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Abstract—In this work the impact of age of information (AoI)
is studied from the perspective of networked control systems
(NCS), i.e., control loops that are closed over networks. We
formulate the estimation problem of a linear time invariant
(LTI) system and show that related performance metrics can
be optimized by minimizing age-penalty functions. From the
variety of possible penalties that make sense from an NCS point
of view, we derive a general age-penalty minimization problem.
We characterize properties of penalty functions that are trivial
or non-trivial to solve and show that for non-trivial age-penalties,
the optimal transmission policy over a single link with packet loss
is AoI-threshold based. Then, we propose an algorithm to find
the optimal threshold. Simulation results verify that threshold
policies with optimal threshold can serve to optimally solve a
variety of NCS related estimation problems.

I. INTRODUCTION

The concept of age of information (AoI) has been recently

introduced to capture application layer delay experience in

a precise fashion [1], [2]. In contrast to per-packet delay,

information age refers to the elapsed time since the generation

of the latest received information at the receiver side and can

incorporate the effect of not transmitting a packet or packet

loss on end-to-end delay. As the metric is rather new and less

understood than, e.g., delay, it has raised significant interest

in the research community.

Since the seminal works on AoI [1], [2], research interest

has been on the different related aspects, for example the

impact of queuing on the average AoI [1]–[6], the impact

of multi-hop transmissions [7], [8] and packet drops [9].

All together have led to a good general understanding of

the metric and related options. More recently, the focus is

shifting towards scheduling problems for AoI minimization

[8], [10]–[12]. The most often seen approach here is to target

a weighted-sum average AoI.

The use of AoI metric is typically motivated from the

context of internet of things (IoT) and cyber physical systems

(CPS), where timeliness of information at the receiver side is

crucial. The timeliness requirement is often used to motivate

that AoI, or a weighted average thereof, needs to be decreased.

However, clean derivations that weighted AoI is an expressive

metric for IoT or CPS are mostly missing. Alternatives to

weighted average AoI do exist: In [13] and its journal version,

[14], Sun et al. proposed the use of a general age-penalty

function, which captures the dissatisfaction of the communi-

cation sink with a certain AoI. For random networking delays

with given distributions, the authors show that the optimal

transmission times result in a threshold policy. Kosta et al.

[15] proposed the use of a cost of update delay (CoUD) metric

and derived closed form expressions for the expected CoUD

through M/M/1 queues.

While the above works capture a general age penalty,

which is assumed non-negative and non-decreasing, there is

no comprehensive intuition on the exact type of age-function

that make sense for IoT and CPS specific problem classes.

This gap is partly closed by the works [16], [17] of Sun et

al. and Sun and Cyr from different perspectives. In [16], the

authors investigated sampling strategies for remote estimation

of a Wiener process with random transmission delays. While

they showed the estimation error is indeed a function of AoI,

they also motivated that only in special cases, minimization of

the estimation error is transferable to directly minimizing the

average AoI. In [17], the authors investigated an alternative

definition of information freshness, which is the mutual in-

formation among transmitter and receiver. They then showed

that the mutual information can be expressed as function of

AoI and showed the optimal sampling strategy to be threshold

based. Interestingly, maximization of mutual information leads

to minimization a non-positive and non-decreasing penalty

function. This counters the intuitive assumption that AoI

penalties should be non-negative.

A. Contribution of This Work

Concluding on the existing literature, we observe that while

AoI has raised some research interests, the clear motivational

link from the IoT and CPS scenario to the AoI metric is mostly

missing, with exceptions being [16], [17]. We aim at this gap

by re-motivating AoI from a networked control systems (NCS)

perspective.

We establish an estimation problem from the perspective

of control theory and show that related performance metrics

can be expressed as nonlinear penalty functions of AoI.

Due to the variety of possible penalty functions, we ask

the question which impact the penalty function itself has on

AoI optimization. We divide the resulting class of penalty

functions into trivial functions, which we find to lead to the



solution of never sampling or never transmitting packets, and

non-trivial functions. Then, we investigate optimal scheduling

policies for non-trivial penalty minimization over a single link

with packet loss. We find the optimal policy to be threshold

based and establish a binary search algorithm for the optimal

threshold. Finally, we show with simulations that by using

appropriate penalty functions, different estimation problems

can be optimally solved.

We note that compared with the existing scheduling works,

our problem targets scheduling for AoI penalty instead of

weighted average AoI, whereas compared to the existing

works with AoI penalty, it targets scheduling instead of packet

generation.

