
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020 271

Apache Spark Accelerated Deep Learning Inference

for Large Scale Satellite Image Analytics
Dalton Lunga , Jonathan Gerrand, Lexie Yang , Christopher Layton, and Robert Stewart

Abstract—The shear volumes of data generated from earth
observation and remote sensing technologies continue to make
major impact; leaping key geospatial applications into the dual
data and compute-intensive era. As a consequence, this rapid
advancement poses new computational and data processing
challenges. We implement a novel remote sensing data flow
(RESFlow) for advancing machine learning to compute with
massive amounts of remotely sensed imagery. The core contribution
is partitioning massive amounts of data into homogeneous
distributions for fitting simple models. RESFlow takes advantage
of Apache Spark and the availability of modern computing
hardware to harness the acceleration of deep learning inference on
expansive remote sensing imagery. The framework incorporates a
strategy to optimize resource utilization across multiple executors
assigned to a single worker. We showcase its deployment in
both computationally and data-intensive workloads for pixel-level
labeling tasks. The pipeline invokes deep learning inference at three
stages; during deep feature extraction, deep metric mapping, and
deep semantic segmentation. The tasks impose compute-intensive
and GPU resource sharing challenges motivating for a parallelized
pipeline for all execution steps. To address the problem of
hardware resource contention, our containerized workflow further
incorporates a novel GPU checkout routine and the ticketing
system across multiple workers. The workflow is demonstrated
with NVIDIA DGX accelerated platforms and offers appreciable
compute speed-ups for deep learning inference on pixel labeling
workloads; processing 21 028 TB of imagery data and delivering
output maps at area rate of 5.245 sq.km/s, amounting to 453 168
sq.km/day—reducing a 28 day workload to 21 h.

Index Terms—Big data applications, high performance
computing, image classification, inference mechanisms, machine
learning, supervised learning.

I. INTRODUCTION

E
ARTH observation and remote-sensing are both fields

that have undergone a renaissance recently, making major

impacts in key geospatial applications including land cover

mapping, infrastructure mapping, damage assessment, and pop-

ulation distribution studies [1]–[4]. Multiple factors are con-

tributing to this change, including significant improvements and

rapid deployment of satellite technologies that are enabling the

Manuscript received June 20, 2019; revised November 9, 2019; accepted
December 4, 2019. Date of publication January 2, 2020; date of current version
February 12, 2020. This study was supported by the National Security Sciences
Directorate, Oak Ridge National Laboratory. (Corresponding author: Dalton

Lunga.)

The authors are with the National Security Sciences Directorate, Oak Ridge
National Laboratory, Oak Ridge, TN 37830 USA (e-mail: lungadd@ornl.
gov; gerrand.jonathan@gmail.com; yangh@ornl.gov; laytoncc@ornl.gov;
stewartrn@ornl.gov).

Digital Object Identifier 10.1109/JSTARS.2019.2959707

acquisition of vast volumes of high-resolution imagery at high

velocity rates. As such, remote sensing applications have leaped

into a data and compute-intensive era presenting challenges and

opportunities for new advanced machine learning and computer

vision workflows. Examples of such applications include sup-

porting accurate population distribution estimates, possibilities

to study sustainability outcomes at scale [5], and identifying

urban environments over large contexts using abundant satel-

lite imagery and breakthroughs in deep learning based image

classification [6].

To achieve greater impact with machine learning on data and

compute intense workloads, new approaches are required for ef-

ficient utilization of high-performance computing resources and

to produce efficacious results for end-users. These approaches

need to consider both the computational aspects of their target

applications, as well as the challenges inherent with analyzing

remote sensing data in a generalizable manner. Specifically, we

consider the following three problem areas, which need to be

addressed in order to advance the current state of the art, namely:

1) data-intensive challenges;

2) labor-intensive challenges;

3) compute-intensive challenges.

For clarity, we briefly discuss each of these challenges.

On the data-intensive challenge: The shear volumes of remote

sensing imagery are increasingly becoming heterogeneous and

challenging the efficacy of current machine learning work-

flows [7]. With imagery data acquired as signals from varying

system configurations and environmental conditions, efforts to

analyze such diversity at scale are immediately thwarted by a

lack of workflows whose results are adequately generalizable

both spatially and temporally within the data.

On the labor-intensive challenge: Current techniques from

machine learning, especially deep learning, continue to demon-

strate the near-human performance. However, such methods are

heavily dependent on large annotated datasets. While there are

growing efforts to build open research benchmark data to address

this issue [8], when relevant amounts of high-quality labeled

data are not available, open source data driven models tend to

achieve poor generalization capability. The endeavor to obtain

high-quality training data can then be tedious, especially for

pixel labeling, and is characterized by multiple attributes that

include; availability of domain experts, stratification of data into

diverse representative samples, mitigation of human sampling

bias, and accurate labeling of data samples.

On the compute-intensive challenge: Pixel labeling algo-

rithms pose a compute-intensive workload even under normal

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0054-1141
https://orcid.org/0000-0003-2252-6778
mailto:lungadd@ornl.gov
mailto:gerrand.jonathan@gmail.com
mailto:yangh@ornl.gov
mailto:laytoncc@ornl.gov
mailto:stewartrn@ornl.gov

272 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

usage within the natural image domain. When considered in the

context of petabytes of remote sensing data that needs to be

processed, however, with single image files often reaching tens

of gigabytes in size, the efficient use of high-performance com-

puting resources needs to be considered. Here, solutions existing

within a distributed environment, spanning several nodes either

for feature extractor training or model inferencing [7], need to

be considered.

This article seeks to address the abovementioned challenges

from a generic perspective amenable for use in other large scale

object mapping applications using remote sensing imagery. As

such, we propose a novel and efficient single pipeline, herein

referred to as RESFlow, with multiple deep neural networks

for multipass distributed image data analysis performed in an

embarrassingly parallel fashion.

RESFlow seeks to stratify imagery into homogeneous distri-

butions from which levels of diversity are contained to inform the

reuse of models for inference tasks on imagery partitions with

similar characteristics but originating from mixed geographies.

By seeking automated mapping into these homogeneous parti-

tions, our goal is to create data buckets from which to sample

representative images with similar characteristics, mitigating the

need to stratify large and diverse training data. Furthermore,

to address computational aspect of the problem, we formulate

RESflow as constituting a set of subtasks with interdependence

but which are each executable in an embarrassingly parallel

fashion across bucket partitions. As such, no communication of

compute results takes place between partitions. Each partition is

computed upon independently with little communication only

encountered on the last stage to reconstruct inference results for

a given image scene. However, within partitions, subtasks have

dependence on each other, which imposes an order of precedence

on their execution, creating a task scheduling problem and

resource contention that we handle via a novel GPU ticketing

system.

The technical contributions of this article are as follows.

1) We present an unprecedented homogeneous partition-

ing of massive amounts of imagery data based on its

semantic and spectral characteristics. We leverage this

partitioned space to enable efficient indexing 10 s of

models and 1000 s of image patches for distributed pixel

labeling.

2) We take advantage of Apache Spark to provide, for a single

large image scene, fast parallel inference functionality

wherein an area pixel labeling rate of 5.245 sq.km/s,

amounting to 453 168 sq.km/day is achieved—reducing a

28 day workload to 21 h.

