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Abstract. Although GPUs have been used to accelerate various con-
volutional neural network algorithms with good performance, the
demand for performance improvement is still continuously increasing.
CPU/GPU overclocking technology brings opportunities for further per-
formance improvement in CPU-GPU heterogeneous platforms. How-
ever, CPU/GPU overclocking inevitably increases the power of the
CPU/GPU, which is not conducive to energy conservation, energy effi-
ciency optimization, or even system stability. How to effectively constrain
the total energy to remain roughly unchanged during the CPU/GPU
overclocking is a key issue in designing adaptive overclocking algorithms.
There are two key factors during solving this key issue. Firstly, the
dynamic power upper bound must be set to reflect the real-time behav-
ior characteristics of the program so that algorithm can better meet
the total energy unchanging constraints; secondly, instead of indepen-
dently overclocking at both CPU and GPU sides, coordinately over-
clocking on CPU-GPU must be considered to adapt to real-time load
balance for higher performance improvement and better energy con-
straints. This paper proposes an Adaptive Overclocking Algorithm (AOA)
on CPU-GPU heterogeneous platforms to achieve the goal of perfor-
mance improvement while the total energy remains roughly unchanged.
AOA uses the function Fk to describe the variable power upper bound
and introduces the load imbalance factor W to realize the CPU-GPU
coordinated overclocking. Through the verification of several types con-
volutional neural network algorithms on two CPU-GPU heterogeneous
platforms (Intel�Xeon E5-2660 & NVIDIA�Tesla K80; Intel�Core™i9-
10920X & NIVIDIA�GeForce RTX 2080Ti), AOA achieves an average
of 10.7% performance improvement and 4.4% energy savings. To ver-
ify the effectiveness of the AOA, we compare AOA with other methods
including automatic boost, the highest overclocking and static optimal
overclocking.
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1 Introduction

Almost all kinds of convolutional neural network algorithms and scientific com-
puting programs generally use GPU for acceleration [4,8]. CPU-GPU heteroge-
neous platforms are becoming more and more widely used. Both CPU and GPU
provide overclocking mechanisms, and moderate overclocking brings opportu-
nities for further performance improvement. Although the CPU has the Intel
Turbo Boost Technology [15], and the GPU has the Nvidia GPU Boost Tech-
nology [22], automatic overclocking through the system has certain limitations.
It is meaningful to consider the goal that how to improve the performance by
adaptively overclocking on CPU-GPU heterogeneous platforms while constrain-
ing the total energy consumption unchanged.

Existing researches on overclocking algorithms have targeted both homoge-
neous and heterogeneous platforms. One of the state-of-art algorithms for homo-
geneous platforms is to set a static frequency upper bound [38], which overclocks
the frequency to the given upper bound in active state. Another existing method
is overclocking under power constrain [14]. When the processor utilization is high
and current power does not reach the power upper bound, the frequency keeps
increasing. However, how to control the overall energy consumption of a certain
task or program is a problem, especially for heterogeneous platforms with fewer
overclocking algorithms [31]. A common way to improve CPU-GPU energy effi-
ciency is to adjust CPU and GPU frequency on heterogeneous platforms. During
the entire frequency adjustment process, the CPU and GPU are usually regarded
as a whole for consistent frequency adjustment [36]. When it comes to CPU-GPU
frequency adjustment on heterogeneous platforms, load balance between CPU
and GPU is one of the key issues to consider. Frequency adjustment brings
greater challenges to load balance.

For overclocking on CPU-GPU heterogeneous platforms, a commonly used
method is overclocking under a given power upper bound, which achieves the
purpose of improving performance while satisfying the total energy constraint.
How to effectively keep the total energy unchanged during the CPU/GPU over-
clocking process is a key issue, which mainly includes two key factors.

– The static power upper bound is difficult to reflect the individual differences
in performance and power of programs’ behavior, which brings problems to
improving program performance and the accuracy of power control. In addi-
tion to CPU/GPU frequency, the real-time usage of the program on the pro-
cessor (such as instructions per cycle, processor core utilization, etc.) can also
affect instantaneous processor power. Therefore, power upper bound must be
dynamic, not static.

– Overclocking may cause or even aggravate the load imbalance of CPU-GPU
heterogeneous platforms, thereby affecting performance improvement and
total energy constrain. Independent overclocking of the CPU and GPU may
cause the originally balanced load to become unbalanced, which is detrimen-
tal to our goals. When the CPU-GPU load imbalance increases, the perfor-
mance has room for improvement, because the performance of heterogeneous
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computing depends on the side with longer running time. Also, additional
energy is consumed due to waiting. Therefore, CPU-GPU overclocking must
be coordinated, considering real-time load balance.

