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Abstract
Albeit Deep neural networks (DNNs) are widely used in computer vision, natural
language processing and speech recognition, they have been discovered to be fragile to
adversarial attacks. Specifically, in computer vision, an attacker can easily deceive DNNs
by contaminating an input image with perturbations imperceptible to humans. As one of
the important vision tasks, face verification is also subject to adversarial attack. Thus, in
this paper, we focus on defending against the adversarial attack for face verification to
mitigate the potential risk. We learn a network via an implementation of stacked residual
blocks, namely adversarial perturbations alleviation network (ApaNet), to alleviate latent
adversarial perturbations hidden in the input facial image. During the supervised learning
of ApaNet, only the Labeled Faces in the Wild (LFW) is used as the training set, and the
legitimate examples and corresponding adversarial examples produced by projected
gradient descent algorithm compose supervision and inputs respectively. By leveraging
the middle and high layer’s activation of FaceNet, the discrepancy between an image
output by ApaNet and the supervision is calculated as the loss function to optimize
ApaNet. Empirical experiment results on the LFW, YouTube Faces DB and CASIA-
FaceV5 confirm the effectiveness of the proposed defender against some representative
white-box and black-box adversarial attacks. Also, experimental results show the supe-
riority performance of the ApaNet as comparing with several currently available
techniques.
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1 Introduction

Recently, deep neural networks (DNNs) have achieved remarkable performance in computer
vision tasks, including sign language recognition [35], salient object detection [17], anomaly
crowded detection [18] and so on. As one of the important computer vision tasks, facial
biometric research based on DNNs has also greatly advanced [41] and related applications
have been deployed in surveillance and access control, such as payment, public access,
criminal verification [1].

However, Szegedy et al. [39] first discover that elaborately designed adversarial examples,
which are imperceptible to humans, can easily deceive DNNs. Since then, numerous of
attacking methods have been proposed in literature [30, 48]. Similarly, facial analysis appli-
cations based on DNNs also tend to be brittle to adversarial examples. For instance, Rozsa
et al. [31] propose fast flipping attribute attacking to alter the result of the facial attribute
recognition. Mirjalili and Ross [24] perturb a face image such that sole gender attribute is
flipped whereas other biometric information remains unchanged. Chhabra et al. [3] also design
adversarial perturbations to alter selected attributes while preserving identity information and
visual content.

With the advent of the Era of Internet and cloud technology, the digitization of users’
personal information has become an irresistible trend [20]. The resulting user privacy issues
have been widely concerned. The European Community has issued a new regulation, named
General Data Protection Regulation (GDPR), to ensure users have greater control over the data
they provide. Facial image is one of the most important personal information for users and is
usually used for identity verification in face recognition system [27]. The problem of face
image leakage will aggravate the threat of adversarial attack to the face recognition models.

To counteract the attacks, a plethora of defending approaches have emerged accordingly
which roughly fall into four categories: The first is adversarial training [22], as a type of data
augmentation scheme, to boost the model’s robustness to adversarial perturbations. The second
is defensive distillation. Papernot et al. [28] train the classifier in a certain way such that it is
nearly impossible for gradient based attacks to generate adversarial examples directly on the
network. The third is adversarial examples detection. Fan et al. [7] present an integrated
detection framework involving statistical detector and Gaussian noise injection detector.
Massoli et al. [23] propose a facial adversarial detection in which the attacked model typically
only acts as the feature extractor. The fourth is perturbation cleaning before the analysis by the
model. Xie et al. [45] use randomization as a defender. The input images are randomly resized
and added random padding prior to the target network to reduce the influence of adversarial
perturbations. Jia et al. [16] design an image compression model composed of a compression
module and a reconstruction module to purify the adversarial perturbations.