3) We present a containerized workflow for Apache Spark

operations coordinated with GPUs for deep learning infer-

ence best practices, e.g., efficient GPU usage and ticketing

across multiple workers, for large deep learning workloads

deployed on GPU clusters.

Although presented for a pixel labeling task on satellite im-

agery, the workflow can easily be deployed to domains that

exhibit the same problematic data characteristics as described

previously. Examples include biomedical and climate image

based applications.

The remainder of this article is arranged as follows.

Section II reviews the components of several satellite image

analytics workflows, including deep neural networks for seman-

tic segmentation and distributed computing frameworks. Using

insights gained from this review, Section III discusses the

proposed high-performance computing-based remote sensing

imagery analytic workflow. To illustrate the workflow, bench-

marking compute efficiency statistics on varying workloads are

presented in Section III-J. Section IV large scale pixel-level

segmentation results for building extraction. Finally, Section V

concludes this article.

II. SATELLITE IMAGE ANALYTICS WITH DEEP NEURAL

NETWORKS AND DISTRIBUTED COMPUTING AT SCALE

Given the prevalent nature of high-resolution remote sens-

ing instruments, it is now conceivable to pursue computer vi-

sion methods for large scale object segmentation. Very-high-

resolution remote sensing imagery, which now supports ground

spatial resolutions of less than 50 cm, is enabling new capability

to exploit subtle and yet expressive spatial features for fitting

highly complex objective functions for structured predictions

with computer vision and machine learning methods. Deep con-

volutional neural networks have become the dominant machine

learning technique for visual recognition, achieving state-of-the-

art results on a number of problems that seek dense semantic

labeling of image pixels. Early attempts on this problem include

work in [9] where an atrous method to expand the support of

filters and reduce the down-sampling for input feature maps to

achieve dense labeling was used. In [10], an efficient and precise

biomedical image segmentation convolutional neural network

(U-net) was proposed. Improving on the architectural design

to reconstruct the original input resolution, Badrinarayanan

et al. [11] proposed a semantic pixel-wise segmentation method

using a fully convolutional neural network (Seg-Net), which

uses decoder-deconvolutional layers to map the low-resolution

encoder feature maps to the full input resolution feature maps.

The use of deep convolutional neural networks extends to other

applications including big data mining for search and retrieval

tasks. Designed to seek expressive spatial and visual content rep-

resentational features, the deep hashing framework created by

Li et al. demonstrated capability for large-scale image retrieval

in [12]. In another image retrieval task, pretrained networks were

used in order to extract intermediate image representation as

input for metric and hash-code learning [13].

In general, to perform complex tasks at the level of humans,

deep learning methods heavily depend upon the availability

of enormous amounts of high-quality annotated data. Despite

the fact that remote sensing instruments are acquiring data in

substantial volumes and the robust computing power needed

to efficiently process it is available; such massive datasets are

not simple to annotate. The process of gathering labeled training

data is mired by inconsistencies, poor selection of representative

samples, and the annotation is often prohibitively expensive.

It is labor-intensive requiring a huge number of worker hours,

making it challenging to train a single high-performing deep

network model for use on wide area geographical coverage.

LUNGA et al.: APACHE SPARK ACCELERATED DEEP LEARNING INFERENCE 273

Fig. 1. Data, compute, and labor intensity paradigm in remote sensing applica-
tions. (Note: labor is illustrated with color intensity limegreen denotes intensity
in labor demand.)

We, therefore, feel it is appropriate to seek automated work-

flows, which support representative training data selections, e.g.,

avoid underrepresentation, enable localized model for capturing

homogeneous data distributions, or fit models on diverse yet

equally sampled image characteristics.

Moreover, with a growing demand for geospatial applications

to deliver imagery products on data that scales over 10 s of

Terrabytes (TB) of high-resolution outputs per given geographic

region, current applications are gradually becoming immense in

terms of both data and compute requirements. To be specific,

typical workloads for semantic labeling often entail processing

imagery acquired across an average country of land-area size

783 562 sq.km. The accompanying imagery coverage would

span 3 × 783 562 sq.km to account for scene overlapping and

lack of cloud free data. Compare this volume of data against the

largest known computer vision dataset ImageNet [14]. ImageNet

has a total of 14 197 122 images, each at 224 × 224 pixels thus

50 176 pixels per image, totaling 712 354 793 472 pixels. When

sampled at ground-sampling distance of 50 cm, a mosaicking

of all imageNet totals 356 177 sq.km, slightly less the size

of Montana, USA. In contrast, for an average country size, at

50 cm ground sampling distance each RGB image scene spans

about 40 000 × 35 000 pixels and carries ≈13 GB of data for a

total of 3000 scenes (covering equivalent of 3 × 783 562 sq.km

(7 × ImageNet) land-area and totalling ≈39 TB of data). Using

current serial processing pipelines a single image scene takes

35 min to process a pixel-labeling task on a single computing

node with one 16 GB GPU card. Considering the demands to

process multiple country scale products, it is imperative that

object segmentation and semantic labeling tasks are deployed

through parallel and distributed inferencing pipelines to reduce

such computational intensity. With this motivation, we identify

advanced remote sensing dataflows (including RESFlow) to be

located in the top two quadrants of Fig. 1 and continue to develop

core computational modules that can match the demands of such

applications.

Over the past decade, Hadoop has emerged as an early

experimental testbed for several big data applications due to

its excellent large-scale data-handling capability, high fault

tolerance, reliability, and low cost of operation [15]. Hadoop

provides distributed data storage and analysis solutions, which

previously have been exploited for implementing large scale

mean-shift-based image segmentation algorithms [16]. In [17],

an optimization effort on the Hadoop file storage system was

studied to elicit better performance for large scale computing

with image data. The authors of [18] studied a Hadoop and

MapReduce [19] based implementation of the parallel K-means

algorithm to reduce the computational time taken for executing

parallel data clustering on a large number of satellite images.

Pursuing content mining on digital images, the authors in [20]

introduced an approach for large-scale scene retrieval on massive

image databases.

While MapReduce enables large-scale distributed computing

for imagery when used in conjunction with Hadoop, a limi-

tation is seen in its heavy usage of disk input–output (I/O)

operations and network resources to store intermediate steps

during processing. Deterred by this computational cost, Huang

et al. [21] studied Apache Spark [22] to take advantage of its

resilient distributed datasets (RDDs) [23]. Spark has been shown

to accelerate several other remote sensing imagery workloads.

For example, in applications where transregional remote sens-

ing images are key, the frequent data I/O requirements for

mosaicking were shown to benefit from a parallel algorithm

implemented with Spark [22], [24]. The work of Sun et al.

[25] also demonstrates this performance increase, wherein the

authors implement an iterative singular value decomposition

algorithm to process massive amounts of remote sensing data.

In concurrence, high-performance computing environments are

enabling targeted computing with extremely large earth obser-

vation data and the sharing of data in parallel across hundreds

of nodes [26], [27]. Taking advantage of the high processing

power, large memory capacity, and Infiniband (IB) enabled in-

terconnects between nodes in Summit, Kurth et al. [28] proposed

an exascale ready workflow and software stack for extracting

signals for extreme weather patterns using variants of deep

neural networks. The work scaled up to 27 360 V100 GPUs

and sustained throughput of 325.8 PF/s and a parallel efficiency

of 90.7% in single precision. We see these impressive results as

an indication Spark’s ability to enable the processing of remote

sensing data at scale and demonstrate this as part of the RESFlow

framework presented within the remainder of this article.