Based on the two key factors in the design of overclocking algorithms, the
solutions in this article are as follows.

– For the first key factor, turn the static power upper bound of overclocking
into the adaptive variable power upper bound. The overclocking algorithm
sets the initial power upper bound k0 by calculating the expected power
upper bound according to the characteristics of the usage of various programs
on a given platform. In the dynamic overclocking process, the power upper
bound k is adaptively adjusted to achieve precise real-time power control for
individual program characteristics, according to the real-time usage of the
current program on the CPU and GPU.

– For the second key factor, the load imbalance factor W is used to characterize
whether the program is in the load balance state or load imbalance state, and
to further adjust the overclocking range after normal overclocking for a further
performance improvement.

In summary, this paper has the following three contributions.

1. Aiming at the challenge of constraining the total energy in overclocking, we
find two key factors that affect adaptive overclocking: dynamic variable power
upper bound k and coordinated overclocking (load imbalance factor W ) at
both sides of the CPU and GPU.

2. We propose an Adaptive Overclocking Algorithm on CPU-GPU Heteroge-
neous platforms (AOA), which first adjusts the dynamic power upper bound
k of CPU and GPU separately according to the real-time operation of the
current program on the CPU-GPU heterogeneous platforms; and introduce
load imbalance factor W to coordinate overclocking range by improving load
imbalance phenomenon for further performance improvement and better total
energy constrain.

3. AOA is implemented and verified on two heterogeneous platforms
(Intel�Xeon E5-2660 & NVIDIA�Tesla K80; Intel�Core™i9-10920X &
NIVIDIA�GeForce RTX 2080Ti) using convolutional neural network algo-
rithms. The experimental results show that the AOA improves the perfor-
mance by 10.7% on average and 4.4% energy savings. To verify the effec-
tiveness of the AOA, we compared AOA with methods including automatic
boost, the highest overclocking and static optimal overclocking.

The structure of this article is as follows: Sect. 2 introduces the background
and related work of overclocking methods on heterogeneous platforms. Section 3
illustrates the design ideas of overclocking algorithms and the description of
AOA. Section 4 introduces the experimental platform and the experimental
results of AoA on two heterogeneous platforms. Section 5 discusses the impact
of two key factors on AOA effect. Section 6 is the concluding remarks.
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2 Related Work

2.1 DNN in CPU-GPU Platforms

The heterogenous architecture becomes widely used in high performance com-
puting [18,35], which is inseperable from the requirement for boost performance
(high accuracy and fast training speed) of DNNs. While convolutional neural
network (CNN) is one of the most successful deep neural network (DNN) mod-
els and have been applied in various fields such as computer vision and speech
recognition [12,20], the cost of high power and energy attracts widespread atten-
tion [21,26,32].

Th inspires researches on energy efficiency of DNN models on CPU-GPU
platforms. Sun et al. study the performance, power and energy characteristics
of CNNs when running on CPU and GPU [29]. Rodrigues et al. [25] propose an
evaluation framework that combines standard deep learning frameworks such as
Caffe [17] and cuDNNv5 [8] to measure the performance and energy of DNNs.
Mittal et al. [21] survey on methods for analyzing and improving GPU energy
efficiency.

2.2 Energy Efficiency Optimization Methods

Existing energy efficiency optimization methods for heterogeneous platforms
mainly have two types of ideas. One type of methods to improve energy effi-
ciency is to reduce power or energy consumption while maintaining performance,
which is realized by dynamic voltage frequency scaling (DVFS, usually frequency
reduction). Yao [37] study the energy efficiency of CNN on high performance
GPUs. Through a large number of comparative experiments on GPU architec-
ture, DVFS settings and DNN configuration, they studied the impact of GPU
DVFS on deep learning energy consumption and performance based on experi-
ence. Tang et al. [30] also research on the impact of GPU DVFS on the energy
and performance of deep learning. However, reduced frequencies sometimes mean
slower system configurations, which to some extent violate latency and through-
put requirements of heterogeneous platforms in the context of high performance
computing.

Another type of methods is to improve performance while controlling power
and energy consumption, which is mainly achieved by overclocking. Existing
works research on the effect of overclocking on performance [31]. Sasikala et al.
[24] exploit the techniques of overclocking and throttling to enhance the per-
formance while maintaining the system reliability. Wu et al. [33,34] improves
energy efficiency by processor overclocking and memory frequency scaling. Yang
et al. [36] treat the CPU and GPU as a whole for consistent frequency modula-
tion. However, there are significant imbalance in both frequency and computing
ability of CPUs and GPUs, which is ignored by consistent frequency modulation.