The adversarial examples of the two attacks are shown in Fig. 1. Then, we learn an
adversarial perturbations alleviation network (ApaNet) via an implementation of stacked
residual networks, to mitigate adversarial perturbations injected into the input image. The
third row in Fig. 1 demonstrates the results obtained by our proposed ApaNet. Specifically,
given pairs of legitimate images and its adversarial version produced by PGD, as supervision
and input respectively, the ApaNet is supervised learned by minimizing a loss function, in
which representations of FaceNet, are leveraged to measure the distance between the image
output by ApaNet and the supervision legitimate image (see Fig. 2). The motivation behind our
proposed loss function is that middle and high layer’s feature maps are more related to the
ultimate task performance and convey more semantic features. Both training and testing of the
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ApaNet are efficient and the empirical results confirm that the network is capable of
counteracting both white-box and black-box attacks.

We summarize our contributions as follows:

1) We design ApaNet, which is a network with an implementation of stacked residual blocks
to alleviate the adversarial perturbations. Supervised learning of ApaNet is efficient and
stable with a moderate size of training examples.

2) We propose a novel loss function to optimize ApaNet. The middle and high representa-
tions of FaceNet, the target network, are leveraged to measure discrepancy between the
output image of ApaNet and the supervision legitimate image for the loss function.

Fig. 1 Adversarial examples and perturbations alleviated examples of dodging attack (a) and impersonation
attack (b). The value between two images measures their similarities. A smaller value tends to give one identity
decision whereas a larger value tends to give two distinct identities decision. The validation threshold = 1.1

Fig. 2 The overview of proposed defense framework based on ApaNet. (a) shows the training phase of ApaNet
with the assistance of FaceNet. (b) shows ApaNet protects FaceNet against impersonation and dodging attacks
during the test phase
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3) We conduct comprehensive experiments to verify the effectiveness of ApaNet as defend-
er. The empirical results confirm that it is superior to compared methods for defending
both white-box attacks and black-box attacks on the Labeled Faces in the Wild (LFW)
[15], YouTube Faces DB [44] and CASIA-FaceV5 [47].

2 Related work

2.1 Deep face recognition

The development of face recognition has been greatly facilitated by DNNs. DeepFace [41]
define face recognition as a multi-class classification problem and use a DNNs model trained
with softmax loss to identify faces. FaceNet [33] is trained by minimizing a triplet loss and
outputs embeddings within a Euclidean space to measure face similarity. CosFace [43]
propose a large margin cosine loss to maximize a cosine margin term in the angular space
for face recognition task. PocketNet [2] is an extremely lightweight and accurate face
recognition system which employed a multi-step knowledge distillation to enhance its verifi-
cation performance. D-FES [36] use the recurrent neural network to detect human emotions
based on the facial lips structure which can accurately track and classify face emotions in a
real-time environment. During the Covid-19 pandemic, Face Mask Detection System [26] is
designed for verifying whether a person wears a mask which used model pruning to implement
embedded deployment.

2.2 Adversarial attacks

Goodfellow et al. [9] propose an efficient and single step attack, Fast Gradient Sign Method
(FGSM). Moosavi Dezfooli [25] propose DeepFool which compute the minimal distortion
required to force the target model to give a false output. Carlini & Wagner (CW) [37] use an
optimization algorithm to tailor adversarial attacks. Madry et al. [22] propose PGD, an iterative
attack which is widely used in adversarial training or to evaluate the adversarial robustness of
model. Papernot et al. [29] find that adversarial examples are transferable from model to
model. Attackers implement black-box transfer-based attacks by training their own substitute
model and crafting adversarial examples against the substitute. Without accessing to DNN’s
parameters, Li et al. [19] estimate a probability density distribution for a neighborhood of the
input such that a sample drawn from it is almost adversarial (NATTACK). Sharif et al. [34]
develop a physical attack by printing an eyeglass frame to fool the face recognition system in
real world. Duan et al. [6] camouflage physical-world adversarial images with a natural style
that is invisible to human. Dabouei et al. [4] present a fast landmark manipulation method
based on the geometric features of faces to form adversarial examples. Rozsa et al. [32]
introduce the layer-wise origin-target synthesis that imitates the deep features of the target to
produce adversarial examples (LOTS).