II. ESTIMATION PROBLEMS AND AOI

In this section, we first introduce the estimation problem

of a single non-scalar stochastic linear time invariant (LTI)

system and then express the estimation objective as a function

of AoI. The targeted system is depicted in Figure 1. Consider

a plant P that could refer to, e.g., an environment or process

being monitored by sensors or a robot whose state needs to

be estimated. P’s state evolves over time according to the

following stochastic discrete time dynamics

P : xs[t+ 1] = Axs[t] +ws[t], (1)

where xs[t] ∈ R
n represents the system state at the source

at slotted time t ∈ N+, ws[t] ∈ R
n denotes an exoge-

nous stochastic Gaussian disturbance with zero mean and

covariance Σ acting on the state dynamics of the source, and

A ∈ R
n×n is the system matrix. We assume the system matrix

A can be selected freely, i.e. the system can be stable or

unstable in open-loop. The system is equipped with a unit

installed at the source including a sensor, to sample the state

of the plant P , and a transmission decision maker that decides

at each time-step to either send the sample for transmission or

not. The decision variable of the transmission decision maker

at a time-step t, denoted by δs[t], is computed based on a

transmission policy µ : R
n 7→ {0, 1} and can be stated as

follows:

δs[t] = µ(xs[t]) =

{

1, xs[t] is sent for transmission,

0, otherwise.
(2)

The samples that are sent for transmission go through a time-

slotted communication network. Each transmission has a cost

for the system, denoted by D, and the success probability of

receiving a sample by the destination is ps ∈ [0, 1]. That is, the

communication channel is modeled by an erasure channel with

erasure probability 1−ps. Therefore, we introduce the random

variable γ[t] ∈ {0, 1} as the delivery indicator such that γ[t] =
1 with probability ps. That is, a data packet including xs[t] will

be received by the destination only if δs[t] = 1 and γ[t] = 1.

At the destination, an estimator receives the data samples

and estimates the system state. Before deriving the state

estimation and the resulting estimation error, let us now

introduce the general definition of AoI. Consider a single

communication process where K = {t1, ..., ti, ...}, ti+1 ≥ ti,

BSSensor

P
Success prob. ps

Transm. Cost D

Fig. 1. A sensor observes the state xs[t] of the plant P , which can refer
to, e.g., a robot or an environment process. The state is transmitted over a
single link with success probability ps and transmission cost D. At the BS,
an estimate x̂s[t] of the plants’ state is generated from the received samples.

represents a sequence of time instances when data packets

including the state samples are generated at the source and

T = {t′1, ..., t
′
i, ...}, t′i+1 ≥ t′i, denoting a sequence of instants

when those data packets are received at the destination. The

instances ti can be treated as arrival process to the network

and t′i as departure, where both can follow an arbitrary process

satisfying t′i ≥ ti, ∀i. We denote by Si , t′i − ti the total

service time of the network, i.e., the time between packet gen-

eration and reception, including all queuing and transmission

delays, and by Yi = ti − ti−1 the inter arrival time. Define

K(T ) = {ti ∈ K : ti ≤ T} to be the set of sampling times

within a considered interval [0, T ], and note that |K(T )| is the

number of transmissions that fall into the observed interval.

Moreover, s[t] = sup{ti ∈ K(T ) : ti + Si ≤ t} denotes

the time stamp of the latest received data packet before time-

step t. Using these definitions, the AoI at time t is defined as

∆[t] , t − s[t] [1], [2]. The most attractive property of ∆[t]
is that as long as no packet is received, s[t] remains constant

and hence ∆[t] increases linearly. However, when a packet i
is received at t := t′i, s[t] is instantaneously reset to ti and

∆[t] = t′i − ti = Si holds. Both effects together create a

sawtooth curve evolution of ∆[t], that is depicted in most of

the available literatures, e.g. [1], [2].

To fully characterize the estimation problem and the estima-

tion objective, we need to determine the information available

at the source, i.e., the transmission unit, and at the destination,

i.e., the estimator. Denoted by Is[t] and Id[t], the information

available at the source and destination are respectively as

follows:

Is[t]={xs[t], δs[0], . . . , δs[t− 1], γ[0], . . . , γ[t− 1],∆[t− 1]}

Id[t]={δs[t], γ[t],∆[t],xs[t−∆[t]]}.

The estimator can then compute the state estimation given by

x̂s[t] = E [xs[t]|Id[t]].
Assuming that the latest received state information at the

destination is xs[t−∆[t]], we have from (1)

xs[t] = A
∆[t]

xs[t−∆[t]] +

∆[t]
∑

r=1

A
r−1

ws[t− r], (3)



x̂s[t] = E [xs[t]|Id[t]] = A
∆[t]

xs[t−∆[t]]. (4)

The estimation error can then be computed straightforwardly

as follows:

es[t] =

∆[t]
∑

r=1

A
r−1

ws[t− r]. (5)

It can be seen from the estimation error dynamics that its

dependency on the AoI is tightly coupled with the plant’s

stability properties, i.e., if P is stable (all the eigenvalues of the

A matrix lie within the unit circle) then the estimation error

increases slower w.r.t. to the increase of the AoI and has an

upper bounded norm in expectation, i.e., becomes insensitive

to increasing AoI asymptoticly. This is straightforward to

show noting that AoI appears as the exponent of the A

matrix. Otherwise, if P is an unstable plant, i.e. if the spectral

radius of its corresponding A matrix is larger than one,

then increasing AoI results in an ever increasing estimation

error. This equivalently means that as time goes forward, the

error growth rate w.r.t. AoI increases for unstable plants, and

decreases for stable ones where it asymptoticly stops to grow

for t→ ∞. The conclusion is that the estimation error in (5)

is an increasing convex function w.r.t. to AoI if the plant is

unstable and an increasing concave function of the AoI if the

plant is stable.