Researches show that load imbalance between CPU and GPU in some pro-
grams (such as BFS) also has important impact on performance [10]. Acun
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et al. [5] agree that performance inhomogeneity in power constrained environ-
ments drastically limits supercomputing performance. Chen et al. [7] investigate
the optimization possibilities of the performance of parallel systems utilizing the
time-dimension communication features. Chasapis et al. [6] research on the effect
of manufacturing variability on computing ability. Gholkar et al. [11] show that
a power capped job suffers from performance variation of otherwise identical
processors leading to overall sub-optimal performance.

3 AOA Design

3.1 Key Issue and Key Factors in AOA

Key Issue - Energy Constraint. Overclocking brings performance improve-
ment together with inevitable increase in instantaneous power, which makes the
total energy likely to increase or decrease. If the total energy can be restrained
from increasing during the overclocking process, it will not only save the energy
consumption of the task (E = P · t), but also improve the energy efficiency
(EDP = E · t). How to effectively constrain the total energy unchanged in the
overclocking process is a key issue in the overclocking algorithm design.

Furthermore, dynamic overclocking is more beneficial to meet the constant
total energy constraint than static overclocking, so we adopt dynamic overclock-
ing instead of static overclocking.

The algorithm is designed with the total energy unchanged as the con-
straint. There are usually three control conditions: controlling the total energy
unchanged, controlling frequency not exceed the max frequency, and controlling
power not exceed the power upper bound.

There are some problems in designing dynamic overclocking by controlling
the total energy unchanged. Since the total energy is the accumulation of power
over a period of time, the total energy consumption of the program cannot be
obtained before the program finishes running. Therefore, it is not possible to
design dynamic overclocking by controlling the total energy unchanged in the
algorithm. Setting the power upper bound for overclocking can avoid the above
problem. The power can be obtained in real-time during the running of the
program. Compared with the total energy, power upper bound can be directly
used as a constraint that is easier to control dynamic overclocking.

There are also some problems in controlling the frequency not to exceed
the upper bound. Although the performance improvement goal can be achieved
by using frequency as the control condition, it is difficult to meet the constraint
condition of constant total energy. The reason is that in addition to frequency, the
real-time occupation factors of the processor by the program (such as instructions
per cycle, processor core utilization, etc.) also affect instantaneous power. The
formula (1) reflects the relationship between the processor clock frequency f and
the instantaneous processor power P :

Ptotal = αCV 2f + Pstatic (1)
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where α is the CMOS circuit switching factor that reflects the busyness of the
processor. As shown in Table 1, taking platform A as an example, when the CPU
frequency f is at 2.6 GHz, the power values under 10% and 88% utilization
are 60W and 140W respectively, with a difference of 133%. Compared with
controlling frequency not exceeding max frequency, controlling instantaneous
power not exceeding a given power upper bound is more helpful to achieve the
goal of remaining the total energy unchanged.

Key Factors - Power Upper Bound and Load Balance

Key factor 1: The power upper bound must be dynamic, not static.
In the process of dynamic overclocking, if the upper bound of power is fixed

to a value, that is not the most appropriate because it will bring difficulties
to the control of total energy. We define a variable upper bound of dynamic
power kP that is a variable parameter and different from the hardware power
capping. Among them, P is the power value of the processor at the default
frequency f0. Considering that the value of P has a certain fluctuation relative
to the same frequency f0 under actual conditions, we take the typical power
value of the processor as P . k is the Power Upper Bound Factor, which satisfies
1 ≤ k ≤ 1.2. When k = 1, it means no overclocking; when k = 1.2, it means that
the processor power after overclocking cannot be greater than 1.2 times of P .
1.2 is an empirical value obtained from historical experiments on the platform,
and the value setting varies slightly on different platforms.

The design of the dynamic power upper bound is based on two considerations.
One is the determination of the initial value of the overclocking power coefficient,
and the other is the dynamic change process of the overclocking power coefficient.

Define k0 as the initial value of variable power upper bound factor. By run-
ning various test programs on a given hardware platform (considering the balance
of program feature distribution), the power and energy results of the processor
under different occupancy conditions can be obtained, and then the power upper
bound under the constraint of constant total energy can be obtained. The over-
clocking power coefficient k0 is determined from this.