III. PROPOSED RESFLOW FRAMEWORK

The RESFlow architecture seeks to present itself as an in-

telligent big data engine where end-to-end inference tasks are

efficiently executed while exploiting the geometry of the data

and being agnostic to sensor variations as well as geographic

constraints. To this end, it is formulated to contain several

integrated computational stages and algorithms; providing a

common data pipeline, which is shared across multiple inference

tasks and geospatial applications. At the core of RESFlow is the

concept of data distribution partitioning, which is performed

via efficient geometric based clustering and metric learning.

274 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 2. Visual representation of a continuum embedding space for an image
scene. Groupings A, B, and C illustrate sets of image patches that inform
homogeneous data partitions in the workflow.

Both techniques play key roles in the overall mapping of data

to a partitioned image space indexing—a strategy often lacking

in traditional learning workflows. Here, we believe that data

partitioning is key to mitigating bias in training data collection

and labeling (even though not in scope of the current study).

Fig. 2 illustrates the partitioning of an embedding representation

for image patches extracted from a single large satellite image

scene. From this result, the concept of data partitioning can

be observed as the grouping and extraction of homogeneous

image spaces for further exploitation during inference of the

large image scene.

As noted previously, computer vision and machine learning

algorithms are proving superior in providing automated means

to describe the distinctive nature of objects in remotely sensed

image data [1], [5], [6], [29]. However, the deployment of such

algorithms remains a significant challenge when considered on

large geographic areas covered by hundreds of thousands of

images [29].

As is tradition with data/compute intensive applications, suc-

cess depends upon scarce and expensive hardware resources.

It is, therefore, not surprising that the use of hybrid CPU/GPU

technology stacks is emerging as the means to address such

deployment challenges. For example, deep learning function-

ality for analysis can be developed as user defined functions

(UDFs) and used within Apache Spark clusters for inference

deployment on GPU and CPU servers in a resourceful manner.

Motivated by such potential, we combine salient features from

the deep learning frameworks (e.g., TensorFlow and PyTorch)

and big-data capabilities from Apache Spark, to implement

accelerated and parallelized inference modules for use on both

CPU and GPU servers.

The central means to achieving such capabilities is the idea

that both remotely sensed image data, and deep learning models,

can be mapped to and paired within local regions in which the

extreme diversity induced by sensor characteristics and scene

content is constrained. As depicted in Fig. 3, this procedure is

initially facilitated using a learned functional mapping, which

partitions high-dimensional data embeddings into several buck-

ets of similar semantic and spectral content and stored within

an image gallery. The bucket partitions then provide a basis to

train and update associated indexable models, stored within a

model gallery, which can be tailored for specific inference tasks

as defined by the application domain.

We briefly describe the RESFlow architecture several of its

modular components in the following sections.

A. Clustering and Embedding

The first step to enable remote sensing imagery partitioning

is utilizing the clustering and embedding module (CEM) in

RESFlow. The responsibilities of the CEM are two-fold. First,

as the initial step within the coalescing of imagery to appropriate

partitions of the image gallery, the module maps each input

image as a datapoint using a learned feature extractor to an inter-

mediate representation in which other datapoints characterized

by similar acquisition conditions, spectral and semantic content

share a close proximity. This intermediate mapping, or network

embedding, is important as it provides a basis for an appropriate

metric space to be learned in a data-driven manner. Second,

during RESFlow’s initialization, the CEM is used to assign

labels via clustering as a means to assist learning of the metric

space projection function. Here, multiple clustering algorithms

can be considered for usage and the framework is importantly

unconstrained by any specific approach. Within our experimen-

tation, we initially evaluate several popular clustering algorithms

including centroid and hierarchical-based approaches using a

euclidean metric space. Based on its favourable performance

in minimizing intercluser variance, we select agglomerative

clustering with a Ward linkage criterion for use within the

framework.

B. Image-Bucket Assignment

After clustering the partitioned images, we seek to construct

buckets that uniquely represent those clustered images. The

unique binary representation generated for each image plays a

significant role in the following two ways: 1) They provide com-

pact binary bitstrings that preserve semantically similar content

for the partitioned image chips, and 2) The binary bitstrings

provide an efficient image-model indexing mechanism during

large scale inference. This dual benefit is achieved by learning

a hashing metric space whose properties include the following:

1) generating a unique hash-map associated with each dis-

tinct image chip;

2) providing a compact representation that is smaller than the

original input dimensions;

3) a metric space from which the distance property for bi-

nary bitstrings can be used to relate image scenes whose

geographies and image characteristics are also similar.

The resulting binary bitstrings represent a desirable format

with which to both efficiently index pretrained models and

the respective buckets; proving an intuitive gathering space for

localized training data.

The assignment of images to buckets is achieved by first

computing the centroid binary bitstring for each bucket. Each

bucket centroid offers a unique binary bitstring that is reused

to identify each bucket model. Following this assignment, the

centroid gets reused within a hamming space to identify which

LUNGA et al.: APACHE SPARK ACCELERATED DEEP LEARNING INFERENCE 275

Fig. 3. Overview of the RESFlow framework.

Fig. 4. Comparison between buckets initialized via agglomerative clustering and hash-mapping. Each cluster on the top row is color-coded to denote image
patches belonging to one cluster. The bottom row shows a reconstruction of clusters mapped into hash-buckets. Hash-buckets are reconstructed with a validation
mAP score of 98.3% with fewer image patches on the bottom row noted to have been placed in different buckets than their cluster of origin.

bucket each image chip be assigned to. Fig. 4 illustrates the main

concept upon which RESFlow operates with hash-mapped buck-

ets created via clustering. Here initial clustering provides the key

soft-labels needed to learn the semantic structure of the large

satellite imagery archive. As shown, the reconstruction of the

similar content structure, without emphasizing cluster-bucket

correspondence, is carried out by the hash-mapping function.

Furthermore, the distinct buckets become completely indexable

within the image gallery shown in Fig. 3.

To illustrate the hash-mapping module, we observe the ability

of a convolutional network based model to reconstruct the

CEM generated embedding space while varying the number

of initial clusters. Using agglomerative clustering, we select

clusters to generate the soft-labels based upon a metric of the

smallest variance per cluster obtained over several different

cluster counts. The hash-mapping network is evaluated using

the mean Average Precision (mAP) metric, which assesses the

average value of the maximum precision for different recall lev-

els while reconstructing the structure of initial clusters. Using a

color-coding scheme, Fig. 4 shows the relative changes between

the agglomerative-based clusters and the convolutional neural

network based hash-mapped buckets.

C. Image Gallery

Following their creation via the metric space projection

function, the binary bitstrings generated from input imagery

are partitioned by similarity relative to the distinct buckets

shown in Fig. 4. These partitions form a powerful abstraction,

independently characterizing homogeneous image acquisition

characteristics and spectral content, from which both training

and inference data can be sourced for a related model gallery

network. Further associated with each binary bitstring entry

within this gallery is additional meta-data detailing attributes

276 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

such as geo-information, acquisition conditions, storage loca-

tion, and image subcoordinates. Combined with the efficient

binary representation of each datapoint for rapid image search

capability, the inclusion of these attributes enable rich insights to

be gained through exploratory inspection of the gallery content.

These insights could not only benefit performance evaluation of

models but also help explain complex data characteristics and

their bias.

