisation and simulation) in parallel

(one per available core) on each machine.

Table 1

Disturbance trace generation.

SUV Dist. model #Traces Gen. time File size

IPC D1
IPC 3208276 0:9:58 4.6 GB

IPC D2
IPC 35641501 7:28:24 107 GB

FCS D1
FCS 4023955 0:28:39 3.5 GB

FCS D2
FCS 12948712 4:45:47 39 GB

As, in a multi-core setting, the local disk may quickly become a

performance bottleneck if heavily used by multiple processes, we

have replaced it with 8 RAM disks of 500 MB each per machine,

in order to store simulation states. Accordingly, we have used the

multi-core version of the dSLFV optimiser of [8] as presented in

[12]. Given that, in our case studies, the size of the simulation state

files is of about 150–300 KB, this experimental setting allowed our

optimiser to count on the possibility, for each simulator, to keep at

most 1800 states simultaneously stored.

6.2. Disturbance trace generation and splitting

Along the lines of [8], we use CMurphi to generate the set of

labelled admissible disturbance traces entailed by the disturbance

model given as input.

Table 1 shows, for each of the four disturbance models we con-

sider (two for IPC and two for FCS) the number of entailed dis-

turbance traces (column #Traces), the time needed by CMurphi to

generate them (column Gen. time) and the size of the file com-

puted by our generator to store them (column File size).

We then split the generated sequences of disturbance traces

into k slices, with k = 128,256,512 to enable parallel computa-

tion on, respectively, 16, 32, 64 (8-core) machines. Splitting always

takes negligible time.

http://mathworks.com
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Fig. 9. Simulink/Stateflow representation of the Fuel Control System (from mathworks.com) with an embedded property monitor.

6.3. Computation of optimised simulation campaigns

Table 2 shows, for each of the disturbance models we con-

sider, the time needed by our Random Sequence Generator mod-

ule to enable anytime OP computation during the verification pro-

cess (rSLFV) and the time needed to compute optimised simu-

lation campaigns with (rSLFV) and without (dSLFV) trace order

randomisation.

Column #Mach gives the number of machines we used in par-

allel. Column #Slices gives the overall number of slices in which

the sequence of admissible disturbance traces has been partitioned

(one per available core, i.e., 8 slices per machine). Column #Traces

per slice shows the number of traces in any single slice (except

the last slice, which has fewer traces when the overall number of

traces is not a multiple of #Slices). Column group rSLFV shows the

maximum overall time to compute the simulation campaign start-

ing from a slice. This time is split into two parts: the time needed

to execute the Random Sequence Generator module (column RSG)

and the time needed to compute the simulation campaign start-

ing from the randomised slice (column sim. camp. comp.). Column

dSLFV shows the maximum time to compute the simulation cam-

paign starting from a slice when no RSG is performed, thus no any-

time OP computation is enabled. Column rSLFV overhead shows the

difference between the rSLFV and dSLFV times.

It can be observed that our parallel approach to computation of

optimised randomised simulation campaigns is able to effectively

exploit parallelism in order to handle disturbance models entailing

tens of millions of operational scenarios.

Also, Table 2 shows that the random sequence generation phase

makes the rSLFV simulation campaign computation process longer

than that for dSLFV (i.e., overhead is positive). The difference

is, however, negligible with respect tothe whole verification time,

which takes many hours, even for the massively parallel simula-

tion of operational scenarios entailed by our smallest disturbance

models, i.e., D1
IPC for the IPC and D1

FCS for the FCS (see Section 6.4).

6.4. Execution of the simulation campaigns

Table 3 shows the execution time of the simulation campaigns

generated by dSLFV and rSLFV.

As the exhaustive simulation of the traces generated by distur-

bance models D2
IPC, D2

FCS (entailing, respectively, 35 641 501 and

12 948 712 disturbance traces) would require a prohibitively long

time, from now on we restrict ourselves to the simulation of the

traces generated by D1
IPC and D1

FCS (which entail, respectively, 3 208

276 and 4 023 955 disturbance traces).

By enabling the computation of the OP during the simulation

activity we have a quite significant increase of simulation time.