On the basis of k0, the variable overclocking power coefficient kt at time t is
calculated by the function Fk.

kt ← Fk(k0, Ut) (2)

where Ut represents the real-time processor occupancy of the program at time
t, which is calculated according to processor utilization utilization percentage,
i.e. Ut = utilization percentage × f .

Particularly, on the GPU side, the function of overclocking power coefficient
is as follows.

kGPU
t ← FGPU

k (k0, UGPU
t ) (3)

On the CPU side, the function of overclocking power coefficient is as follows.

kCPU
t ← FCPU

k (k0, UCPU
t ) (4)
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Key factor 2: Overclocking at both sides of the CPU and GPU must be coordi-
nated, and real-time load balancing must be considered.

In order to judge whether the program is in a load balance state dur-
ing the running process, the Load Imbalance Factor W and the threshold
γ are introduced. Load imbalance factor at time t is denoted as Wt where
Wt = UGPU−UCPU

UGPU+UCPU . As shown in Fig. 1, the program running on the CPU-
GPU heterogeneous platform may be in the load balance state (slash fill area,
|Wt| ≤ γ) or in the load imbalance state (color fill area, |Wt| > γ).

0
γ-γ

load balance area

More load on GPUMore load on CPU
W

load imbalance area load imbalance area

Fig. 1. Introduce load imbalance factor W to describe load balance area and load
imbalance area (Color figure online)

When the program is in the load imbalance area, adjust the CPU and GPU
frequencies according to the load balance adjustment function Ff to make the
program in the load balance area again.

(fCPU , fGPU ) ← Ff (fCPU , fGPU ,Wt) (5)

When W > γ, the workload on GPU side is heavier, the function Ff increases
the GPU frequency fGPU or decreases the CPU frequency fCPU , where fGPU

base ≤
fGPU ≤ fGPU

max , fCPU
base ≤ fCPU ≤ fCPU

max , as follows.
⎧
⎨

⎩

fGPU ← fGPU + ΔfGPU , if (fGPU + ΔfGPU ≤ fGPU
max )

fCPU ← fCPU − ΔfCPU , else if (fCPU − ΔfCPU ≥ fCPU
base )

(fCPU , fGPU ) unchanged, else

(6)

When W < γ, the workload on CPU side is heavier, the function Ff increases
the CPU frequency fCPU or decreases the GPU frequency fGPU . The overclock-
ing range is the same as before and the details are as follows.

⎧
⎨

⎩

fCPU ← fCPU + ΔfCPU , if (fCPU + ΔfCPU ≤ fCPU
max )

fGPU ← fGPU − ΔfGPU , else if (fGPU − ΔfGPU ≥ fGPU
base )

(fCPU , fGPU ) unchanged, else

(7)

3.2 Description of AOA

The flowchart of the Adaptive Overclocking Algorithm (AOA) is shown in Fig. 2.
Among them, the variable power upper bound factors on CPU and GPU are
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denoted as (kCPU
t+1 , kGPU

t+1 ). Based on the tth overclocking cycle CPU and GPU
usage ratio UCPU

t and UGPU
t , kCPU

t+1 and kGPU
t+1 are updated on CPU and GPU,

respectively. (corresponding to Factor 1, represented by blue and yellow colors
in Fig. 2).

The gray box part is dynamic overclocking under variable power upper bound
power control. On the basis of the normal CPU and GPU overclocking (repre-
sented by blue and yellow colors respectively), the frequency values at both CPU
and GPU are further updated according to the load balance factor Wt (fCPU

t+1 ,
fGPU
t+1 ), that is, CPU-GPU cooperative overclocking (corresponding to Factor 2,

blue and yellow mixed colors).

Fig. 2. Flow graph of the adaptive overclocking algorithm. (Color figure online)

The detailed description of the algorithm sees Algorithm 1.
Dynamic overclocking will cause additional time overhead. We evaluate the

time overhead incurred by one overclocking operation or frequency scaling oper-
ation. Manually insert N times of overclocking or frequency scaling operations,
then run the same program, and get the execution time of the program with the
N times of overclocking, denoted as T . The default time of the program without
overclocking is denoted as T0. Comparing T and T0 can obtain the additional
time overhead due to the N times of overclocking or frequency scaling opera-
tions. Finally, the time overhead for a single overclocking or frequency scaling is
calculated that is about 4 ms.
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Algorithm 1. Adaptive Overclocking Algorithm

Input: program, k0, P
CPU/GPU
base , f

CPU/GPU
base , f

CPU/GPU
max , ΔfCPU/GPU .

Output: kt, f
CPU/GPU
t (t = 1, 2, 3..., tend).