D. Model Gallery

Once populated, the image gallery presents a collection of ho-

mogeneous partitions. As previously motivated, this collection,

with constrained diversity, is a desirable property when sampling

for both training and inference data with a given deep learning

algorithm. The model gallery will provide a direct mapping

between a bucket partition within the image gallery and a paired

and trained network model that is either fine-tuned during train-

ing, or applied during inference. Following this procedure can

prove as a highly efficient alternative to standard model training

and inference practices, as the localized constraints placed on

the new data which each gallery model sees mitigates the need

for continual retraining.

E. Accelerated Inference

To this point, each of the discussed modules are seen to

play a role in overcoming the extreme variance characteristic

within imagery with the core concept of partitioning remote

sensing imagery. However, the issue of analyzing this data at

sufficient scale to meet the demands of global-size applications

remains a prohibitive concern. In addressing this problem, it is

further observed that each of the modules within RESFlow utilize

elements of deep learning to perform different tasks, presenting

a computationally heavy workload that requires the same GPU

hardware resources to be reused in a single inference run.

However, RESFlow’s building blocks and their functionality are

amenable to massive parallelization across the partitioned image

space. In recognition of this condition, we exploit Apache Spark

as a fabric for distributing and coordinating the framework’s

computations at scale. Learning from libraries such as Tensor-

flowOnSpark [30] and Tensorframes [31], we leverage Spark’s

big data capability to ingest large quantities of input data and

process these using deep learning frameworks complimentary

to Spark in a fault-tolerant and highly parallel manner. Fig. 5

shows RESFlow tile inference and reconstruction illustration.

The tile partitioning strategy injects a key property that allows

for spatially noncontiguous image tiles to be processed by a

single bucket model—enabling consistent inference over wide

geographic conditions.

F. Application Space

By design, the modules presented thus far within the RESFlow

framework have been agnostic to any specific application or

use case within the realm of remote-sensing imagery. In this

manner, one could think of the model gallery partitioned to

fulfill multiple tasks such as object detection, neighborhood and

Fig. 5. RESFlow tile inference and reconstruction illustration. Colors denote
inference deployment of different gallery models as assigned by the image-
bucket module. The tile partitioning strategy injects a key property that allows for
spatially noncontiguous image tiles to be processed by a single bucket model—
enabling consistent inference over wide geographic conditions.

settlement mapping, or temporal change detection, which are

only a subset of potential applications. Based on this premise,

within the application space multiple copies of the model gallery

are formed, each containing trained models, which are uniformly

purposed to perform a given task.

G. Image Analytics Via Parallel Computing

1) Satellite Imagery RDDs: Spark currently does not support

extended image file types such as. tiff or. dicom to be serialized

into byte arrays encapsulated within its RDD objects.1 As a

consequence of this limitation, a design choice was required

between either converting the collected sensor-based imagery

used within RESFlow into supported formats (such as 8 b jpg),

or to instead use RDD objects to store path-based references

to the location of the imagery stored within network storage.

The former approach would result in a loss of data precision

(32–8 b for each scene), while the latter would force the image

data to be read twice from disk during workflow execution (once

for hashing and embedding, and a second time for per-bucket

inference). With precedence being placed on precision to enable

higher levels of accuracy during training, we choose the latter

option and instantiate an RDD to contain the paths of the scene

data to be analyzed in RESFlow.

2) Spark-Based UDFs: We implement several UDFs within

Spark in order to realize RESFlow’s operation. Represented in

Fig. 6, these functions encapsulate tasks such as getting the

extent of a given scene tile, or performing inference across

a partition-based bucket. We utilise external libraries such as

Tensorflow [32], Pytorch [33], and GDAL [34] to assist in

performing these operations, which act upon one or more rows

records within a given RDD partition.

3) GPU Allocation Heuristic: An important limitation in

using Spark for RESFlow’s implementation is its lack of support

for GPU-based resources. Here, first-class status is given to

cluster-based resources such as CPU cores and RAM; allowing

a fixed quantity of these resources to be allocated to instan-

tiate a spark-executor. On the other hand, Spark contains no

1[Online]. Available: https://issues.apache.org/jira/browse/SPARK-21866

LUNGA et al.: APACHE SPARK ACCELERATED DEEP LEARNING INFERENCE 277

Fig. 6. RESFlow parallel inferencing flow: a high-level representation of the Spark-based transformations and actions implementation.

functionality to enable GPUs to be exclusively associated with

a given executor in the same manner. When considered in the

light of how Spark runs tasks that belong to the same processing

stage, maintaining independence, and concurrency, this lack of

GPU resource allocation can become problematic. For example,

during the embedding and hashing step of the workflow each

executor is required to process the data within its associated

partitions via GPU computation. With no robust mechanism to

reserve a GPU for a given executor, this step may result in several

executors utilizing the same GPU—causing the stage to fail as

the limited amount of GPU RAM is quickly exhausted by the

concurrent executor tasks.

As a workaround to this problem, we implemented a simplistic

GPU checkout routine that allows for the soft-assignment of

GPU resources to take place between the executors on a given

worker node. We accomplish this by creating a ticketing folder

within the executors’ shared work-space, into which we place

one or more “tickets” per physical GPU within the node. Using

this ticket-system metaphor, when an executor requires the use

of a GPU, it scans the ticketing folder for available instances—

removing a ticket if one is available, or returning a ticket if the

GPU resource is no longer required.

Systems specifications: The computing environments for all

experiments consist of various Spark cluster configurations on

GPU optimized platforms. All Spark clusters are configured to

take advantage of the NVIDIA DGX Systems as they deliver an

integrated hardware and software solution thats been optimized

to deliver faster time-to-solution with latest GPU resources.

Nvidia-DGX1 systems: We first consider an environment with

3xNvidia-DGX1 machines each capable of a total of 80 threads

from 40 cores via two Xeon CPU E5-2698 processors oper-

ating at 2.20 GHz with 512 G DDR4 of system RAM. Each

machine has eight 16 GB Volta GPUs achieving a maximum

graphics clock of 1530 MHz and a maximum memory clock

speed of 877 MHz with a 300 W power cap on each GPU.

The all SSD-based local storage has 500 G for the OS with

an additional 7 TB on Raid 0 for data storage. Each machine is

connected to the network file system (NFS) storage via a single

10 GB Ethernet network connection. In total, we have three

such machines that are interconnected via 4 × 100 GB EDR

IB ports (2 GPUs per IB connection). Nvidia-DGX2 systems:

For the second environment, we consider cluster nodes setup on

NVIDIA DGX2 systems, which each combine 16 GPUs fully

interconnected via NVLink. The first node, a Nvidia-DGX2,

can run 96 threads from 48 cores via two Xeon Platinum 8168

processors operating at 2.7 GHz with 1.5 TB of the DDR4

system RAM. The machine has sixteen 32 GB Volta 350 W

GPUs with max clocks of 1597/958 (Graphics/Memory). Local

storage consist of a 1 TB NVME Raid 1 boot partition and a

30 TB NVME Raid0 data partitoin offering maximum transfer

speeds of approx 20 GB/s. The machine has 8× 100 GB EDR IB

Ports (2 GPUs per IB port). The second node, Nvidia-DGX2-H,

similarly has 96 threads with 48 cores, however, with two Xeon

Platinum 8174 operating at 3.1 GHz with 1.5 TB RAM DDR4

2666. The machine has sixteen 32 GB OCed Volta GPUs running

at 450 W maximum power consumption with max clocks of

1702/1107 (Graphics/Memory), local storage consists of a 1 TB

NVME Raid 1 boot partition, and a 30 TB NVME Raid0 data

partition offering maximum transfer speeds of approx 20 GB/s.