However, such an overhead can be drastically reduced, or even

neutralised, by using more parallel processes (higher values for

k = #Slices). This behaviour is due to the fact that the rSLFV op-

timiser needs to compute a simulation campaign under the re-

striction that the number of states that the simulator can keep si-

multaneously stored is limited (to fit within the 500 MB of disk

space available to each simulator instance). For high values of

k=#Slices (e.g., k = 512), this is not a big obstacle. On the other

hand, for low values of k, the number of traces in each slice is

higher and they share shorter common prefixes on average. Hence,

a fully-optimised random order execution of them would need a

too high number of simulation states to be simultaneously kept

stored. As a consequence, the optimiser is forced to post free com-

mands for many simulation states which would be needed again in

http://mathworks.com
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Table 2

Overhead of enabling OP (rSLFV) with respect to dSLFV in the computation of simulation campaigns (time in

h:m:s).

#Mach. #Slices #Traces rSLFV dSLFV rSLFV

per slice RSG sim.camp.comp. Total sim.camp.comp. overhead

1 8 401 035 0:0:21 1:8:52 1:9:13 0:8:53 1:0:20

2 16 200 518 0:0:11 0:11:57 0:12:9 0:4:36 0:7:32

4 32 100 259 0:0:5 0:6:33 0:6:38 0:2:23 0:4:14

8 64 50 130 0:0:3 0:2:50 0:2:53 0:1:14 0:1:39

16 128 25 065 0:0:2 0:1:23 0:1:26 0:0:38 0:0:47

32 256 12 533 0:0:1 0:1:19 0:1:21 0:0:20 0:1:1

64 512 6267 0:0:1 0:0:21 0:0:23 0:0:11 0:0:12

(a) Inverted Pendulum on a Cart (IPC), disturbance model D1
IPC: 3 208 276 traces with horizon h = 90

#Mach. #Slices #Traces rSLFV dSLFV rSLFV

per slice RSG sim.camp.comp. total sim.camp.comp. overhead

16 128 278 450 0:1:40 2:41:28 2:43:8 0:35:0 2:8:8

32 256 139 225 0:1:6 1:9:12 1:10:18 0:17:40 0:52:38

64 512 69 613 0:0:34 0:21:26 0:22:0 0:8:57 0:13:3

(b) Inverted Pendulum on a Cart (IPC), disturbance model D2
IPC: 35 641 501 traces with horizon h = 200

#Mach. #Slices #Traces rSLFV dSLFV rSLFV

per slice RSG sim.camp.comp. total sim.camp.comp. overhead

1 8 502 995 0:1:12 0:4:52 0:6:4 0:5:27 0:0:37

2 16 251 498 0:0:24 0:2:34 0:2:58 0:2:8 0:0:50

4 32 125 749 0:0:15 0:2:24 0:2:39 0:0:57 0:1:42

8 64 62 875 0:0:8 0:1:20 0:1:28 0:0:29 0:0:59

16 128 31 438 0:0:7 0:1:19 0:1:26 0:0:17 0:1:9

32 256 15 719 0:0:7 0:0:32 0:0:39 0:0:8 0:0:31

64 512 7860 0:0:6 0:0:5 0:0:11 0:0:4 0:0:7

(c) Fuel Control System (FCS), disturbance model D1
FCS: 4 023 955 traces with horizon h = 100

#Mach. #Slices #Traces rSLFV dSLFV rSLFV

per slice RSG sim.camp.comp. total sim.camp.comp. overhead

16 128 101 162 0:0:45 0:20:36 0:21:21 0:8:18 0:13:3

32 256 50 581 0:0:24 0:15:35 0:15:59 0:4:31 0:11:28

64 512 25 291 0:0:14 0:6:43 0:6:57 0:2:4 0:4:53

(d) Fuel Control System (FCS), disturbance model D2
FCS: 12 948 712 traces with horizon h = 200

Table 3

Parallel execution of simulation campaigns by dSLFV and rSLFV (time in

h:m:s).