1: t ← 1, kt ← k0;
2: for each overclocking cycle t (t = 1, 2, 3, ..., tend) do

3: Sample data: U
CPU/GPU
t , P

CPU/GPU
t , f

CPU/GPU
t , Wt;

4: Output kt and f
CPU/GPU
t ;

5: Update Power Upper Bound Factor k
CPU/GPU
i+1 ←

Fk(k
CPU/GPU
0 , k

CPU/GPU
t , U

CPU/GPU
t );

6: if (P
CPU/GPU
t ≤ k

CPU/GPU
t × P

CPU/GPU
base ) then

7: f
CPU/GPU
t+1 ← f

CPU/GPU
t + ΔfCPU/GPU ;

8: else
9: f

CPU/GPU
t+1 ← f

CPU/GPU
t ;

10: end if
11: (fCPU

t+1 , fGPU
t+1 ) ← Ff ((fCPU

t , fGPU
t ), Wt);

12: end for
13: return kt, f

CPU/GPU
t

4 Experimental Results and Analysis

4.1 Experiment Environment

Heterogeneous Platform Hardware Environment. The experiments are
carried out on two CPU-GPU heterogeneous platforms, called platform A and
platform B, respectively. The specific configuration is shown in Table 1.

Table 1. Configuration parameters of platforms A and B

Environment Platform A Platform B

CPU GPU CPU GPU

Processor type Intel� Xeon E5-2600 v3 NVIDIA� Tesla K80 Intel� CoreTM i9-10920X NVIDIA� GeForce RTX 2080Ti

Frequency 2.6 GHz 575 MHz 3.5 GHz 1455MHz

Power 105W 150 W 165 W 285W

#cores 10 2496 12 4352

#CPU (#GPU) 2 4 1 2

Hyperthreading Disable – Disable –

Auto-boost Supported Supported Supported Not available

Software Environment

Dataset and Benchmark. As for data set, this article uses ImageNet [9], a very
famous data set in the field of image vision (CV). ImageNet is a recognition sys-
tem that simulates human beings and is currently the world’s largest database in
the field of image recognition. After being proposed in 2009, ImageNet triggered
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the ILSVRC (ImageNet Large-Scale Visual Recognition Challenge), the most
influential competition in the field of deep learning in the following years.

As for benchmark, this article has selected several classic CNN models [27]
that have won the previous ILSVRC competitions, including alexnet [19], resnet
[13] and vgg [28]. The specific program code is officially provided by pytorch on
GitHub [23].

Monitoring Tools. On heterogeneous platforms, the power and performance indi-
cators on CPU and those on GPU need to be monitored separately.

The power of the CPU is monitored by the dstat [1] tool. dstat allows
users to view all your system resources in real time, and provides detailed and
selective information, such as power/energy-pkg. The performance monitoring
counters (PMC) of the CPU is monitored by perf [2]. perf is an analyzer tool
that can abstract CPU hardware differences in Linux performance measurement
and provides a simple command line interface based on the perf events interface
exported by the latest version of the Linux kernel.

The performance and power of the GPU are monitored through the NVIDIA
System Management Interface (nvidia-smi [3]). nvidia-smi is a command line
utility, based on the NVIDIA Management Library (NVML), designed to help
manage and monitor NVIDIA GPU devices.

Parameter Settings. According to the AOA in Fig. 2, the parameters involved
in the paper mainly include the variable power upper bound factor k, the load
imbalance threshold γ and the frequency gear Δf . In the experiment, k0 = 1.1,
and γ = 0.2.

Table 2. Frequency gear settings of platforms A and B

Gears Platform A (MHz) Platform B (MHz)

CPU ΔfCPU GPU ΔfGPU CPU ΔfCPU GPU ΔfGPU

0 2100 – 575 – 2700 – 1350 –

1 2200 100 614 39 2800 100 1365 15

2 2300 100 653 39 3000 200 1380 15

3 2400 100 692 39 3200 200 1395 15

4 2500 100 732 40 3300 100 1410 15

5 2600 100 771 39 3500 200 1425 15

6 – – 810 39 – – – –

7 - – 849 39 – – – –

The setting of frequency gear depends on the support of CPU and GPU
hardware platform (see Sect. 4.1). For CPU frequency modulation, Intel pro-
vides the official overclocking tool XTU [16] for Intel Turbo Boost Technology.
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However, the manual mentions that XTU only supports consumer-level prod-
ucts, not enterprise-level servers. The CPU frequency is set by the ‘cpupower
frequency-set’ command.