The machine equally has 8 × 100 GB EDR IB Ports (2 GPUs

per IB port).

Experimental evaluations are conducted by first setting up a

single-Nvidia-DGX1 Spark cluster as follows: a configuration

of one master node and eight workers. The cluster is instan-

tiated from singularity containers. Each worker is allocated

30 GB memory and 9 cores and is responsible for launch-

ing a single executor. At execution the master node runs the

driver process whose allocated memory is 10 GB. Extending

this configuration to a three-node Nvidia-DGX1 Spark clus-

ter, we instantiate a singularity container with single master

node and eight workers on one Nvidia-DGX1 machine and

add two more singularity instances on two more additional

machines each equipped to support eight workers with allocation

of 30 GB memory and 9 cores per worker. Two more clus-

ters, single-node Nvidia-DGX2-H Spark cluster, and two-node

Nvidia-DGX2 Spark cluster, are setup in a similar manner, how-

ever, each worker is allocated 80 GB of memory and 6 cores per

worker.

278 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

TABLE I
SOURCES AND NUMBER OF LABELLED DATA FOR TRAINING, VALIDATION,

AND TESTING EVALUATION

H. Case Study: Building Footprint Mapping

Country scale building footprint mapping fits the scope of both

a data and compute-intensive application. We envision current

deep learning algorithms for solving this case study benefiting

from a hybrid combination of the in-memory computing capabil-

ity of Apache Spark and high-performance computing hardware

platforms.

Our experimental dataset consists of (0.3–0.7)-m resolution

satellite imagery acquired by Digital Globe constellations, i.e.,

WorldView-2, and WorldView-3. These constellations provide

high-resolution imagery that is suitable for pixel level semantic

segmentation objects. As summarized in Table I, training and

validation image data (using a 90%:10% split) is collected from

several countries Ethiopia, South Sudan, Zambia. Each sample

is a 500 × 500 pixel RGB image with an associated label mask.

Importantly, we further explore out-of-country/out-of-sample

testing regions from other different geographical areas. These

areas consist of New Mexico of the United States, Puerto Rico,

Alabama, and Arizona, and are used to demonstrate both the

deployment and generalization performance of RESFlow. These

testing sets also represent a more realistic use-case of the frame-

work once placed in production where rapid inferencing is much

needed. Table I summarizes the distribution of testing samples

that are used from each of the out-of-sample locations.

I. Workflow Initialization

To initialize the RESFlow ensemble with all available training

samples, we selected an optimal count of six buckets for the im-

age and model galleries based-off the average intracluster vari-

ance measured over a range of cluster numbers used for the CEM.

For each of these buckets, we trained four different convolutional

neural networks for the building mapping task where training

and validation data are from its corresponding image gallery

bucket. We picked these CNNs, which each contain encoder

and decoder paths, namely ResNet50-FCN, [35], U-net [10],

Seg-Net [36], and DeepLab [37] without multiple feature fusion,

based on various sizes of model (number of parameters to train)

as well as their superior performance on semantic segmentation

tasks. The number of parameters for these models are listed in

Table II. This also showcases the flexibility of the modularized

application space in RESFlow where researchers can easily set

up the preferred algorithms to test the model gallery. In training,

we utilize standard binary cross entropy as a cost function to

TABLE II
NUMBER OF PARAMETERS AND TRAINING TIME FOR USED CNNs

Speed decreases with model complexity.

Fig. 7. F1 scores on validation set for the tested CNNs. The models were
trained on a regular DGX-1 machine (top) and on a SPARK GPU cluster
(bottom).

guide model learning. During testing (performing inferencing)

on the out-of-sample data, each of these trained models becomes

responsible for independently performing building extraction on

testing samples, which are assigned to its membership via the

same process of image gallery mapping. When reporting results,

we refer to this combined quorum of models as RESFlow. All

of the CNNs were concurrently trained from scratch, without

using any pretrained models. Hyper parameters are held constant

through all experiments so that we limit number of variables

in the experimental runs. The final selected hyper parameter

values used are learning rate of 0.002, batch size of 6, and

Adam as the optimizer. These values are reused across all the

four architectures.

J. Performance and Computational Efficiency

Among the main contributions of this article, improving

workload computational efficiency is vital in processing large

volumes of data. RESFlow seeks to achieve this by combining

algorithmic innovations as well as accelerated deep learning

computing capable system architectures for remote sensing data

analytics. More specific, its capability to partition data in the

metric space offers desirable properties for large scale accel-

erated training and inferencing tasks. We observe and assess

the system behavior under varying workloads and different

computing environments to identify computational tradeoffs

between constrained resources and need to process large vol-

umes of imagery. The deep learning fully convolutional network

of choice is the U-Net architecture [10], selected for its fast

training convergence across the 60% F1-score on validation of

300 samples, as shown in Fig. 7.

LUNGA et al.: APACHE SPARK ACCELERATED DEEP LEARNING INFERENCE 279

Fig. 8. Example building footprint mapping results for the RESFlow models on held-out New Mexico, Puerto Rico, and South Sudan data. Owing to the varying
image characteristics and geographies image tiles clipped from same image scene are processed in parallel using different bucket models. Note: varying mask
colours denote different bucket models for a total of six models from the model gallery.

TABLE III
COMPUTE EFFICIENCY (IN MINS) ON VARYING WORKLOADS ON ONE-NODE

NVIDIA-DGX1 SPARK CLUSTER

*Indicates a result for which soft GPU-executor assignment is needed to prevent run failure.

To provide an appropriate comparison of the performance,

we additionally train a single U-Net model, again using all

available training samples with the identical fully convolutional

network architecture. We refer to this monolithic network as

the Mono model, and measure its performance across the entire

out-of-sample test set. As metrics, we utilize the Intersection

over Union (IoU) in addition to F1 scores in order to follow the

accepted community standard [38] and report the performance

results in Table IV. To quantitatively assert the viability of our

proposed framework, Table IV presents the performance of both

the Mono and RESFlow models on the held-out set of test data.

Here, RESFlow is seen to perform very similarly to the Mono

model for two of the three test regions. This is considerable, as

each model from the RESFlow Image Gallery sees considerably

less data compared to its Mono model counterpart during train-

ing, and yet is able to generalize to a similar degree. This is not

true for the New Mexico region, however, with a large deficit in

the performance being observed. Furthermore, visual maps to

illustrate the performance of RESFlow ensemble of models over

large geographic extents is shown in Fig. 8.

Tables III and VI illustrate the computational performance of

deploying RESFlow on an Apache Spark cluster equipped with

deep learning modules based on PyTorch and Tensorflow. The

baseline is recorded to average 35 min for pixel-level semantic

segmentation inferencing time for a single image scene of size

TABLE IV
RESULTS FOR HELD-OUT TESTING DATA

40 000 × 35 000 pixels and data volume of 11 GB processed on

a single Nvidia DGX1 V100 GPU. Fig. 9 shows the speedup as a

function of both the number of GPUs and data sizes in GigaBytes

(computed from number of image scenes). The speedup is calcu-

lated as the ratio of the baseline execution time to the normalized

compute time for given number of GPUs. For all different size

workloads, we observe a tremendous speed up ranging from 9×
to over 400× across all Spark cluster environments. Overall,

Tables III–V and Fig. 9 demonstrate the speedup factors of the

various cluster configurations.

