
 Chembur

results by the use of table boundaries detection techniques and the use of text post-processing

techniques to detect the noise and to correct bad-recognized words.

Appendix
OCR:- Optical character recognition, NCM:- normalized central moments, PA:-Principle angle

E-GOV :- Electronic governance,GUI:- Graphical user interface

Apache Hadoop Goes Realtime at Facebook

 *Prof.Komal Shringare

Abstract

Facebook recently deployed Facebook Messages, its first ever user-facing application built on the Apache

Hadoop platform. Apache HBase is a database-like layer built on Hadoop designed to support billions of

messages per day. This paper describes the reasons why Facebook chose Hadoop and HBase over other

systems such as Apache Cassandra and Voldemort and discusses the applicationBs requirements for

consistency, availability, partition tolerance, data model and scalability. I explore the enhancements made

to Hadoop to make it a more effective realtime system, the tradeoffs we made while configuring the system,

and how this solution has significant advantages over the sharded MySQL database scheme used in other

applications at Facebook and many other web-scalecompanies. I discuss the motivations behind my design

choices, the challenges that we face in day-to-day operations, and future capabilities and improvements

still under development.I offer these observations on the deployment as a model for other companies who

are contemplating a Hadoop-based solution over traditional sharded RDBMS deployments.

Keywords: Data, scalability, resource sharing, distributed file system, Hadoop, Hive, HBase, Facebook,

Scribe, log aggregation, distributed systems.

Introduction

Apache Hadoop [1] is a top-level Apache project that includes open source implementations of a

distributed file system [2] and MapReduce that were inspired by GoogleBs GFS [5] and

MapReduce [6] projects. The Hadoop ecosystem also includes projects like Apache HBase [4]

which is inspired by GoogleBs BigTable, Apache Hive [3], a data warehouse built on top of

Hadoop, and Apache ZooKeeper [7], a coordination service for distributed systems.

At Facebook, Hadoop has traditionally been used in conjunction with Hive for storage and

analysis of large data sets. Most of this analysis occurs in offline batch jobs and the emphasis has

been on maximizing throughput and efficiency. These workloads typically read and write large

amounts of data from disk sequentially. As such, there has been less emphasis on making Hadoop

performant for random access workloads by providing low latency access to HDFS. Instead, I

have used a combination of large clusters of MySQL databases and caching tiers built using

memcached[8]. In many cases, results from Hadoop are uploaded into MySQL or memcached for

consumption by the web tier.

The first set of applications requires realtime concurrent, but sequential, read access to a very

large stream of realtime data being stored in HDFS. An example system generating and storing

such data is Scribe [9], an open source distributed log aggregation service created by and used

extensively at Facebook. Previously, data generated by Scribe was stored in expensive and hard

to manage NFS servers. Two main applications that fall into this category are Realtime Analytics

 Chembur

[10] and MySQL backups. I have enhanced HDFS to become a high performance low latency file

system and have been able to reduce our use of expensive file servers.

Why HADOOP AND HBASE

The requirements for the storage system from the workloads presented above can be summarized

as follows (in no particular order):

 Elasticity: We need to be able to add incremental capacity to our storage systems with

minimal overhead and no downtime. In some cases we may want to add capacity rapidly and

the system should automatically balance load and utilization across new hardware.

 High write throughput: Most of the applications store (and optionally index) tremendous

amounts of data and require high aggregate write throughput.

 Efficient and low-latency strong consistency semantics within a data center: There are

important applications like Messages that require strong consistency within a data center.

This requirement often arises directly from user expectations. For example iunreadB

message counts displayed on the home page and the messages shown in the inbox page view

should be consistent with respect to each other. While a globally distributed strongly

consistent system is practically impossible, a system that could at least provide strong

consistency within a data center would make it possible to provide a good user experience.

We also knew that (unlike other Facebook applications), Messages was easy to federate so

that a particular user could be served entirely out of a single data center making strong

consistency within a single data center a critical requirement for the Messages project.

Similarly, other projects, like realtime log aggregation, may be deployed entirely within one

data center and are much easier to program if the system provides strong consistency

guarantees.

 Efficient random reads from disk: In spite of the widespread use of application level caches

(whether embedded or via memcached), at Facebook scale, a lot of accesses miss the cache

and hit the back-end storage system. MySQL is very efficient at performing random reads

from disk and any new system would have to be comparable.

 High Availability and Disaster Recovery: We need to provide a service with very high

uptime to users that covers both planned and unplanned events (examples of the former

being events like software upgrades and addition of hardware/capacity and the latter

exemplified by failures of hardware components). We also need to be able to tolerate the

loss of a data center with minimal data loss and be able to serve data out of another data

center in a reasonable time frame.