III. A PENALTY PERSPECTIVE ON AOI

From an estimation problem perspective, it makes sense to

minimize the mean-square norm of es[t], which is given by

E{‖es[t]‖
2
2} = E{‖

∆[t]
∑

r=1

A
r−1

ws[t− r]‖22} = f(∆[t]).

Observe that the middle term is an increasing function f(∆[t])
of AoI and can be treated as penalty to be minimized.

However, it is not the only possible penalty function to be

used. Another intuitive goal would be to limit the probability

that the error norm surpasses a threshold θ. Because the error

is a sum of multi-variate Gaussian random variables with zero

mean, this probability is increasing with AoI and leads to an

AoI penalty as Pr{‖es[t]‖2 > θ} = f(∆[t]). We can further

constrain the excess probability, demanding Pr{‖es[t]‖2 >
θ} ≤ η. Because Pr{‖es[t]‖2 > θ} is increasing w.r.t. AoI,

the expected excess rate is a penalty function of the form

E{✶{Pr{‖es[t]‖2 > θ} > η}} = E{✶{∆[t] > K}} for an

appropriately chosen K.

The variety of options for AoI penalties leads us to the

task of investigating the impact of such penalties on AoI

optimization in general, which is studied in the following.

A. Expression for Expected AoI Penalty

Consider an age-penalty function f(∆[t]) = f(t−s[t]) that

captures the level of dissatisfaction of the sink with respect

to the current AoI. We assume that f(∆[t]) is a mapping

f : R 7→ R with f(t) = 0 ∀t < 0, but apart from that we

make no further restrictions on f at this point. Because ∆[t]
has a sawtooth form, this greatly impacts f(∆[t]), potentially

leading to continuity breaks at all reception instances t′i.
Examples for penalty functions that we can imagine are shown

in Figure 2, together with the time evolution of f(∆[t]) for a

given sequence of ti and t′i.
We want to derive an expression for the infinite time-

horizon average age-penalty. In analogy to [1], [2], this can

be done from the geometric perspective shown in Figure 2 to

be the time-averaged sum of values of f(t). By using the time

intervals denoted in the figure and considering a time interval

between [0, T ], the average penalty can be obtained as

F (T ) =
1

T

T−1
∑

t=0

f(t) =
Q0 +

∑|K(T )|
i=1 Qi +Q′

T
, (6)

where, Q0 denotes the sum over the first truncated interval,

and Q′ is the sum over the last remaining interval. For i ≥ 1,

the aggregate sum Qi can be written as:

Qi =

t′i−1
∑

t=t′
i−1

f(t− ti−1)

=

t′i−1
∑

t=ti−1

f(t− ti−1)−

t′i−1−1
∑

t=ti−1

f(t− ti−1)

=

t′i−ti−1−1
∑

τ=0

f(τ)−

t′i−1−ti−1−1
∑

0

f(τ)

= F (t′i − ti−1)− F (t′i−1 − ti−1), (7)

where F (t) =
∑t−1

t=0 f(t). Now, by using that Si = t′i− ti and

Yi = ti − ti−1, we have

Qi = F (t′i − ti + ti − ti−1)− F (t′i−1 − ti−1) (8)

= F (Yi + Si)− F (Si−1). (9)

Finally, following the approach of [2], by letting T →
∞ and using the notion of effective arrival rate λ =
limT→∞|K(T )|/T , we get that

F = lim
T→∞

F (T ) = lim
T→∞

|K(T )|

T

1

|K(T )|

|K(T )|
∑

i=1

Qi

= λE{Qi} = λE{F (Y + S)} − λE{F (S)}, (10)

where Y and S are random variables with probability distri-

butions matching those of the inter-arrival times Yi and the

network service times Si, respectively. We can now use the

general result of queuing theory that λ = 1
E{Y } . Plugging this

into (10) yields:

F =
E{F (Y + S)} − E{F (S)}

E{Y }
.

B. Trivial and Non-Trivial Age-Cost Functions

In many cases, the sampling times ti and reception times

t′i can be influenced by implementing sampling policies for

ti or scheduling and queuing strategies for t′i. Indirectly, this

can be used to influence Y and T , leading to optimization

problems either for the source or the network. In this section,
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Fig. 2. Possible penalty functions: (a) f(∆) = eα∆, (b) f(∆) = e−α∆ and (c) f(∆) = ✶{∆ ≥ K}. Given in the figure are examples of the packet
generation times ti, reception times t′

i
and the evolution of f(t − ti) in for discrete times. The vertical, dashed lines indicate the borders of intervals used

in the derivation flow.

we identify age-penalty functions that are trivial to optimize

and, in reaction, conclude on properties of non-trivial age-

penalty functions, which are of course the cases of interest.