We report on the strong and weak scaling of the segmentation

inference module. The embedding and hashing modules are

embarrassingly parallel with operations performed at image

patch level to completion and always benefiting from additional

numbers of GPU workers. To establish the strong scaling aspect

of the workflow, Fig. 9 shows the speed-up performance over

six workloads of data (between 1 and 12 image scenes) while

varying the number of spark-based workers. The inference

module is parallelizable while the merging of image patches

to reconstruct the large scene is performed in a serial fashion;

perhaps introducing an upper limit on the compute speed-up.

An immediate observation is that compute speedup does not

assume a linear increase with additional GPUs—parallelization

efficiency decreases for each workload as the amount of GPU

workers are increased. The presence of the increasing and

280 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 9. Log-scale speed up of varying workloads when processed with RESflow parallel inference. Using serial processing single GPU baseline that averages
inference speed of 35 min per 40 000 × 35 000 pixel image scene.

TABLE V
COMPUTE EFFICIENCY (IN MINS) ON VARYING WORKLOADS ON ONE-NODE

NVIDIA-DGX2-H SPARK CLUSTER

*Indicates a result for which soft GPU-executor assignment is needed to prevent run failure.

TABLE VI
COMPUTE EFFICIENCY (IN MINS) ON VARYING WORKLOADS ON TWO-NODE

NVIDIA-DGX2-H SPARK CLUSTER

decreasing trends on the performance curves could be explained

by highlighting two aspects. The first is due to algorithmic

implementation of our workflow. As aforementioned the

most important contribution of our workflow is its ability

to partition or tile large imagery and enable computing at

scale. During inference execution on tiled partitions, worker

processors do not communicate with one another, however

on completion, we perform a reduceByKey2 operation

within Spark to group all tiles of the same image scene ID

for merging into the large extent output mask. The merging

operation for output mask reconstruction is performed by a

single worker. As illustrated from Fig. 9, the performance

bottleneck is more pronounced for workers executing on

6 GPUs or more. In addition, inferencing of fewer image

2While a typicalreduce operation within Spark collects all data into a single
data point, thereduceByKey collects all data intoN distinct data points, where
each datapoint is associated with a unique key from the data.

scene appears to incur the largest compromise on speed up.

The second aspect significantly influencing the observed perfor-

mance bottleneck is attributed to increased I/O read activities.

The computational efficiency introduced by RESFlow benefits

tremendously from the lazy evaluation of Spark RDD data

transformation. Throughout the pipeline, image data are only

read from disk at inference time for each corresponding image

tile. As a result, an increase in workers executing on more GPUs

concurrently, thereby adding to the I/O read count, considerably

compounds and causes a decrease in the compute performance.

Tables III–VI further illustrate computational efficiency across

a range imagery data sizes (or as measured in land area square

kilometers). To establish weak scaling, we increase the workload

on each GPU processor and also observe an improved weak

scaling aspect of the workflow. Each row shows the compute

time obtained for different area sizes for a fixed number of GPUs.

The results indicate a desirable scaling factor, i.e., computational

efficiency appears to increase as the land area to map (calculated

for number of image scenes) correspondingly increases. For

example, in Fig. 9, for 12 GPU-workers, the compute speed for

an area of 313.97 sq.km (or a single image coverage with data

size of 15.03 GB) is a 6.91× improvement over the baseline

of 35 min to process a single image scene. However, for an

increased workload or land area of 4141.16 sq.km (or 12 image

scenes with data size of 197.13 GB), the speed-up reaches 750×
over the baseline. This performance increase appears to be due

to fact that overall communication and system bottlenecks are

more dependent on the number of GPUs than on the land area.

We also evaluate the overall inference performance for vary-

ing input image size to the U-Net network architecture. Fig. 10

provides results for RGB image input of size 500× 500× 3,

800× 800× 3, 1000× 1000× 3, and 1500× 1500× 3. Infer-

ence is done in batches of size 12, 8, 5, and 2 image scenes, re-

spectively. Compute efficiency is observed to vary with network

completing inference at rate 1220 per seconds (or throughput

of 3.7 GB/s) for image tiles of size 500× 500× 3, which has

an equivalent area rate of 23.45 sq.km/s. Given the smaller size

in input image, I/O reads are increased putting a burden to the

NFS file system. By considering much larger input images not

only do we reduce the amount of I/O reads per image scene but

we also increase both the throughput and the equivalent land

area mapped. For example, with 1000× 1000× 3 input images

the network reaches a peak inference throughput of 6.59 GB/s

LUNGA et al.: APACHE SPARK ACCELERATED DEEP LEARNING INFERENCE 281

Fig. 10. Illustration of total area mapped per second for different image input
sizes on a Nvidia-DGX2-H Spark cluster.

(processing a total of 564 images/s) and equivalence of mapping

50.78 sq.km/s. At this rate, we posit that the GPU compute time

dominates the I/O read. However, when for much larger input im-

age sizes, we note a throughput degradation to level of 4.69 GB/s

(processing a total of 178 images/s) for 1500× 1500× 3 tiles.

Even though larger tiles increase the GPU utilization time they

also require allocation of larger memory footprint for the infer-

ence results.

IV. LARGE SCALE EXPERIMENTS

A. Training

We first evaluate several aspects of the training phase

in the SPARK-enabled GPU clusters. Taking advantage of

the partitioned image gallery, there is no interaction be-

tween buckets, turning the model training into an embar-

rassingly parallel task. As shown in Table II, the train-

ing speed scales with the complexity of the model (i.e.,

number of trainable parameters). Also, note that the total

time needed to achieve the model convergence is also lin-

ear to the number of training samples (total training time =
number of training samples × seconds/ sample). In Fig. 7, we

demonstrate the similar model training performance achieved

by a regular DGX-1 and a SPARK-enabled DGX-1. Because

of different network initialization conditions (as we trained

the models from scratch), the learning curves are not identical

under these two computing environments. Nevertheless, with

the fixed training hyper parameters, we can see the best F1

scores obtained from both computing platforms for these four

models are similar: Seg-Net and U-Net both deliver F1 scores

slightly above 0.7, DeepLab has F1 scores close to 0.7, and

ResNet50-FCN achieves F1 scores close to 0.65. In addition,

the training improvements become trivial after ∼25 epochs for

both computing environments except for ResNet50-FCN, which

requires longer training epochs (∼60 epochs) to get optimized

parameters.

B. Inference

We here present the large scale inferencing results produced

by the RESFlow model gallery on three states/countries: Puerto

TABLE VII
RESFlow DEPLOYMENT PERFORMANCE ON TWO-NODE NVIDIA-DGX2

SPARK CLUSTER

Rico, New Mexico of the United States, and South Sudan. Fig. 8

visualizes output building semantic segmentation maps across

varying geographies that encompass the abovementioned three

test sites. Finally, having evaluated the different components for

RESFlow, e.g., impact of varying number of workers for different

number of image to process in a single batch (see Fig. 9),

establishing the throughput bounds as a function of input image

size (see Fig. 10), we assess the scalability and applicability of

deploying the workflow as depicted in Section II on 14 TB of

imagery data covering the State of New Mexico. We select the

Two-node Nvidia-DGX2 Spark cluster to execute the task with

28 GPUs and batch size of 12 for image scenes. The pipeline

execution entails computing three deep learning tasks for each

image tile: deep feature extraction stage, a deep hashing stage,

and a deep semantic segmentation inference. The main goal for

the large scale deployment was to assess the performance of

our pipeline when deployed for production task. Therefore, we

account for both read and write (I/O) bottlenecks in addition

to the compute time. Table VII presents the throughput for this

workload.