 Fault Isolation: Our long experience running large farms of MySQL databases has shown us

that fault isolation is critical. Individual databases can and do go down, but only a small

fraction of users are affected by any such event. Similarly, in our warehouse usage of

Hadoop, individual disk failures affect only a small part of the data and the system quickly

recovers from such faults.

 Atomic read-modify-write primitives: Atomic increments and compare-and-swap APIs have

been very useful in building lockless concurrent applications and are a must have from the

underlying storage system.

 Chembur

 Range Scans: Several applications require efficient retrieval of a set of rows in a particular

range. For example all the last 100 messages for a given user or the hourly impression

counts over the last 24 hours for a given advertiser.

Realtime HDFS

HDFS was originally designed to be a file system to support offline MapReduce application that

are inherently batch systems and where scalability and streaming performance are most critical. I

have seen the advantages of using HDFS: its linear scalability and fault tolerance results in huge

cost savings across the enterprise. The new, more realtime and online usage of HDFS push new

requirements and now use HDFS as a general-purposelow-latency file system.

High Availability - AvatarNode

The design of HDFS has a single master b the NameNode. Whenever the master is down, the

HDFS cluster is unusable until the NameNode is back up. This is a single point of failure and is

one of the reason why people are reluctant to deploy HDFS for an application whose uptime

requirement is 24x7. In our experience, I have seen that new software upgrades of our HDFS

server software is the primary reason for cluster downtime. Since the hardware is not entirely

unreliable and the software is well tested before it is deployed to production clusters, in our four

years of administering HDFS clusters, we have encountered only one instance when the

NameNode crashed, and that happened because of a bad filesystem where the transaction log was

stored.

Hot Standby - AvatarNode

At startup time, the HDFS NameNode reads filesystem metadata from a file called the fsimage

file. This metadata contains the names and metadata of every file and directory in HDFS.

However, the NameNode does not persistently store the locations of each block. Thus, the time

to cold-start a NameNode consists of two main parts: firstly, the reading of the file system image,

applying the transaction log and saving the new file system image back to disk; and secondly, the

processing of block reports from a majority of DataNodes to recover all known block locations of

every block in the cluster. Our biggest HDFS cluster [12] has about 150 million files and I see

that the two above stages take an equal amount of time

A HDFS cluster has two AvatarNodes: the Active AvatarNode and the Standby AvatarNode.

They form an active-passive-hot-standby pair. An AvatarNode is a wrapper around a normal

 Chembur

NameNode. All HDFS clusters at Facebook use NFS to store one copy of the filesystem image

and one copy of the transaction log. The Active AvatarNode writes its transactions to the

transaction log stored in a NFS filesystem. At the same time, the Standby opens the same

transaction log for reading from the NFS file system and starts applying transactions to its own

namespace thus keeping its namespace as close to the primary as possible. The Standby

AvatarNode also takes care of check-pointing the primary and creating a new filesystem image so

there is no separate Secondary Name Node anymore.

The DataNodes talk to both Active AvatarNode and Standby AvatarNode instead of just talking

to a single NameNode. That means that the Standby AvatarNode has the most recent state about

block locations as well and can become Active in well under a minute. The Avatar DataNode

sends heartbeats, block reports and block received to both AvatarNodes. AvatarDataNodes are

integrated with ZooKeeper and they know which one of the AvatarNodes serves as the primary

and they only process replication/deletion commands coming from the primary AvatarNode.

Replication or deletion requests coming from the Standby AvatarNode are ignored.

Enhancements to HDFS transaction logging

HDFS records newly allocated block-ids to the transaction log only when the file is closed or

sync/flushed. Since I wanted to make the failover as transparent as possible, the Standby has to

know of each block allocation as it happens, so I write a new transaction to the edits log on each

block allocation. This allows a client to continue writing to files that it was writing at the moment

just before the failover.

When the Standby reads transactions from the transaction log that is being written by the Active

AvatarNode, there is a possibility that it reads a partial transaction. To avoid this problem I had to

change the format of the edits log to have a transaction length, transaction id and the checksum

per each transaction written to the file.

Transparent Failover: DAFS

I developed a DistributedAvatarFileSystem (DAFS), a layered file system on the client that can

provide transparent access to HDFS across a failover event. DAFS is integrated with ZooKeeper.