At this point, it is worth noting that in literature, the penalty is

typically assumed non-decreasing and non-negative [13]–[15].

Let’s assume for an instant that we have full control over

all time instances ti and t′i and no limitations are made except

for ti ≤ t′i ∀i. Then we make the following observations:

Proposition 1 (Trends for non-decreasing f(τ)): If f(τ) is

non-decreasing ∀τ , then the optimal choice for sampling times

ti is ti → t′i, ∀i and the optimal choice for reception times is

such that t′i → t′i−1, ∀i.
Proof: The proof is given in Appendix A.

Proposition 2 (Trends for non-increasing f(τ)): If f(τ) is

non-increasing ∀τ , then the optimal choice for reception times

t′i is t′i → ∞, ∀i, while the optimal choice of transmission

times is ti → −∞, ∀i.
Proof: The proof can be argued analog to that of Propo-

sition 1.

Of course, in reality the ti and t′i can not be chosen

arbitrarily, i.e., we do not have full control over them and

sometimes even must assume them given according to an

exogenous process. However, Propositions 1 and 2 give the

view that if f(τ) is non-decreasing, packet sampling should

be as late as possible prior to packet reception and reception

should be with as large frequency as possible. On the other

hand, if f(τ) is non-increasing, then packets may be infinitely

delayed, which can be easily realized, e.g., by dropping the

packets at the sink. We conclude that the core property that

leads to non-trivial solution is a non-decreasing property of

f(τ). While this seems intuitive at first glance, it slightly

opposes the penalty functions found in literature, which are

non-decreasing and non-negative [13]–[15]. Our core result

however is that non-negativity of f(τ) does not significantly

change the problem properties, as the complicating trends are

created already by assuming monotonic increasing functions,

while monotonic decreasing functions suffice to make solution

trivial.

We further remark that the results of Propositions 1 and

2 can be easily adapted when restricting ti ∈ [ai, bi] and

t′i ∈ [a′i, b
′
i], i.e. to time-allowed intervals, respectively. This

means that penalty functions with changing monotonicity can

be divided into a sequence of intervals with fixed monotonicity,

leading to the particular result that as long as the AoI is in

an interval of decreasing monotonicity, there is no need for

transmission.

IV. AGE-COST MINIMIZATION FOR SINGLE LINKS

We now return to the estimation problem of Section II and

map it to an AoI penalty minimization problem for a non-

decreasing AoI penalty f(∆[t]), which may comply with any

of the penalties we have derived above. We assume that the

source samples a new packet upon every transmission, which

yields an age-optimal sampling according to Proposition 1.

As the source has full knowledge, we have ∆s[t] = 0 ∀t.
If it decides to transmit and the transmission succeeds, then

the AoI at the sink, i.e. the estimator, reduces to ∆d[t] :=
∆s[t − 1] + 1 = 1, to account for the one-slot transmission

delay. If the transmission fails or the node does not transmit,

the AoI at the sink increases by one, i.e., ∆d[t] = ∆d[t−1]+1.

A. Problem Formulation

Given this set-up, the target is to minimize the infinite time-

horizon age penalty together with communication cost, i.e.,

U = lim
T→∞

1

T

T−1
∑

t=0

E{f(∆d[t]) + δs[t]D}. (11)

The problem is formulated as average cost per stage problem

[18]. For this, define the network state to be ∆d[t], the possible

actions δs[t] ∈ {0, 1} and the cost per state g(∆d[t]) =
f(∆d[t]) + δs[t]D, respectively. The state evolves according

to the equation ∆d[t+ 1] = ψ(∆d[t], δs[t], γ[t]), where

ψ(∆d[t], δs[t], γ[t]) =

{

1, if δs[t] = 1 and γ[t] = 1

∆d[t] + 1, otherwise.

The goal is now to find a transmission policy, i.e., a mapping

µ : N+ 7→ {0, 1} that defines a law for δs[t] = µ(∆d[t]) and

that solves the problem

min
µ∈Π

lim
T→∞

1

T

T−1
∑

t=0

E{f(∆d[t]) + µ(∆d[t])D}, (12a)

∆d[t+ 1] = ψ(∆d[t], µ(∆d[t]), γ[t]), (12b)

γ[t] ∼ B(ps) ∀t ∈ N, ∆d[0] = ∆0, (12c)



where Π is the set of all admissible policies and B(ps) denotes

the Bernoulli distribution with success probability ps.