For CPU frequency setting, Platform A uses 1350 MHz as the default CPU
frequency, and sets up five CPU frequencies at 100 MHz intervals as overclocking
options; Platform B uses 2.7 GHz as the default CPU frequency, and sets it
upwards [2.8 GHz, 3.0 GHz, 3.2 GHz, 3.3 GHz, 3.5 GHz] as CPU overclocking
options.

For GPU frequency setting, nvidia-smi provides a list of core frequencies
supported by the GPU. Platform A uses 575 MHz as the default GPU frequency,
and sets up seven GPU frequencies at an interval of about 39 MHz as overclocking
options; Platform B uses 1350 MHz as the default GPU frequency, and sets up
seven frequencies at 15 MHz intervals as overclocking options.

In summary, we set the CPU/GPU frequency modulation gear Δf in the
experiment as shown in Table 2.

Comparisons. Other methods compared to the AOA method are shown below.

default: The default frequency is fixedly set to gear 0 in Table 2.
staticmax: The staticmax frequency is fixedly set to the max gear in Table 2.
staticbest: The staticbest frequency is fixedly set by running the program at
each frequency combination once, and selecting the configuration correspond-
ing to the result with the best energy efficiency as the staticbest frequency.
auto: The automatic frequency is set by official overclocking tools, XTU [16]
for Intel Turbo Boost Technology and nvidia-smi for GPU overclocking.

4.2 AOA Overall Result

This section compares the results of AOA and default, and gives the AOA on
utilization UCPU/GPU , power PCPU/GPU , and frequency fCPU/GPU result of
platform A. In this chapter, the default CPU and GPU frequency is set to gear
0 in Table 2.

On platform A, the result of alexnet is shown in Fig. 3, the result of resnet
is shown in Fig. 4, and the result of vgg is shown in Fig. 5. The two semi-axes of
the vertical axis in the figure are both positive axes, the upper half represents
the result on the GPU side, and the lower half represents the result on the CPU
side.

Taking resnet as an example in Fig. 3. From the perspective of change trend,
due to the design of epoch in the CNN algorithm, its utilization and power reflect
periodicity in the time dimension. Comparing the results of AOA (solid black
line) and default (dashed gray), we can find that the utilization value of a single
epoch in alexnet has little change (in Fig. 3-a); but in terms of running time,
AOA is overall shorter than default. From Fig. 3-b, it can be further seen that
the change trend of power and utilization is consistent, and the power curve of
AOA is slightly higher than the default. This increase in power is caused by the
increase in frequency.
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Fig. 3. UCPU/GPU , PCPU/GPU and fCPU/GPU for alex in default frequency and AOA
on platform A.

Fig. 4. UCPU/GPU , PCPU/GPU and fCPU/GPU for resnet in default frequency and
AOA on platform A.

Figure 3-c shows the adaptive dynamic adjustment effect of AOA on fre-
quency. Corresponding to the utilization rate and power diagram, it can be found
that when the utilization rate and power increase, AOA automatically increases
the frequency according to the algorithm flow (Fig. 2). When the utilization rate
and power decrease, the AOA automatically increases the frequency. Adapt to
lower frequency.

On platform A, comparing AOA and default, the performance of alexnet is
increased by 7.8%, and the energy is reduced by about 11%; the performance of
resnet is increased by 8.3%, and the energy is increased by about 0.2%; the per-
formance of vgg is increased by 16.1%, and the energy is reduced by 2.5%. The
experimental results have reached the expected goal of the algorithm design,
which is to improve the performance under the constraint of constant total



AOA: Adaptive Overclocking Algorithm 265

Fig. 5. UCPU/GPU , PCPU/GPU and fCPU/GPU for vgg in default frequency and AOA
on platform A.

energy. It is worth noting that the reduced energy can actually be used to further
improve performance, and the overclocking frequency supported by the platform
in the experiment has reached the upper bound.

Due to space limitations, the results on platform B are shown in Table 4.
On platform B, it is difficult to increase energy efficiency because the power of
NVIDIA GeForce RTX 2080Ti increases rapidly when the frequency overclocks
slightly. Comparing AOA with default, even though the average performance is
increased by 1.5%, and the average energy is increased by about 3.5%, AOA
performs better in constraining total energy compared to max frequency.

4.3 Comparison with Other Methods

Platform a Comparison Results. This section compares the energy and
performance between AOA and other methods, including default (frequency with
gear 0), static max frequency (staticmax), static best frequency (staticbest) and
automatic overclocking (auto).