#Mach. #Slices Min Max Avg Approach

16 128 2:14:2 4:10:52 3:44:52 dSLFV

25:14:28 85:10:36 58:9:43 rSLFV

23:0:26 80:59:44 54:24:51 overhead

32 256 1:6:49 2:5:40 1:50:28 dSLFV

4:26:16 23:59:0 13:0:24 rSLFV

3:19:27 21:53:20 11:9:56 overhead

64 512 0:30:30 1:3:10 0:53:45 dSLFV

0:59:26 1:51:10 1:43:12 rSLFV

0:28:56 0:48:0 0:49:27 overhead

(a) Inverted Pendulum on a Cart (IPC), disturbance model D1
IPC

#Mach. #Slices Min Max Avg Approach

16 128 70:6:4 100:17:53 87:49:56 dSLFV

216:42:13 348:51:47 308:46:18 rSLFV

146:36:9 248:33:54 220:56:22 overhead

32 256 44:0:27 57:57:27 48:34:6 dSLFV

63:53:54 136:18:14 108:14:19 rSLFV

19:53:27 78:20:47 59:40:13 overhead

64 512 18:32:36 26:49:4 23:2:19 dSLFV

22:9:19 29:23:33 26:43:31 rSLFV

3:36:43 2:34:29 3:41:12 overhead

(b) Fuel Control System (FCS), disturbance model D1
FCS

yet-to-be-simulated traces. Such traces will then be simulated from

the simulator initial state, thus yielding performance degradation.

6.5. Overall verification time and scalability

In this section we evaluate the overall impact of enabling any-

time OP computation and the scalability of our parallel approach

to SLFV.

Table 4 shows the overall time needed to carry out our SLFV

tasks (IPC with disturbance model D1
IPC and FCS with disturbance

model D1
FCS) with k parallel processes, for the values of k already

used in the previous tables.

In particular, column Gen. & comp. sim. camp. reports the sum

of the disturbance trace generation and splitting time, parallel ran-

domisation (only for rSLFV) and parallel simulation campaign com-

putation time (from Table 2). Column Simulation reports the paral-

lel simulation time when using k parallel processes (i.e., the max-

imum simulation time over all the k = #Slices slices as in column

Max of Table 3). Column Overall reports the overall time to carry

out each dSLFV and each rSLFV task, as the sum of the previous

two columns.

We observe that our approach takes negligible time to generate

optimised simulation campaigns with respect to the time needed

to actually simulate them (e.g., minutes vs. hours).

6.5.1. Estimation of sequential verification time

In order to evaluate the scalability of our parallel approach to

SLFV, Table 4 also reports (in the first two rows of each sub-table),
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Table 4

Overall performance overhead (including disturbance trace generation and splitting, trace randomisation, computation of sim-

ulation campaigns and Simulink simulations) of rSLFV with respect to dSLFV (time in h:m:s).

#Mach. #Slices Gen. & comp. sim. camp. Simulation Overall Speedup Efficiency Approach

1 1 0:56:11 458:40:0a 459:36:11a 1.00 × 100.00% dSLFV

26:59:57 880:38:24a 907:38:21a 1.00 × 100.00% rSLFV

+97.48%a +0.00% +0.00% overhead

16 128 0:10:36 4:10:52 4:21:28 105.46 × 82.39% dSLFV

0:11:24 85:10:36 85:22:0 10.63 × 8.30% rSLFV

+1858.83% +89.92% +74.09% overhead

32 256 0:10:18 2:5:40 2:15:58 202.80 × 79.22% dSLFV

0:11:19 23:59:0 24:10:19 37.55 × 14.67% rSLFV

+966.57% +81.48% +64.55% overhead

64 512 0:10:9 1:3:10 1:13:19 376.04 × 73.45% dSLFV

0:10:21 1:51:10 2:1:31 448.13 × 87.53% rSLFV

+65.71% −19.17% −14.08% overhead

(a) Inverted Pendulum on a Cart (IPC), disturbance model D1
IPC

#Mach. #Slices Gen. & comp. sim. camp. Simulation Overall Speedup Efficiency Approach

1 1 0:35:55 11242:31:28a 11243:7:23a 1.00 × 100.00% dSLFV

3:4:56 13683:20:32a 13686:25:28a 1.00 × 100.00% rSLFV

+21.73%a +0.00% +0.00% overhead

16 128 0:28:56 100:17:53 100:46:49 111.56 × 87.16% dSLFV

0:30:5 348:51:47 349:21:52 39.18 × 30.61% rSLFV

+246.66% +64.88% +56.55% overhead

32 256 0:28:47 57:57:27 58:26:14 192.40 × 75.16% dSLFV

0:29:18 136:18:14 136:47:32 100.05 × 39.08% rSLFV

+134.08% +48.00% +36.08% overhead

64 512 0:28:43 26:49:4 27:17:47 411.89 × 80.45% dSLFV

0:28:50 29:23:33 29:52:23 458.15 × 89.48% rSLFV

+9.44% −11.23% −9.03% overhead

(b) Fuel Control System (FCS), disturbance model D1
FCS

a Estimated value.

the overall dSLFV and rSLFV times when using only one parallel

process (sequential time). Unfortunately, as for our case studies a

sequential simulation would be prohibitively long, we have esti-

mated the sequential simulation time to carry out both dSLFV and

rSLFV as follows.