B. Optimal Policy via Dynamic Programming

Problem (12) can be solved with dynamic programming

[18]. With this technique, each state is associated with a

value, given by the value function J(∆d). It is shown that if

J(∆d) = J∗(∆d) is chosen correctly, then the optimal policy

µ∗ satisfies the Bellman-Equation [18]:

J∗(∆d) = g(∆d) + E{J∗(ψ(∆d, µ
∗(∆d)))}, ∀∆d. (13)

As shown in [18], the optimal value function can be derived

by the iterative procedure called value iteration. In this, a

sequence of value functions Jk(∆d) is created according to

Jk+1(∆d) := min
µ∈Π

{g(∆d) + E{Jk(ψ(∆d, µ(∆d)))}} , ∀∆d,

(14)

which converges as limk→∞ Jk = J∗ for any J0. The optimal

policy is found as by-product from the argument minimizing

(14) for k → ∞. Equation (14) can be stated explicitly in

different forms as:

Jk+1(∆d) = min
µ∈Π

{f(∆d) + E{Jk(ψ(∆d, µ(∆d)))}}

(1)
= f(∆d) + min

δs∈{0,1}
{(1− δs)Jk(∆d + 1)

+δs(psJk(1) + (1− ps)Jk(∆d + 1) +D)}

= f(∆d) + min {Jk(∆d + 1),

psJk(1) + (1− ps)Jk(∆d + 1) +D} (15)

= f(∆d) + Jk(∆d + 1)

+ min
δs∈{0,1}

{δs [ps(Jk(1)− Jk(∆d + 1)) +D]} . (16)

In step (1) we use the fact that µ maps each state to a δs ∈
{0, 1} and for each, the expectation is explicitly written out.

We now start by establishing a monotonicity property of J∗:

Lemma 1: It holds that J∗(∆d+n) ≥ J∗(∆d) ∀n,∆d ≥ 0.

Proof: We prove the claim by induction. Choose

J0(∆d) = f(∆d) and observe that J0(∆d + n) ≥ J0(∆d)
∀n,∆d ≥ 0 holds because f(∆d) was assumed non-

decreasing. Now assume that, for any k, Jk(∆d+n) ≥ Jk(∆d)
∀n,∆d ≥ 0 is true. Then all terms in the minimum of

(15) are non-decreasing with ∆d, so the minimum operation

itself produces a non-decreasing function w.r.t. ∆d. As f(∆d)
is also assumed non-decreasing, Jk+1(∆d) is the sum of

non-decreasing functions and hence non-decreasing itself. By

taking the limit k → ∞, the property transfers to J∗.

We can now narrow down the form of the optimal policy:

Proposition 3: The optimal policy µ∗ is a stationary thresh-

old policy of the form µ∗(∆d) = ✶{∆d ≥ ∆
∗
} for an optimal

age-threshold ∆
∗
∈ N+.

Proof: It is comprehensively discussed in numerous math-

ematical literature that the optimal policy for the average

cost problem is stationary under three mild conditions [19,

Theorem 3]; 1) the problem should be well-defined, i.e. not

trivial, 2) the optimal policy should exist, and 3) the state-space

transition between every two states should be possible in finite

f(1) f(2) f(3) f(4) · · ·

∆d = {1, 2, 3, ...}

1

+0

1

+0

1− ps

+D

1− ps

+D

δs = 1
ps

+D ps

+D

Fig. 3. State transitions and cost per state of stochastic shortest path problem
with a threshold policy µ(∆d) = ✶{∆d ≥ 3}. Each node corresponds to an
AoI state. Reaching a node induces the cost of f(∆) as shown in the nodes.
Traversing an edge corresponds to switching a state, which happens with the
probability as given above the edge, and induces a cost shown below the edge.

expected time and cost. All these conditions are satisfied in the

problem (12) because first it is defined on a measurable space,

and second it can be shown that the estimation error (5) has a

continuous probability transition function over its uncountable

state space, is irreducible, and positive recurrent, resulting in

asymptotic converges for the estimation error to a bounded set

under the transmission policy (2), (Detail derivations of these

results are, however, out of scope of this paper.). Therefore,

the optimal policy µ∗ is stationary. By (16), µ∗(∆d) = 1
if and only if ps(Jk(1) − J∗(∆d + 1)) + D ≤ 0. Assume

that µ∗(∆d) = 1, then because J∗(∆d) is non-decreasing, it

follows that ps(Jk(1)− J∗(∆d +1+ n)) +D ≤ 0 and hence

µ∗(∆d+n) = 1 ∀n ≥ 0. Now assume that µ∗(∆d) = 0, which

induces ps(Jk(1) − J∗(∆d + 1)) + D ≥ 0. Again because

J∗(∆d) is non-decreasing, it must hold that µ∗(∆d − n) = 0
∀0 ≤ n ≤ ∆d − 1. As result, the optimal policy must be a

threshold policy as claimed.

C. Properties of the Optimal Threshold

For the remaining parts of this work, we denote by U(∆)
the expected time-average cost for a threshold policy with

threshold ∆. It remains to find the optimal threshold ∆
∗
.