The detailed comparison result on platform A is shown in Table 3. The
calculation of Energy ‘savings’ and Time ‘improvement’ in Table 3 is as
follow:savings =

(
1 − Emethod

Edefault

)
×100%; improvement =

(
1 − Tmethod

Tdefault

)
×100%.

As for comparison with the maximum frequency, the method for determining
the maximum frequency is to set the maximum frequency on the CPU side and
GPU side respectively.

As for comparison with the static optimal frequency, the method for deter-
mining the static optimal frequency is: according to setting multiple sets of static
CPU-GPU frequencies, a set of results with the best performance under the con-
straint of not increasing the total energy is obtained. According to experimental
results, in static frequency modulation, when the frequencies on both CPU and
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GPU are set to the maximum value, the performance improvement goal can be
best met under the energy constraint.

Moreover, we compares the energy efficiency of AOA and automatic over-
clocking technology of CPU-GPU heterogeneous platforms. The method of auto-
matic overclocking is: turn on Intel Turbo Boost Technology [16] on CPU, and
turn on Nvidia GPU Boost Technology [22] on GPU.

Table 3. Comparison of AOA and other methods on platform A

AOA vs Others alexnet resnet vgg AVE

Energy (J) [savings] Default 366068.37 403126.65 438716.4 402637.14

[0.00%] [0.00%] [0.00%] [0.00%]

staticmax 339484.11 430984.6 448662.53 406377.08

[7.26%] [−6.91%] [−2.27%] [−0.64%]

staticbest 339484.11 403126.65 431870.19 391493.65

[7.26%] [0.00%] [1.56%] [2.94%]

auto 358028.78 419412.02 460568.18 412669.66

[2.20%] [−4.04%] [−4.98%] [−2.27%]

AOA 326077.16 403948.64 428037.8 386021.20

[10.92%] [−0.20%] [2.43%] [4.38%]

Time (s) [improvement] Default 888 908 1002 932.67

[0.00%] [0.00%] [0.00%] [0.00%]

staticmax 728 822 779 776.33

[18.02%] [9.47%] [22.26%] [16.58%]

staticbest 728 908 832 822.67

[18.02%] [0.00%] [16.97%] [11.66%]

auto 723 755 779 752.33

[18.58%] [16.85%] [22.26%] [19.23%]

AOA 819 833 841 831.00

[7.77%] [8.26%] [16.07%] [10.70%]

Freq (MHz) [fCPU ,fGPU ] Default [2100,575] [2100,575] [2100,575] –

staticmax [2600,849] [2600,849] [2600,849] –

staticbest [2600,849] [2100,575] [2400,771] –

Auto [Turbo Boost, GPU Boost]

AOA Dynamic adjust

Platform B Comparison Results. The detailed comparison result on plat-
form B is shown in Table 4.
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Table 4. Comparison of AOA and other methods on platform B

AOA vs Others alexnet resnet vgg AVE

Energy (J) [savings] Default 140507.8 172697.6 329068 214091.13

[0.00%] [0.00%] [0.00%] [0.00%]

staticmax 141491.1 186065.9 338351 221969.33

[−0.70%] [−7.74%] [−2.82%] [−3.75%]

auto Not available

AOA 143051.8 179545.8 342651 221749.53

[−1.81%] [−3.97%] [−4.13%] [−3.30%]

Time (s) [improvement] default 606 532 1106 748.00

[0.00%] [0.00%] [0.00%] [0.00%]

staticmax 588 522 1069 726.33

[2.97%] [1.88%] [3.35%] [2.73%]

auto Not available

AOA 600 533 1077 736.66667

[0.99%] [−0.19%] [2.62%] [1.14%]

Freq (MHz) [fCPU , fGPU ] Default [2700,1350]

staticmax [3500,1455]

Auto Not available

AOA Dynamic adjust

Similar to the experimental setup of platform A, we also compared the effects
of default, auto, staticmax and AOA of CNNs on platform B. We got the best
results when using vgg as a neural network model. Compared with the bench-
mark setting, AOA has a performance improvement of 2.62% but caused a 4.13%
increase in energy consumption; on the alexnet network, AOA reduces energy
by 1.81%, but it brings a 1% performance loss; AOA does not work well on
resnet and does not cause performance improvement, but it increases energy
consumption by 3.97%.