2.3 Adversarial defenses

Defense on neural networks is much more challenging compared with attacks. We summarize
some ideas of current approaches to defense and compare them with our work as show in
Table 1.
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Adversarial training One idea of defending against adversarial examples is to train a better
classifier. Madry et al. [22] use adversarial example for iterative training to improve the
robustness of the model. Tramèr et al. [42] propose “ensemble adversarial training”. Addi-
tional adversarial examples produced from external pre-trained models are used to enrich
training data so as to improve the robustness to the transferred examples. Xie et al. [46] find
that the ReLU activation function weakens adversarial learning, and propose smooth adver-
sarial learning which can improve the robustness of the model without reducing the accuracy.

While adversarial training is regarded as one of the most effective defenders, its relatively
high complexity remains an incompletely settled problem. Our approach is orthogonal to this
branch of work. ApaNet is an additional defense framework that does not require modification
to the target classifier.

Defensive distillation Papernot et al. [28] prove that the model’s sensitivity to small pertur-
bations can be suppressed by high temperature softmax and proposed defensive distillation
mechanism accordingly. The distillation model hides the gradient between the pre-softmax
layer (logits) and softmax outputs which defend against gradient-based attacks. However,
attackers can still evade defensive distillation by transfer-based attacks or calculating gradients
using logits instead of softmax output.

We argue that in defense-aware attack where the attacker knows the parameters of the
defense network, it is very difficult to prevent adversaries from crafting adversarial examples.
Instead, as a perturbation alleviation network, ApaNet is still defensive against defense-aware
attacks (in Section 4.3.3).

Detection Another idea of defense is to detect adversarial examples before data is entered into
themodel. Deb et al. [5] propose “FaceGuard”, a self-supervised adversarial defense framework
which can detect adversarial face images without training adversarial examples. Hu et al. [14]
propose a two-streammethod by analyzing the frame-level and temporality-level information to
detect compressed deepfake video. Liao et al. [21] design an order forensics framework for
detecting image operator chain which can capture both tampering artifact evidence and local
noise residual evidence. Goswami et al. [11] study a methodology for automatic attack
detection using the response from hidden layers of the DNNs and a technique of selective
dropout in the DNNs to diminish the effect of adversarial attacks. However, the above detectors
do not generalize well across different dataset and different attack generation processes.

Perturbation cleaning Perturbation cleaning methods remove any possible adversarial pertur-
bations from the image in the input phase. Guo et al. [13] use image transformations before
feeding the adversarial inputs into the system, such as bit-depth reduction, JPEG compression, etc.
Goel et al. [8] develope a SmartBox for benchmarking the performance of adversarial attack
detection and mitigation algorithm on face recognition task. The above methods can effectively

Table 1 A comparison of referred defense methods

Types of defenses Retraining target model Defense-aware attack Generalization

Adversarial training Required Defensible Well
Defensive distillation Required Indefensible Well
Detection Not required Defensible Poor
Perturbation cleaning Not required Defensible Well
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remove the disturbance by irreversibly deforming the image, and then inevitably reduce the
performance of the target model. For face validation model, the input data is generally the face
image with high definition and rich texture features. The existing perturbation cleaning methods
perform poorly in the face verification task which destroy the important facial information easily.

ApaNet is also a defense method by cleaning perturbation. Contrary to previous work, we
do not use the distance in pixels between adversarial images and legitimate images as the
supervision information. Instead, we use the deep feature representation of the target model to
learn a reasonable mapping from the adversarial images to the legitimate ones, which can
maintain the baseline accuracy of the target model. Further, since the perturbation alleviated
images fit the legal input distribution of the target model, ApaNet has good generalization in
diverse adversarial attacks and datasets.

3 Methodology

3.1 An overview of the proposed ApaNet

The architecture of defense method for face verification includes a generative network called
ApaNet and a pre-trained FaceNet, as shown in Fig. 2. ApaNet is a fine image reconstruction
network, which aims to alleviate latent adversarial perturbations on face images. FaceNet is an
excellent face verification model as the instance of such DNNs without loss of generality. In
our work, FaceNet is taken as the target network protected by ApaNet, and its weight
parameters did not change in the training or test phase.