To do so, we leverage the result of [18], according to which

an average cost-per-stage problem can be cast to a stochastic

shortest path problem if there is a recurrent state, i.e., a state

such that at any point in time, the probability that it will be

(re-)visited at some time instant in the future is one. Threshold

policies on our given problem induce a specific pattern how

the system moves through the state-space, which is depicted

in Figure 3. It can be seen that under the assumption of a

threshold policy as stated in Proposition 3, ∆d = 1 is recurrent

for any ps > 0, as is visited after each successful transmission



with probability one. It can be shown that [18]:

U(∆) = lim
T→∞

1

T

T−1
∑

t=0

E{f(∆d[t]) + µ(∆d[t])D} =
E{Cµ}

E{Nµ}
,

where, E{Cµ} =

t′i+1−1
∑

t=t′
i

E{f(∆d[t]) + µ(∆d[t])D | µ, ps},

E{Nµ} = E{t′i+1 − t′i | µ, ps}.

In fact, E{Nµ} denotes the expected time between two

consecutive visits of ∆d = 1, and E{Cµ} is the expected

aggregated cost in this interval. Considering the state evolu-

tion shown in Figure (3), we can derive explicit expressions

E{Nµ} and E{Cµ} given ∆, as follows

E{Cµ | ∆} =

∆−1
∑

∆=1

f(∆) +

∞
∑

r=0

(1− ps)
r
[

f(∆ + r) +D
]

,

E{Nµ | ∆} = ∆− 1 +

∞
∑

r=0

(1− ps)
r = ∆− 1 +

1

ps
,

where we define 00 = 1 for ps = 1, r = 0, respectively. Using

these statements, we make the following observations:

Proposition 4: Given ps > 0, U(∆) <∞ is bounded ∀∆ ≥
1 if and only if

∞
∑

r=0

(1− ps)
rf(r) <∞. (17)

Proof: For ps > 0, the denominator E{Nµ} is finite for

any ∆ ≥ 1, so U(∆) < ∞ holds if, and only if E{Cµ | ∆}
is finite. This is the case if, and only if, f(∆) < ∞ ∀∆ and
∑∞

r=0(1 − ps)
rf(∆ + r) is finite. Due to monotonicity of

f(∆), for any threshold 1 ≤ ∆ ≤ ∞ it holds that

∞
∑

r=0

(1− ps)
rf(∆ + r) ≥

∞
∑

r=0

(1− ps)
rf(r) = (18)

∆−1
∑

r=0

(1− ps)
rf(r) + (1− ps)

∆
∞
∑

r=0

(1− ps)
rf(∆ + r). (19)

Thus, if we assume that
∑∞

r=0(1 − ps)
rf(r) is infinite, the

same holds for
∑∞

r=0(1−ps)
rf(∆+r) by (18) and hence for

E{Cµ | ∆}. On the other hand, if it is finite, the same must

hold for
∑∞

r=0(1 − ps)
rf(∆ + r), otherwise a contradiction

would be formed from the second term of (19). If f(∆) = ∞
for any ∆, the above terms are all unbounded, respectively.

Proposition 4 induces that, for some age-penalty functions

f(∆) and ps, the expected cost can actually become un-

bounded. This is particularly the case for f(∆) = exp(α∆)
if α is too large. In contrast, the expected AoI can be seen to

be bounded at any times.

Proposition 5: Consider two thresholds ∆ and ∆+ 1. The

expected cost U(∆) ≥ U(∆ + 1) if, and only if,

1

∆





∆
∑

∆=1

f(∆) +
D

ps



 ≥ ps

∞
∑

r=0

(1− ps)
rf(∆+ 1+ r). (20)

Proof: The proof is given in Appendix B.

Note that the term D/ps =
∑∞

r=0(1 − ps)
rD is the

expected transmission cost due to packet losses and does

not change independent of the value of ∆. So equation (20)

can be interpreted such that the left hand side contains the

fixed, average cost per stage up to stage ∆, whereas the

right hand side denotes the expected cost from all visits of

stages larger than ∆. If the latter is lower than the former,

then U(∆) ≥ U(∆ + 1) and it makes sense to increase the

threshold. Otherwise, it makes sense to decrease it.

Proposition 6: Let ∆
∗

be the optimal threshold. For any

∆ ≤ ∆
∗
, it holds that U(max{∆ − 1, 1}) ≥ U(∆), whereas

for any ∆ > ∆
∗
, it holds that U(∆) ≥ U(∆− 1).

Proof: The restriction to max{∆ − 1, 1} is used solely

to ensure that U(∆) is defined. By re-formulating (20), we

obtain that U(∆) ≥ U(∆ + 1) if, and only if,

Υ(∆)−
D

ps
≤ 0, (21)

where Υ(∆) = ∆ps
∑∞

r=0(1−ps)
rf(∆+1+r)−

∑∆
∆=1 f(∆).

We can bound the terms Υ(∆) as:

Υ(∆) = ∆ps

∞
∑

r=0

(1− ps)
rf(∆ + 1 + r)−

∆
∑

∆=1

f(∆)

(1)

≥∆ps

∞
∑

r=0

(1− ps)
rf(∆ + r)−

∆
∑

∆=1

f(∆)

(2)

≥ (∆− 1)ps

∞
∑

r=0

(1− ps)
rf(∆ + r) + f(∆)−

∆
∑

∆=1

f(∆)

=(∆− 1)ps

∞
∑

r=0

(1− ps)
rf(∆ + r)−

∆−1
∑

∆=1

f(∆) = Υ(∆− 1).