As a result, the energy efficiency optimization effect of the AOA algorithm on
platform A is better than that on platform B. Besides CPU itself, there are many
factors that determine the performance of the CPU, such as the speed of the hard
disk, the size of the memory, and the data throughput of the interconnection net-
work, are all important factors that restrict the performance of the processor. As
a server platform, platform A has higher reliability and performance of matching
facilities than platform B, which is a computer host. Therefore, the performance
improvement from overbanding is better than that of platform B. And the CPU
and GPU power consumption of platform A is lower than that of platform B, as
shown in the Table 1, the impact of overclocking on power consumption is lower
than that of platform B. Therefore, the energy efficiency optimization effect of
platform B is not as good as that of platform A.
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5 Discussion for Key Factors

This section considers the evaluation of the key factors involved in AOA (see
Sect. 3.1). Consider the energy constraint and performance improvement effect
of the AOA algorithm when the dynamic power upper limit factor k and the
load imbalance factor W change.

5.1 Impact of Factor 1: The Power Upper Bound Must Be
Dynamic, Not Static

This section shows that the dynamic variable power upper limit k is necessary
to meet the constraint of no increase in total energy. The variable power upper
limit factor defined by AOA is based on the initial value k0, and changes within a
certain range according to the variable power upper bound function Fk according
to the Ut obtained during the sampling period. The result is shown in Table 5.

Table 5. Evaluation on Parameter k

Parameter k alexnet resnet vgg

Energy(J) [savings] Default 366068.4 403126.6 438716.4

[0.00%] [0.00%] [0.00%]

k = 1.1 382594.0 437027.9 457669.4

[−4.51%] [−8.41%] [−4.32%]

k = 1.15 362765.6 436204.3 458734.5

[0.90%] [−8.20%] [−4.56%]

aoa 326077.2 403948.6 428037.8

[11.92%] [−0.20%] [2.44%]

Time(s) [improvement] Default 888 908 1002

[0.00%] [0.00%] [0.00%]

k = 1.1 862 861 825

[2.70%] [4.19%] [16.67%]

k = 1.15 819 833 841

[2.93%] [5.18%] [17.66%]

aoa 837 835 816

[7.77%] [8.26%] [16.07%]

5.2 Impact of Factor 2: Overclocking at both Ends of the CPU
and GPU Must Be Coordinated, and Real-Time Load Balancing
Must be Considered

The load imbalance factor W defined by AOA mainly affects the result of AOA
frequency modulation through the function Ff . According to the formula 5 of
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the function Ff , when the maximum/small frequency changes, it will affect the
frequency modulation direction of AOA for load imbalance. In the experiment,
the default frequency is always used as f

CPU/GPU
min . When f

CPU/GPU
max is set to a

small value, f
CPU/GPU
t is easier to reach the upper limit judgment condition, and

then the direction of further frequency modulation is changed from increasing
the local frequency value to decreasing Frequency value at the other end. The
influence of the maximum frequency change is shown in Table 6.

Table 6. Evaluation on parameter fmax

Parameter [fCPU
max ,fGPU

max ] alexnet resnet vgg

Energy(J) [savings] Default 366068.4 403126.6 438716.4

[0.00%] [0.00%] [0.00%]

AOA[2400,771] 395969.9 432592.5 454511.72

[−8.16%] [−7.31%] [−3.60%]

AOA[2600,849] 326077.2 403948.6 428037.8

[11.02%] [−0.20] [2.44%]

Time(s) [improved] Default 888 908 1002

[0.00%] [0.00%] [0.00%]

AOA[2400,771] 898 867 824

[−1.13%] [4.51%] [17.76%]

AOA[2600,849] 819 833 841

[7.77%] [8.25%] [16.07%]

6 Conclusion

Although GPUs have been used to accelerate various convolutional neural net-
work algorithms with good performance, the demand for performance improve-
ment is still continuously increasing. CPU/GPU overclocking brings opportuni-
ties for further performance improvement in the CPU-GPU heterogeneous plat-
form. How to effectively constrain the total energy to remain roughly unchanged
during the CPU/GPU overclocking is a key issue in designing adaptive over-
clocking algorithms.

This paper proposes an Adaptive Overclocking Algorithm (AOA) on the CPU-
GPU heterogeneous platform to achieve the goal of performance improvement
while the total energy remains roughly unchanged. AOA uses the function Fk

to describe the variable power upper bound, which embeds real-time CPU and
GPU usage information of the program, and introduces a load imbalance factor
W to realize the CPU-GPU coordinated overclocking. Through the verification
of a convolutional neural network program on two CPU-GPU heterogeneous
platforms, AOA achieved an average of 10.7% performance improvement, while
4.4% energy saved on platform A. Also, we compared AOA with other three
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methods, including programs with static max frequency, programs with static
best frequency and automatic overclocking. The comparison results show that
AOA performs the best with regard to the goal of improving performance while
constraining total energy.
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