In the training phase, the ApaNet which is in the service of mitigating adversarial pertur-
bations, is learned with the aid of FaceNet. As the parameters of ApaNet are optimized via
supervised learning, in which the supervision information is legitimate image and correspond-
ing adversarial image, the network intrinsically learns a mapping from adversarial image to
legitimate image. It is undoubtedly that designing an effective loss function evaluating the
discrepancy between an output image and legitimate image is substantially important for
ApaNet. Thus, by leveraging the middle and high layer’s activation of FaceNet, we propose
a loss function through comparing the distance between the multi-layers’ activation for the
output image and legitimate image respectively. In our work, the adversarial images used
during training are produced by attacking FaceNet using PGD algorithm.

In the testing phase, each face images are cleaned by ApaNet and then input to FaceNet for
identity verification. As shown in Fig. 2(b), the input image awaiting verification is forged as
the identity of the reference ‘A’ by impersonation attack. After pre-cleaning by ApaNet,
FaceNet can correctly identify the identity of the person in the image. Similarly, under dodging
attacks, the image to be verified and reference ‘B’ is judged by FaceNet as different identities.
After ApaNet cleaning, two images with the same identity will be correctly verified. It should
be emphasized that ApaNet also performs the same input processing on legitimate images
which will not affect its verification accuracy in FaceNet.

3.2 The structure of FaceNet and ApaNet

In this section, the structure of the selected target model FaceNet and the proposed ApaNet are
described in detail.
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FaceNet FaceNet is a unified system of including a batch input layer, a network followed by a
L2 normalization layer, and outputs an embedding as a facial descriptor. The major contribu-
tion of FaceNet is the triplet loss employed to minimize intra-class distance and maximum
inter-class distance. According to the used basic network, FaceNet has multiple implements,
and the adopted FaceNet in our work is based on Inception-Resnet-V1 network [40] illustrated
in Fig. 3(a). The training set is MS-Celeb-1 M [12] and the dimension of output embedding is
128. In our work, the output feature of Reduction-B block, dropout layer and the final
embedding within FaceNet are used to construct training losses for ApaNet.

ApaNet Inspired by Generative Adversarial Networks [10], we use eight residual blocks and
the layers within each residual block to construct a generative network, which are illustrated in
Fig. 3(b). Except for the last convolutional layer, the sizes of all convolutional filters in the
network are 3 × 3 × 64 and 9 × 9 × 3 for the last convolutional layer. In addition, Batch
Normalization (BN) layers is added to normalize the input (to have zero mean and variance),
which is beneficial for stability training. Considering the bounded activation allows the model
to learn more quickly to saturate and cover the color space of the training distribution, the
ReLU activation is used in the ApaNet. Meanwhile, we use Tanh activation function in the
output layer of ApaNet to achieve its rapid convergence. Since we more concern the classi-
fication result of the output image than its visual perceptual quality, we do not adopt the
“discriminator” part as generator supervision. Instead, we attempt to seek a loss function
directly relating to verification performance and induce more semantic features for the output
image. Overall, the learning of ApaNet is efficient and stable, and as well as has the direct

Fig. 3 The structure of FaceNet (a) and ApaNet (b)
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connection with the performance of the target network. The optimization is discussed in
detailed in section 3.3.

3.3 The optimization of ApaNet

Since we more concern the verification result of the output image than its visual perceptual
quality, we leverage the representations extracted from middle and high layers of FaceNet due
to their more semantic concepts rather than the difference between pixel values. In other
words, for each pair of output image and legitimate image, minimizing loss function should
encourage them to be close in middle and high layer feature space so as to recover the genuine
identity of the adversarial example as far as possible. Fortunately, the optimization target
coincides with the visual perceptual quality which is demonstrated by our experiment results
(see Fig. 4). With an increasing of the number of selected feature maps, the computing
consumption will be more intense whereas loss will more precisely represent the discrepancy
between output and legitimate image, which implies an efficiency and efficacy trade-off. Thus,
we extract three features from Reduction-B block output, dropout layer output and the final
128-dimensional embedding output as descriptors for the output image and legitimate image
respectively. Then we calculate respective distance between the two descriptors, and take the
weighted sum of the three distances as loss function. In following detailed explanation IO and
IL denote output image during training and legitimate image respectively.