Let t
avg
k

be the average time to simulate a slice where k =

#Slices parallel processes are used (row #slices = k, column avg,

for either dSLFV or rSLFV). For any value of k, the sequential sim-

ulation time could be estimated as k × t
avg
k

. As this value changes

a little bit for different values of k, Table 4 estimates sequential

simulation time as min{128tavg
128

,256tavg
256

,512tavg
512

}. Such huge values

(weeks of computation) make clear that estimation is the only vi-

able way to compute the simulation sequential times. Note that

in our computation we are slightly overestimating the sequential

time, since we are assuming that some traces of each slice must be

simulated from the initial state. In an actual 1-process execution of

a simulation campaign, the optimiser may exploit stored simulator

states to avoid simulation of such traces from the initial state. As

the time to simulate a single trace is of a few seconds and the sim-

ulator can keep only a limited number of stored states, this is neg-

ligible with respect to the value of the sequential simulation time.

6.5.2. Speedup and efficiency

Sequential simulation time for both dSLFV and rSLFV is used in

Table 4 to compute the speedup and the efficiency of our parallel

approach to SLFV, as typically done in the evaluation of parallel al-

gorithms. In particular, for each k = #Slices, column Speedup shows

the ratio t1/tk, where t1 is the estimated overall sequential verifi-

cation time and tk is the overall verification time when k parallel

processes are used. Column Efficiency is computed by dividing the

speedup by the number of parallel processes k = #Slices.

Table 4 also shows the overhead (see bold values) due to ran-

domisation of the verification task (which is the price to pay in

order to enable anytime computation of OP), both in terms of over-

all verification time increase and in terms of reduction of speedup

and efficiency. We observe that such an overhead is significant, but

it can be drastically reduced by increasing the number k of parallel

processes.

6.6. Omission probability

Figs. 10a and c show how our upper bound to the OP de-

creases as a function of the coverage (i.e., the ratio of admissi-

ble traces simulated) during the parallel execution of the k sim-

ulation campaigns (IPC with disturbance model D1
IPC and FCS with

disturbance model D1
FCS), for k = 128,256,512. It can be observed

that our OP bound is always very close to the ratio of yet-to-be-

simulated traces (curves named “100%-coverage”, i.e., 100% minus

coverage), which is the best one can do (using only one parallel

process) without any assumption on the number of error traces.

6.7. Completion time estimation

Figs. 10b and d show that OP bound, computed during the

parallel execution of the simulation campaigns (IPC with distur-

bance model D1
IPC and FCS with disturbance model D1

FCS), decreases

nearly linearly in time. The same happens with the coverage, which

can thus be used as a reliable estimator for the completion time of

the whole verification process.

Fig. 11 shows the error percentage (on the true completion

time) made by a completion time estimation based on the cov-

erage. For each value x of the coverage, the error is computed as
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Fig. 10. Omission Probability (OP) computation during the parallel execution of the simulation campaigns.

Fig. 11. Completion time estimation error against coverage.

((tx/x) − tc)/tc where tx is the time elapsed to reach coverage x

and tc is the true completion time. It can be observed that such a

completion time estimation becomes accurate quickly (e.g., when

the coverage is ≥ 30%, the error is within 30%).

7. Related work

A parallel exhaustive Hardware In the Loop Simulation based

hybrid system model checking similar to the one described in this

work is presented in [8]. The main differences of the present work

with respect to [8] are the following. (i) Our simulation campaign

optimiser and the one in [8] both take as input the admissible

disturbance traces (simulation scenarios). However, the simulation

campaigns computed in [8] schedule scenarios according to their

order, whereas in this work we introduce an intermediate step

which enables simulation of all scenarios, exactly once, in a uniform

random order. (ii) During the verification process, the approach in

[8] only outputs the attained coverage, whereas, in this work also

the attained Omission Probability (OP) is computed, by exploiting

the randomisation of the order with which scenarios are sched-

uled.

The work in [9] considers a finite state (digital hardware verifi-

cation) setting and presents an algorithm to estimate the coverage

achieved during SAT based bounded model checking. Since com-

putation paths are not selected uniformly at random, [9] does not

provide any information about the OP.