Step (1) follows from monotonicity of f(∆) and (2) from

the equality
∑∞

r=0(1− ps)
rf(∆) = f(∆)/ps, in combination

with f(∆ + r) ≥ f(∆) ∀r ≥ 0. The result is that Υ(∆) is

non-decreasing in ∆. Note that it is also non-negative, because

∆ps

∞
∑

r=0

(1− ps)
rf(∆ + r) ≥ ∆f(∆ + 1) ≥

∆
∑

∆=1

f(∆).

The only reasons for Υ(∆) − D/ps to be negative thus are

a large enough D or low enough ps. On the other hand, the

terms D/ps are constant, such that the left hand side of (21)

is non-decreasing. So if there is a finite, optimal ∆
∗
≥ 1,

then by Proposition 5, U(∆) is non-increasing ∀∆ ≤ ∆
∗

and

non-decreasing ∀∆ ≥ ∆
∗
.

We can use Proposition 6 to decide whether a threshold is

above or below the optimal one. In particular, a corollary is

that we can identify ∆
∗

as

∆
∗
= inf

{

∆ ≥ 1 : Υ(∆) ≥ D/ps
}

. (22)

This result leads to intuitive conclusions: For example, if

D = 0 the optimal threshold must always be ∆
∗

= 1,



Algorithm 1 Binary Search for ∆
∗

1: Set LB = UB = 1
2: while Υ(UB) < D/ps do

3: LB := UB

4: UB := 2 ∗ UB

5: end while

6: ∆
∗
= ⌈(LB + UB)/2⌉

7: while ∆
∗
< UB do

8: if Υ(∆
∗
) < D/ps then

9: LB := ∆
∗

10: else

11: UB := ∆
∗

12: end if

13: ∆
∗
= ⌈(LB + UB)/2⌉

14: end while

15: Output: ∆
∗

while if f(∆) = 0 ∀∆ ≥ 1 but D > 0, it is unbounded,

i.e., ∆
∗
= ∞. In some cases we can use (22) to derive ∆

∗

analytically, however this often leads to complex formulas that

are out of the scope of this work. Here, we thus propose to

use a binary search as shown in Algorithm 1. The algorithm

comprises of two loops: In the first one, the value of UB is

increased exponentially, until it is ensured to be above the

optimal threshold. Then, a binary search is realized in the

second loop, which stops when the optimal point is found.

We can argue that Algorithm 1 terminates within a finite

number of steps for finite optimal thresholds and has logarith-

mic complexity with respect to the optimal threshold value:

For any finite, optimal threshold ∆
∗

the first loop terminates

after a finite number of iterations because UB is increased in

each iteration and Υ(UB) ≥ D/ps whenever UB ≥ ∆
∗
. The

second loop must terminate because the difference UB − LB

is decreased in each iteration as long as UB > LB + 1, while

∆
∗

= UB if UB = LB + 1. Finally, assume that ∆
∗

is

the optimal threshold, then the first while loop will terminate

after K1 := ⌈log2(∆
∗
)⌉ steps, leading to UB = 2K1 and

LB = 2K1−1, and the second after

K2 := ⌈log2(2
K1−2K1−1)⌉ = ⌈log2(2

K1−1(2−1))⌉ = K1−1.

Let N1 be the number of operations required to operate the

first while loop, N2 the ones for line 6 and N3 that for

operating the second loop, then the algorithm will terminate

after N1⌈log2(∆
∗
)⌉ +N2 +N3(⌈log2(∆

∗
)⌉ − 1) operations.

That is, the complexity of Algorithm 1 is Ω(log2(∆
∗
)).

Algorithm 1 relies only on being able to evaluate the

function Υ(∆). While this could be challenging due to the

infinite sum involved, it leads to expressions that can be

identified relatively easily for the cases we are interested in.

Also, the sum can be reasonably approximated with a finite

number of summands, as these converge to zero for bounded

functions.
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Fig. 4. Expected infinite-time averaged cost for different thresholds ∆ and
cost functions f(∆). The values D = 10, ps = 0.9, A = 0.9, Σ = 1,
θ = 0.6, α = 11 and K = 4 were used.

V. SIMULATION RESULTS

We now present some simulation results. The system de-

scribed in Figure 1 is considered, with D = 10, ps = 0.9
and a scalar LTI system with parameters A = 0.9, Σ = 1.

Threshold policies are simulated, where ∆ is increased and

for each value, transmissions over a single link with defined

packet success rate are simulated according to the respective

law.