This end-to-end inferencing workflow demonstrates large-

scale processing of vast amounts of satellite imagery. Averaging

a throughput of 0.243 GB/s (or 5.245 sq.km/s) inference of the

entire set of 1440 image scene completed in 21 h—A tremendous

achievement over a previous serial based inference workflow

that would have taken over 28 days to complete.

V. CONCLUSION AND FUTURE WORK

With a novel remote sensing data partitioning concept, this ar-

ticle presented a parallel inferencing workflow based on acceler-

ated AI deployment hardware. Demonstrated on the pixel label-

ing challenge, we extended herein, Apache Spark based satellite

imagery RDDs for processing with deep learning at scale and

demonstrated compute efficiency across TB of high-resolution

data covering land area equivalent of 787 300 sq.km. We

achieve unprecedented pixel labeling area rates of 5.245 sq.km/s,

amounting to 453 168 sq.km/day (or a daily capacity processing

of 21 028 TB) demonstrating a reduction of a 28 day workload

to 21 h. We further make an observation and identify work-

flow bottlenecks by studying compute speedup performance

metrics as the amount of GPU workers are increased. In order

to leverage Apache Spark to support deep feature learning and

accommodate the problem of model generalization, the remote

sensing data partitioning, the central concept in RESFlow, is

realized from a combined set of four modules. RESFlow ignites

optimism about a number of other relevant, and perhaps such

new research directions, including enabling faster search for

282 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

retrieval of images with similar content, combining human geog-

raphy and machine learning, e.g., establishing limiting bounds

and the performance of models learned from finer abstract and

deconflated geographical spaces, establishing robustness and

stability of learning models for objects that are rare in some

geographies and common in others. These directions involve

studying varying heterogeneous levels of imagery data and their

impact on training and inference tasks, and can potentially bene-

fit from sensor and geographic agnostic workflows as compared

to spatially constrained approaches. Other future directions: un-

derstanding the staging of geospatial workloads and deploying

containerized workflows on supercomputing platforms presents

a future research direction for our work. In addition, the work

can be extended by exploring methodologies to enable better ar-

chitectural design of computers specific to geospatial processing

to benefit more applications.

ACKNOWLEDGMENT

Additionally, we would like to acknowledge that this

manuscript has been authored by UT-Battelle, LLC under Con-

tract No. DE-AC05-00OR22725 with the U.S. Department of

Energy. The United States Government retains and the pub-

lisher, by accepting the article for publication, acknowledges that

the United States Government retains a nonexclusive, paid-up,

irrevocable, world-wide license to publish or reproduce the

published form of this manuscript, or allow others to do so,

for United States Government purposes.

REFERENCES

[1] H. L. Yang, J. Yuan, D. Lunga, M. Laverdiere, A. N. Rose, and B. L.
Bhaduri, “Building extraction at scale using convolutional neural network:
Mapping of the united states,” IEEE J. Select. Topics, Appl. Earth, Obser-

vations, Sensing, vol. 11, no. 8, pp. 2600–2614, Aug. 2018.
[2] L. Gueguen and R. Hamid, “Large-scale damage detection using satellite

imagery,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 1321–1328.

[3] R. Hamid, S. O’Hara, and M. Tabb, “Global-scale object detection using
satellite imagery,” in Proc. Int. Arch. Photogrammetry, Remote Sens.

Spatial Inf. Sci., vol. 40, no. 3, pp. 107–113, Jun. 2014.
[4] B. Bhaduri, E. Bright, P. Coleman, and M. L. Urban, “Landscan usa: A

high-resolution geospatial and temporal modeling approach for population
distribution and dynamics,” GeoJournal, vol. 69, no. 1, pp. 103–117,
Jun. 2007.

[5] B. Oshri et al., “Infrastructure quality assessment in africa using Satellite
imagery and deep learning,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.

Discovery Data Mining, 2018, vol. 18, pp. 616–625.
[6] A. Albert, J. Kaur, and M. Gonzalez, “Using convolutional networks and

satellite imagery to identify patterns in urban environments at a large
scale,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discovery Data

Mining, 2017, pp. 1357–1366.
[7] J. Sun et al., “An efficient and scalable framework for processing remotely

sensed big data in cloud computing environments,” IEEE Trans. Geosci.

Remote Sens., vol. 57, no. 7, pp. 4294–4308, Jul. 2019.
[8] G. Sumbul, M. Charfuelan, B. Demir, and V. Markl, “Bigearthnet: A large-

scale benchmark archive for remote sensing image understanding,” 2019,
arXiv:1902.06148.

[9] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected CRFs,” in Proc. 3rd Int. Conf. Learn. Representations, San
Diego, CA, USA, May 7–9, 2015, 2015. [Online]. Available: http://arxiv.
org/abs/1412.7062

[10] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image

Comput. Comput.-Assisted Intervention, 2015, pp. 234–241.
[11] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolu-

tional encoder-decoder architecture for image segmentation,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017.
[12] Y. Li, Y. Zhang, X. Huang, H. Zhu, and J. Ma, “Large-scale remote sensing

image retrieval by deep hashing neural networks,” IEEE Trans. Geosci.

Remote Sens., vol. 56, no. 2, pp. 950–965, Feb. 2018.
[13] S. Roy, E. Sangineto, B. Demir, and N. Sebe, “Deep metric and hash-code

learning for content-based retrieval of remote sensing images,” in Proc.

IEEE Int. Geosci. Remote Sens. Symp., Jul. 2018, pp. 4539–4542.
[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:

A large-scale hierarchical image database,” in Proc. Conf. Comput. Vis.

Pattern Recognit., 2009, pp. 248–255.
[15] “Apache hadoop.” 2019. [Online]. Available: http://hadoop.apache.org/

docs/rl.2.1/hdfs_design.html
[16] F. C. Jie Li and L. Zhu, “Remote sensing image segmentation based on

hadoop cloud platform,” Proc. SPIE, vol. 10620, 2018, Art. no. 106200S.
[Online]. Available: https://doi.org/10.1117/12.2283032

[17] R. Rajak, D. Raveendran, M. C. Bh, and S. S. Medasani, “High resolution
satellite image processing using hadoop framework,” in Proc. IEEE Int.

Conf. Cloud Comput. Emerg. Markets, Nov. 2015, pp. 16–21.
[18] Z. Lv, Y. Hu, H. Zhong, J. Wu, B. Li, and H. Zhao, “Parallel k-means clus-

tering of remote sensing images based on mapreduce,” in Web Information

Systems and Mining, F. L. Wang, Z. Gong, X. Luo, and J. Lei, Eds. Berlin,
Germany: Springer, 2010, pp. 162–170.

[19] J. Dean and S. Ghemawat, “Mapreduce: A flexible data processing tool,”
Commun. ACM, vol. 53, pp. 72–77, 2010.

[20] H. Shi, G. Hu, Jianfang Cao, M. Wang, and Y. Tian, “A new approach
for large-scale scene image retrieval based on improved parallel k-means
algorithm in mapreduce environment,” Math. Problems Eng., vol. 2016,
2016, Art. no. 3593975.