ZooKeeper holds a zNode with the physical address of the Primary AvatarNode for a given

cluster. When the client is trying to connect to the HDFS cluster (e.g. dfs.cluster.com), DAFS

looks up the relevant zNode in ZooKeeper that holds the actual address of the Primary

AvatarNode (dfs-0.cluster.com) and directs all the succeeding calls to the Primary AvatarNode. If

a call encounters a network error, DAFS checks with ZooKeeper for a change of the primary

node. In case there was a failover event, the zNone will now contain the name of the new Primary

AvatarNode. DAFS will now retry the call against the new Primary AvatarNode. I do not use the

ZooKeeper subscription model because it would require much more resources dedicated on

ZooKeeper servers. If a failover is in progress, then DAFS will automatically block till the

failover is complete. A failover event is completely transparent to an application that is accessing

data from HDFS.

Hadoop RPC compatibility Early on, clear that I will be running multiple Hadoop clusters for

our Messages application. I needed the capability to deploy newer versions of the software on

different clusters at different points in time. This required that I enhance the Hadoop clients to be

 Chembur

able to interoperate with Hadoop servers running different versions of the Hadoop software. The

various server process within the same cluster run the same version of the software. I enhanced

the Hadoop RPC software to automatically determine the version of the software running on the

server that it is communicating with, and then talk the appropriate protocol while talking to that

server.

Block Availability: Placement Policy

The default HDFS block placement policy, while rack aware, is still minimally constrained.

Placement decision for non-local replicas is random, it can be on any rack and within any node of

the rack. To reduce the probability of data loss when multiple simultaneous nodes fail, I

implemented a pluggable block placement policy that constrains the placement of block replicas

into smaller, configurable node groups. This allows us to reduce the probability of data loss by

orders of magnitude, depending on the size chosen for the groups. Our strategy is to define a

window of racks and machines where replicas can be placed around the original block, using a

logical ring of racks, each one containing a logical ring of machines. More details, the math, and

the scripts used to calculate these numbers can be found at HDFS-1094[11].I found that the

probability of losing a random block increases with the size of the node group. In our clusters, I

started to use a node group of (2, 5), i.e. a rack window size of 2 and a machine window size of 5.

I picked this choice because the probability of data loss is about a hundred times lesser than the

default block placement policy.

Performance Improvements for a Realtime Workload

HDFS is originally designed for high-throughput systems like MapReduce. Many of its original

design principles are to improve its throughput but do not focus much on response time. For

example, when dealing with errors, it favors retries or wait over fast failures. To support realtime

applications, offering reasonable response time even in case of errors becomes the major

challenge for HDFS.

RPC Timeout

One example is how Hadoop handles RPC timeout. Hadoop uses tcp connections to

send Hadoop-RPCs. When a RPC client detects a tcp-socket timeout, instead of declaring a RPC

timeout, it sends a ping to the RPC server. If the server is still alive, the client continues to wait

for a response. The idea is that if a RPC server is experiencing a communication burst, a

temporary high load, or a stop the world GC, the client should wait and throttles its traffic to the

server. On the contrary, throwing a timeout exception or retrying the RPC request causes tasks to

fail unnecessarily or add additional load to a RPC server.

However, infinite wait adversely impacts any application that has a real time requirement. An

HDFS client occasionally makes an RPC to some Dataode, and it is bad when the DataNode fails

to respond back in time and the client is stuck in an RPC. A better strategy is to fail fast and try a

different DataNode for either reading or writing. Hence, I added the ability for specifying

an RPC-timeout when starting a RPC session with a server. Recover File Lease

Another enhancement is to revoke a writerBs lease quickly. HDFS supports only a single writer

to a file and the NameNode maintains leases to enforce this semantic. There are many cases when

an application wants to open a file to read but it was not closed cleanly earlier. Previously this

 Chembur

was done by repetitively callingHDFS-append on the log file until the call succeeds. The append

operations triggers a fileBs soft lease to expire. So the application had to wait for a minimum of

the soft lease period (with a default value of one minute) before the HDFS name node revokes the

log fileBs lease. Secondly, the HDFS-append operation has additional unneeded cost as

establishing a write pipeline usually involves more than one DataNode. When an error occurs, a

pipeline establishment might take up to 10 minutes.

To avoid the HDFS-append overhead, I added a lightweight HDFS API called recoverLease that

revokes a fileBs lease explicitly. When the NameNode receives a recoverLease request, it

immediately changes the fileBs lease holder to be itself. It then starts the lease recovery process.

The recoverLease rpc returns the status whether the lease recovery was complete. The application

waits for a success return code from recoverLeasebefore attempting to read from the file.