The first loss item The outputs of Reduction-B block are the aggregations of the features
extracted from the previous blocks. ϕB(x) denotes the feature extracted from the output of
Reduction-B block and has a shape CB × HB × WB. This loss item LB is defined as follows:

LB ¼ 1

CBHBWB
ϕB IOð Þ−ϕB ILð Þk k22 ð1Þ

Fig. 4 A set of images from LFW dataset that including legitimate images, adversarial images and corresponding
perturbations alleviated images by ApaNet for different white-box attacks

7450 Multimedia Tools and Applications (2023) 82:7443–7461



The second loss item Dropout is a simple way to prevent neural networks from over-fitting
and improves the performance of neural networks on supervised learning tasks. The feature
maps of this layer in FaceNet plays a very important role in semantic representation. ϕD(x)
denotes the feature extracted from the output of dropout layer and has a shape CD × HD × WD.

This loss item LD is calculated as follows:

LD ¼ 1

CDHDWD
ϕD IOð Þ−ϕD ILð Þk k22 ð2Þ

The third loss item The loss item LE is to measure verification task errors for IO and IL. It
depends on their embeddings of FaceNet and the squared Euclidean distance d between them.
This loss item LB is defined as follows:

d ¼ ∑128
k¼1 EIO

k −EIL
k

� �2 ð3Þ

Score ¼
0:5þ d−ηð Þ � 0:5

4−η
0:5� d

η

8>><
>>:

; d > η
; d < η

ð4Þ

LE ¼ −log 1−scoreð Þ ð5Þ
where η is a threshold, EIO∈R and EIL∈R respectively denote the embedding for IO and IL. The
definition of this loss item implies that the verification result for output image and legitimate
image is expected to be the same identity that is towards the ultimate verification goal.

In sum, the final joint loss function LFeature is formed with a weighted sum of the three loss
items:

LFeature ¼ α � LB þ β � LB þ γ � LB ð6Þ
Considering the magnitude difference above the items, the weighting values α, β, γ are
properly set as 1, 100 and 0.1 to adjust and normalize the value distribution range of the three
losses items.

4 Experiment

4.1 Datasets

We evaluate our method on three datasets, including LFW, YouTube Faces DB and CASIA-
FaceV5. All datasets are processed by MTCNN [49] for face detection and cropping.

LFW Labeled Faces in the Wild (LFW) is an academic dataset for face authentication which
contains more than 13,000 face images of 5749 people.
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YouTube faces DB It is a well-known dataset that has been widely used in the field of face
recognition. Its organization is similar to LFW and pairs of video frame sequences are
constructed instead of pairs of images in LFW.

CASIA-FaceV5 It is an Asian face dataset collected by Chinese Academy of Sciences which
contains 2500 colour facial images of 500 subjects.

4.2 Experimental setting

We evaluate the defense performance of the proposed ApaNet on face verification task. The
training set used to learn ApaNet is generated from LFW dataset, and validation set is
constructed from the three datasets.

Evaluate rules: given a pair of two face images, a squared L2 distance threshold is used to
determine the classification of same and different. Specifically, two embedding are extracted
by FaceNet for an input image and a reference image respectively and then the distance
between them is calculated using Eq.(3). Compared with the threshold, if the distance is larger,
the input image is verified as an identity different from the reference image; otherwise verified
as the same identity as the reference image. The performance of ApaNet is evaluated by a ratio
of number of correctly verified image pair to total number of image pairs. In following, we will
use ‘accuracy’ to refer to the performance.