Random model checking is a formal verification approach closely

related to our setting. A random model checker provides, at any

time during the verification process, an upper bound to the OP.

Upon detection of an error, a random model checker stops return-

ing a counterexample. Random model checking algorithms have

been investigated, e.g., in [10,22,23]. The main differences with



T. Mancini et al. /Microprocessors and Microsystems 41 (2016) 12–28 27

respect to our approach are the following. (i) All random model

checkers generate simulation scenarios using a sort of Monte-Carlo

based random walk. As a result, unlike our algorithm, none of

them is exhaustive (within a finite time horizon). (ii) Random

model checkers (e.g., see [10]) assume availability of a lower bound

to the probability of selecting (with a random-walk) an error trace.

Of course, being exhaustive, we do not have any such assumption.

The coverage yielded by random sampling a set of test cases

has been studied by mapping it to the Coupon Collector’s Problem

CCP (see, e.g., [24]). In CCP elements are randomly extracted (uni-

formly and with replacement) from a finite set of n test cases (dis-

turbance traces in out context). Known results (see, e.g., [25]) tell

us that the probability distribution of the number of test cases to

be extracted in order to collect all n elements has expected value

�(nlogn), and a small variance with known bounds. This allows

us to bound the OP during the verification. Differently from such

CCP-based approaches, here we not only bound the OP, but also

grant the completion of our verification task within just n trials.

This is made possible by the fact that we first generate all distur-

bance traces.

Monte-Carlo based robustness analysis of CPSs has been inves-

tigated in [26]. We note that, within a finite time bound, we are

exhaustive whereas the approach in [26] is not. On the other hand,

unlike our approach, [26] also evaluates how robustly the given

property holds.

Probabilistic (e.g., see [27,28]) and, more specifically, simulation-

based statistical model checking approaches (e.g., see [15,16,29–34])

are closely related to our work. In particular, [16] addresses sta-

tistical model checking of Simulink models and presents experi-

mental results on one of the Simulink case studies we use here.

The main differences between such approaches and ours are the

following. (i) Probabilistic model checking is a white-box approach

(a model is available), whereas we are in a black-box setting (only

a simulator is available). Thus, only simulation-based statistical

model checking approaches can be used in our context. (ii) Sta-

tistical model checking is not exhaustive (within a finite time hori-

zon), whereas we are. (iii) Both probabilistic and statistical model

checking use a stochastic model for the SUV, whereas in our set-

ting the SUV is deterministic and disturbances are nondeterminis-

tic. The probability measure in our context, as in random model

checking, stems from the randomisation of the verification process

itself. (iv) None of the available simulation-based statistical model

checking approaches addresses the problem of the optimisation of

the simulation campaign, which is an essential step to make our

parallel random exhaustive (HILS) based model checking viable.

Formal verification of Simulink models has been widely inves-

tigated, examples are in [35–37]. Such methods however focus on

discrete time models (e.g., Stateflow or Simulink restricted to dis-

crete time operators) with small domain variables. Therefore they

are well suited to analyse critical subsystems, but cannot handle

complex system level verification tasks (e.g., our case studies). This

is indeed the motivation for the development of statistical model

checking methods as those in [15,16], for the exhaustive HILS based

approach in [8], and for our present parallel random exhaustive

HILS based approach.

8. Conclusions

We presented a parallel random exhaustive (HILS) based model

checker for hybrid systems that, while being exhaustive with re-

spect to the disturbance model given as input, provides at any time

during the verification process an upper bound to the probability

that the SUV exhibits an error in a yet-to-be-simulated scenario

(Omission Probability, OP).

Our experimental results on real world case studies from the

Simulink distribution (namely: Inverted Pendulum on a Cart and

Fuel Control System) show that, by exploiting parallelism, our ap-

proach to the computation of optimised simulation campaigns is

feasible even for disturbance models entailing tens of millions of

operational scenarios.

Also, simulation results show that, by exploiting parallelism,

our simulation campaign optimiser effectively counteracts the sim-

ulation time overhead stemming from randomisation.

Finally, we have shown that our bound to the OP decreases

about linearly with the coverage, which is as good as it can be even

in the worst case scenario (just one error trace). Furthermore, rest-

ing on randomisation, we can use the coverage as a reliable esti-

mator for the time needed to complete the verification process.
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