[21] W. Huang, L. Meng, D. Zhang, and W. Zhang, “In-memory parallel
processing of massive remotely sensed data using an apache spark on
hadoop yarn model,” IEEE J. Sel. Topics Appl. Earth Observ. Remote

Sens., vol. 10, no. 1, pp. 3–19, Jan. 2017.
[22] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster computing with working sets,” in Proc. 2nd USENIX Conf.

Hot Topics Cloud Comput., 2010, p. 10. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1863103.1863113

[23] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,” in in Proc. 9th USENIX Symposium

on Networked Systems Design and Implementation, 2012, pp. 15–28.
[24] W. Jing, S. Huo, Q. Miao, and X. Chen, “A model of parallel mosaicking

for massive remote sensing images based on spark,” IEEE Access, vol. 5,
pp. 18229–18237, 2017.

[25] Z. Sun, F. Chen, M. Chi, and Y. Zhu, “A spark-based big data platform
for massive remote sensing data processing,” in Proc. Int. Conf. Data Sci.,
Aug. 2015, pp. 120–126.

[26] R. Pittman, H. Guan, X. Shen, S.-H. Lim, and R. M. Patton, “Ex-
ploring flexible communications for streamlining DNN ensemble train-
ing pipelines,” in Proc. Int. Conf. High Perform. Comput., Netw., Stor-

age, Anal., 2018, pp. 64:1–64:12. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3291656.3291742

[27] A. Mathuriya et al., “Cosmoflow: Using deep learning to learn the
universe at scale,” in Proc. Int. Conf. High Perform. Comput., Netw.,

Storage, Anal., 2018, pp. 65:1–65:11. [Online]. Available: http://dl.acm.
org/citation.cfm?id=3291656.3291743

[28] T. Kurth et al., “Exascale deep learning for climate analytics,” in Proc. Int.

Conf. High Perform. Comput., Netw., Storage, Anal., 2018, pp. 51:1–51:12.
[29] T. Prakash and A. C. Kak, “Active learning for designing detectors for

infrequently occurring objects in wide-area satellite imagery,” Comput.

Vis. Image Understanding, vol. 170, pp. 92–108, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1077314218300390

[30] L. Yang, J. Shi, B. Chern, and A. Feng, “Open sourcing tensorflowonspark:
Distributed deep learning on big-data clusters,” 2017. [Online]: Available:
https://developer.yahoo.com/blogs/157196317141/, Accessed: Jun. 2019.

[31] T. Hunter, “Tensorframes on google’s tensorflow and apache spark,” Bay
Area Spark Meetup, 2016. [Online]: Available: https://databricks.com/
session/tensorframes-deep-learning-with-tensorflow-on-apache-spark,
Accessed on: Jun. 2019.

[32] M. Abadi et al., “Tensorflow: A system for large-scale machine learning,”
in Proc. 12th Symp. Operating Syst. Des. Implementation, 2016, pp. 265–
283.

http://arxiv.org/abs/1412.7062
http://hadoop.apache.org/docs/rl.2.1/hdfs_design.html
https://doi.org/10.1117/12.2283032
http://dl.acm.org/citation.cfm{?}id$=$1863103.1863113
http://dl.acm.org/citation.cfm{?}id$=$3291656.3291742
http://dl.acm.org/citation.cfm{?}id$=$3291656.3291743
http://www.sciencedirect.com/science/article/pii/S1077314218300390
https://developer.yahoo.com/blogs/157196317141/
https://databricks.com/session/tensorframes-deep-learning-with-tensorflow-on-apache-spark

LUNGA et al.: APACHE SPARK ACCELERATED DEEP LEARNING INFERENCE 283

[33] A. Paszke et al., “Automatic differentiation in pytorch,” in Proc Conf.

Neural Info. Process. Syst. Workshop, 2017, pp. 1–4.
[34] GDAL/OGR contributors, GDAL/OGR Geospatial Data Abstraction Soft-

ware Library, Open Source Geospatial Foundation, 2018. [Online]. Avail-
able: http://gdal.org

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2016,
pp. 770–778.

[36] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolu-
tional encoder-decoder architecture for image segmentation,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017.
[37] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.
[38] I. Demir et al., “DeepGlobe 2018: A challenge to parse the earth through

satellite images,” in Proc. Conf. Comput. Vis. Pattern Recognit. Workshops,
2018, pp. 182–186.

Dalton Lunga received the Ph.D. degree in electrical
and computer engineering from Purdue University,
West Lafayette, IN, USA, in 2012.

He is currently a Geospatial and Machine Learn-
ing Scientist within the Geographic Data Sciences
Group, Oak Ridge National Laboratory. His techni-
cal background includes image processing, statistical
machine learning, remote sensing, and geospatial data
analysis. He currently conducts research and devel-
opment in machine learning techniques and advanced
workflows for handling large volumes of geospatial

data. Prior to ORNL, he was a Machine Learning Research Scientist with the
Council for Scientific and Industrial Research, South Africa on a variety of
projects. His research interests are in domain adaptation,manifold learning,
and unsupervised representation learning using deep learning approaches for
geospatial imagery analytics.

Jonathan Gerrand received the B.Sc and M.Sc.
degrees in electrical engineering from the University
of the Witwatersrand, Johannesburg, South Africa, in
2015 and 2017, respectively. He is currently working
toward the Ph.D. degree with the School of Computer
Science and Applied Mathematics, University of the
Witwatersrand, Johannesburg, South Africa.

He was an Intern with the National Emerging Tech-
nologies Division, Oak Ridge National Laboratory.
His research focuses on attention-based modeling of
domain-specific imagery.

Lexie Yang received the Ph.D. degree in civil engi-
neering and Statistics Certificate in applied statistics
from Purdue University, West Lafayette, IN, USA, in
2014.

She is currently a Research Scientist with the
National Emerging Technologies Division, Oak
Ridge National Laboratory, Oak Ridge, TN, USA.
Her research focus on high-performance machine
learning approaches for large scale data analysis,
transfer learning and data fusion for multimodal-
ity/multisource remote sensing images, and automate
feature learning with deep learning methods.

Christopher Layton received the B.A. degree in psy-
chology from the University of Memphis, in 1998. He
is currently a Linux Systems Engineer with the Com-
pute and Data Environment for Science (CADES),
Oak Ridge National Laboratory (ORNL), Oak Ridge,
TN, USA. He has over two decades of experience
supporting Linux environments in both scientific and
commercial arenas. His current work is in support
of the scientific effort with ORNL. This work in-
cludes overseeing all aspects of a lab wide private
cloud, HPC, and implementing and supporting unique
systems such as the NVIDIA DGX1/2.

Robert Stewart received in Ph.D. degree in geog-
raphy from the University of Tennessee, in 2014. He
leads the Geographic Data Science Group, Oak Ridge
National Laboratory, Oak Ridge, TN, USA. He is a
Joint Faculty Assistant Professor in Geography with
the University of Tennessee, Knoxville, TN, USA.
His work spans a number of analytical domains in-
cluding machine learning, spatio-temporal analytics,
uncertainty quantification, geostatistics, data mining,
and visualization. Areas of application range equally
wide including population dynamics, socioeconomic

analytics, urban dynamics, transportation, energy-water nexus, risk assessment,
and decision support.

http://gdal.org