Training set First, we choose 2000 pairs of same-identity images and 2000 pairs of different-
identity images from LFW dataset. Then we use PGD in APPENDIX A.1 to attack the one in
the pair of same-identity images and generate dodging adversarial examples. Still attack the
one in the pair of different-identity images to generate impersonation adversarial examples.
These adversarial examples and corresponding legitimate ones compose a training set to learn
the perturbations alleviation network. Required parameters are: the attack strength ε = 0.1, the
attack step size α = 0.01, the number of attack iterations n = 20.

Validation set with threshold According to [33], we choose approximately equal numbers of
pairs of same-identity and different-identity images in each dataset and calculate their dis-
tances. The optimal distance threshold is selected under the equal error rate assessment of
same-identity verification and different-identity verification. Table 2 shows the number of
image pairs to calculate threshold on the LFW, YouTube Faces DB and CASIA-FaceV5
datasets which are also used as validation sets to evaluate ApaNet. In detail, the pairs of same-
identity images are used to evaluate dodging attack, and the pairs of different-identity images
are used to evaluate impersonation attack. The training set and validation set are completely
independent in terms of image and identity.

Table 2 The number of images for validation and the corresponding thresholds on each dataset

LFW YouTube Faces DB CASIA-FaceV5

Same-identity 1135 333 740
Different-identity 1195 333 880
Threshold 1.10 0.95 0.48
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4.3 Experiment results

4.3.1 The defending against white-box attacks

We evaluated the effectiveness of ApaNet on LFW, YouTube Faces DB and CASIA-FaceV5
datasets. In this experiment, we compare the proposed defense with other perturbation cleaning
methods including Randomization [23], ComDefend [45], TVM [13] and Gaussian blurring
[8]. We evaluate their performances on six white-box attacks: PGD [22], FGSM [9], DeepFool
[25], CW [37], LOTS [32] and WU1 in Table 3. We leave the detailed attack algorithms in
APPENDIX A. Each testing set contains the dodging and impersonation adversarial examples.
We report the performance of ApaNet under three datasets in Tables 3, 4 and 5 respectively.
For YouTube Faces DB and CASIA-FaceV5 datasets, we just choose Gaussian blurring with
the best defense performance as the comparison method. It is obvious that ApaNet has the best
defense performance in FaceNet compared to the comparison methods. In the LFW dataset,
FaceNet could hardly correctly identify adversarial examples. However, under the protection
of ApaNet, the recognition accuracy of all kinds of adversarial examples in FaceNet reached
more than 95%. In the YouTube Faces DB and CASIA-FaceV5 datasets, the recognition
accuracies of all kinds of adversarial example in FaceNet are above 90% and 75% under our
defense. The results indicate that ApaNet learned with PGD examples has a satisfied gener-
alization for different attacks and its joint use with FaceNet performs best among the compared
approaches. For the evaluated attacks, a collection of legitimate images, adversarial images and
perturbations alleviated images by ApaNet are shown in Fig. 4. We illustrate more visual
results in APPENDIX B Figs. 5, 6 and 7.

4.3.2 The defending against black-box attacks

In this experiment, we evaluate the ability of ApaNet on defending against black-box attacks
on LFW, YouTube Faces DB and CASIA-FaceV5 datasets. Here, the transfer-based attacks
[29] and the NATTACK [19] are selected to verify its effectiveness. For the transfer-based
attacks, we choose CosFace model as an alternative model due to its availability and its fine
performance for face verification. Then we attack this model using the above white-box attack
method to generate adversarial examples for FaceNet. It needs to be explained that LOTS and
WU which designed for FaceNet don’t support transfer-based attacks. On the other hand,
NATTACK is a excellent black-box attack method which can defeat both vanilla DNNs and
various defence techniques developed recently. Compared to white-box attacks, black-box
attacks have a lower success rate against FaceNet without any defense, but they are more of a
threat to real-world facial-recognition systems. The results illustrated in Table. 6 confirm that
ApaNet learned using PGD examples also has a flexible adaptation for transfer-based black-
box attacks.