 Reads from Local Replicas

There are times when an application wants to store data in HDFS for scalability and performance

reasons. However, the latency of reads and writes to an HDFS file is an order of magnitude

greater than reading or writing to a local file on the machine. To alleviate this problem, I

implemented an enhancement to the HDFS client that detects that there is a local replica of the

data and then transparently reads data from the local replica without transferring the data via the

DataNode. This has resulted in doubling the performance profile of a certain workload that uses

HBase.

New Features: HDFS sync

Hflush/sync is an important operation for both HBase and Scribe. It pushes the written data

buffered at the client side to the write pipeline, making the data visible to any new reader and

increasing the data durability when either the client or any DataNode on the pipeline fails.

Hflush/sync is a synchronous operation, meaning that it does not return until an

acknowledgement from the write pipeline is received. Since the operation is frequently invoked,

increasing its efficiency is important. One optimization I have is to allow following writes to

proceed while an Hflush/sync operation is waiting for a reply. This greatly increases the write

throughput in both HBase and Scribe where a designated thread invokes Hflush/sync periodically.

Concurrent Readers

I have an application that requires the ability to read a file while it is being written to. The reader

first talks to the NameNode to get the meta information of the file. Since the NameNode does not

have the most updated information of its last blockBs length, the client fetches the information

from one of the DataNodes where one of its replicas resides. It then starts to read the file. The

challenge of concurrent readers and writer is how to provision the last chunk of data when its data

content and checksum are dynamically changing. I solve the problem by re- computing the

checksum of the last chunk of data on demand.

Future work

The use of Hadoop and HBase at Facebook is just getting started and we expect to make several

iterations on this suite of technologies and continue to optimize for our applications. As we try to

use HBase for more applications, we have discussed adding support for maintenance of secondary

 Chembur

indices and summary views in HBase. In many use cases, such derived data and views can be

maintained asynchronously. Many use cases benefit from storing a large amount of data in

HBaseBs cache and improvements to HBase are required to exploit very large physical memory.

The current limitations in this area arise from issues with using an extremely large heap in Java

and we are evaluating several proposals like writing a slab allocator in Java or managing memory

via JNI. A related topic is exploiting flash memory to extend the HBase cache and we are

exploring various ways to utilize it including FlashCache [18].

References
 Apache Hadoop. Available at http://hadoop.apache.org

 Apache HDFS. Available at http://hadoop.apache.org/hdfs

 Apache Hive. Available at http://hive.apache.org

 Apache HBase. Available at http://hbase.apache.org

 The Google File System. Available athttp://labs.google.com/papers/gfs-sosp2003.pdf

 MapReduce: Simplified Data Processing on Large Clusters. Available at http://labs.google.com/papers/mapreduce- osdi04.pdf

 ZooKeeper: Wait-free coordination for Internet-scalesystems. Available at

http://www.usenix.org/events/usenix10/tech/full_papers/Hun t.pdf

 Memcached. Available at http://en.wikipedia.org/wiki/Memcached

 Scribe. Available at http://github.com/facebook/scribe/wiki

 Building Realtime Insights. Available at http://www.facebook.com/note.php?note_id=101501039002 58920

 HDFS-1094. Available athttp://issues.apache.org/jira/browse/HDFS-1094.

 Pull out the magnet in you through communication

Prof Ambika Arvind

Abstract

Communication is an instinct of all living things. The most important bearings of communication are best

understood when there is a lack of it. The following article discusses how important communication is and

why it plays such a vital role in our daily lives in making you a dynamic person.

Introduction

There is more to communication than just talk and gesture. Listening, understanding and

interpreting are as much integral to communication as words - verbal, written or gestured. Yes,

even gestures in communication play a crucial role in conveying and interpreting the message!

Similarly, how we communicate or express ourselves goes a great way towards determining how

our expressions are interpreted. To quote Karl Popper, "It is impossible to speak in such a way

that you cannot be misunderstood". Faulty or incomplete communication can completely mark

the purpose of communicating and may result in damaging consequences. This is where

understanding how important communication is and communicating the right way comes into

picture. Not everyone is equally endowed with the ability to effectively express himself and this

is where the significance of communication skills can be truly fathomed. Communicating the

right way is equally important in every walk of like, be it in personal, professional or social life.

Every one of us wants to learn how to make people like us. Ever since kindergarten, you would

come up with a lot of different ways just to get accepted by other kids. Unfortunately, not all of

us have the same success rate. As we grow older, the desire to fit in doesn't fade away. For many

people, getting liked by others is as important as the food they eat. Let me tell you a few tips to