Figure 4 shows the results for four different penalty func-

tions, which are: Linear AoI, mean square error and error

excess probability of an LTI system, as well as an AoI excess

indicator. Each point in the figure is a time-average cost

over 105 time steps and represents the expected time-average

total cost U(∆). We also calculate the optimal thresholds

according to Algorithm 1, which are shown with dashed lines

in the figure. It can be seen that the cost curves have the

properties derived in Section IV-C, i.e., there is a unique

optimum and the cost is decreasing for smaller and increasing

for larger thresholds, and that the proposed algorithm indeed

finds the optimal threshold. Further, it can be seen that the

optimal threshold strongly depends on the used penalty. This

is particularly the case for the error excess probability shown

in yellow, which is monotonically decreasing for the given

setting, i.e., has an infinite optimal threshold. The reason is

that in this case f(∆) is upper bounded and the right hand

side of (20) is smaller than D/ps, or intuitively, that the

expected cost of allowing larger AoI is always lower than the

expected cost for transmitting. From these results it becomes

clear that while the targeted NCS scenarios in principle require

timely transmission, considering the AoI itself as metric only

implicitly transfers to actually solving the problem at hand.

However, using AoI-penalties can help to solve the respective

problems optimally.



VI. CONCLUSION

In this work, we investigated the age of information (AoI)

metric from the perspective of networked control systems

(NCS). We showed that estimation problems of linear time

invariant (LTI) systems can be expressed in terms of an AoI-

penalty for different minimization goals. Due to the variety of

possible AoI penalties, we investigated what makes a penalty

non-trivial to optimize and found the main property of those

functions to be positive monotonicity. Finally, we investigated

an average age-penalty minimization problem for a single link

with packet losses and found the optimal policy to be threshold

based. For the optimal threshold we proposed a binary search

algorithm and proved its optimality both analytically and by

means of simulations.

APPENDIX A

PROOF OF PROOSITION 1

Proof: Consider the sequence K = {t1, ..., ti, ...}. We

can choose a sequence {c1, ..., ci, ...} of constants such that

0 ≤ ci < t′i − ti, ∀i, to generate a new sequence Kc = {t1 +
c1, ..., ti+ci, ...} while T is unchanged. Note that ti+ci < t′i
and that as the number of sampled packets remains the same,

λ = E{Y } is unchanged. The sums over Qi change to Q′
i as

Q′
i =

t′i−1
∑

t=t′
i−1

f(t− ti−1 − ci−1) ≤

t′i−1
∑

t=t′
i−1

f(t− ti−1) = Qi

because f(τ) is non-decreasing, which consequently leads to

F
′
= lim

T→∞

∑|K(T )|
i=1 Q′

i

E{Y }|K(T )|
≤ lim

T→∞

∑|K(T )|
i=1 Qi

E{Y }|K(T )|
= F . (23)

As this holds for any sequence of ci according to the given

bounds, F is non-increasing with ci. An optimal choice of ti
thus is the maximum possible value, which is as close to t′i
as possible. In an analog argument, it can be seen that for any

0 ≤ ci < t′i − t′i−1

Q′
i =

t′i−ci−1
∑

t=t′
i−1

f(t− ti−1) ≤

t′i−1
∑

t=t′
i−1

f(t− ti−1) = Qi,

leading to t′i → t′i−1, ∀i.

APPENDIX B

PROOF OF PROPOSITION 5

Proof: The result of Proposition 5 follows mainly from

mathematical reformulations, for which we only give some

intermediate steps due to the large formulas involved. Observe

that U(∆) ≥ U(∆ + 1) transfers to:

E{Cµ | ∆}

E{Nµ | ∆}
≥

E{Cµ | ∆+ 1}

E{Nµ | ∆+ 1}
(24)

By plugging in the explicit expressions, this leads to

∑∆−1
∆=1 f(∆) +

∑∞
r=0(1− ps)

r
[

f(∆ + r) +D
]

∆− 1 + 1
ps

≥

∑∆
∆=1 f(∆) +

∑∞
r=0(1− ps)

r
[

f(∆ + 1 + r) +D
]

∆+ 1
ps

∑∆
∆=1 f(∆) +D + (1− ps)

∑∞
r=0(1− ps)

r
[

f(∆ + r) +D
]

∆− 1 + 1
ps

≥

∑∆
∆=1 f(∆) +

∑∞
r=0(1− ps)

r
[

f(∆ + 1 + r) +D
]

∆+ 1
ps

(25)

∆
∑

∆=1

f(∆) +

∞
∑

r=0

(1− ps)
r
[

f(∆ + 1 + r) +D
]

+D

(

∆+
1

ps

)

≥ ps

(

∆+
1

ps

)

[

∞
∑

r=0

(1− ps)
r
[

f(∆ + 1 + r) +D
]

]

∆
∑

∆=1

f(∆) +D

(

∆+
1

ps

)

≥ ps∆

[

∞
∑

r=0

(1− ps)
r
[

f(∆ + 1 + r) +D
]

]

1

∆





∆
∑

∆=1

f(∆) +
D

ps



 ≥ ps

∞
∑

r=0

(1− ps)
rf(∆ + 1 + r).
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