4.3.3 The defending against defense-aware attacks

We assume that the adversary knows our proposed defence in advance and also has knowledge
of the perturbations alleviation network (defense-aware attack). In this experiment, we test the
attacking ability of PGD when it is used to attack the two networks simultaneously, namely

1 https://github.com/ppwwyyxx/Adversarial-Face-Attack
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perturbations alleviation network and FaceNet. For comparison, we also list the attacking rate
of sole FaceNet attacked. The results in Table 7 confirm that the using of perturbations
alleviation network has greatly boosted the ability of counteracting attacks.

4.3.4 The ablation experiment on different loss functions

This experiment aims to confirm the necessity and effectiveness of joint loss function and
compare the performance using different sole loss item. And the dodging and impersonation
adversarial examples are generated by PGD on LFW datasets. The results in Table 5 indicate
that joint using of the three loss items outperform the other sole loss item with a large margin,
which is consistent with our expectations. Especially, the result using the difference between
pixel values as loss function is the lowest for dodging and impersonation adversarial examples
and it has confirmed that essentially different characteristics between output image and
legitimate image are conveyed by the middle and high layers. As the legitimate image is also
processed by ApaNet during testing, we also test the performance on the legitimate examples
to explore how ApaNet impacts them. The last row of Table 8 shows there is only a slight

Table 3 The accuracy of FaceNet under different white-box attacks (Dodging /Impersonation) on LFW dataset
(%)

LFW PGD FGSM DeepFool CW LOTS WU

No Defense 0.1/7.7 8.8/17.1 1.3/7.1 0.3/7.5 3.0/6.4 2.3/2.1
Randomization 55.8/61.8 65.3/61.8 74.5/76.3 72.1/71.5 8.0/11.8 7.5/8.5
ComDefend 3.6/5.4 31.8/64.9 9.3/7.0 3.6/7.0 24.5/32.5 21.0/28.0
TVM 8.1/4.4 46.0/47.9 6.6/7.6 5.3/4.2 15.2/17.8 29.4/35.0
Gaussian blurring 78.4/78.6 84.8/85.9 86.5/86.1 86.1/86.6 12.0/14.5 15.5/16.6
ApaNet 99.2/98.3 96.9/99.4 98.9/98.6 98.8/99.9 70.0/83.6 96.3/100.0

The bold entries in table means our proposed method and the best results

Table 4 The accuracy of FaceNet under different white-box attacks (Dodging /Impersonation) on YouTube
Faces DB dataset (%)

YouTube Faces DB PGD FGSM DeepFool CW LOTS WU

No Defense 11.0/32.5 13/33.0 7.4/19.7 26.9/37.6 23.2/53.9 17.5/34.9
Gaussian blurring 72.5/74.6 76.5/77.1 77.8/76.4 74.5/77.8 56.5/63.4 66.7/68.6
ApaNet 92.5/93.6 94.3/95.6 91.9/92.5 94.8/93.0 97.5/98.2 98.7/99.5

The bold entries in table means our proposed method and the best results

Table 5 The accuracy of FaceNet under different white-box attacks (Dodging /Impersonation) on CASIA-
FaceV5 dataset (%)

CASIA-FaceV5 PGD FGSM DeepFool CW LOTS WU

No Defense 12.0/23.5 11.5/26.8 17.4/27.2 16.5/28.7 19.5/23 2.2/7.3
Gaussian blurring 47.8/57.2 52.3/56.5 47.5/48.9 41.1/48.6 47.5/49..7 65.2/43.2
ApaNet 83.4/70.2 87.3/77.9 75.3/76.5 76.3/75.8 75.8/73.3 78.9/61.0

The bold entries in table means our proposed method and the best results
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decrease for accuracy. In sum, ApaNet optimized with the joint loss function is considerably
effective on diminishing adversarial perturbations.

4.4 Discussion

According to the Manifold Hypothesis [38], for most AI tasks, the full sample space is located
in high dimensions, but the effective data we can grasp lie actually on a manifold with a lower
dimension. This suggests that the legitimate examples are on a manifold, and adversarial
examples are off the manifold with high probability. From the flexible adaptability of ApaNet
to various white-box attacks and black-box attacks, we can deduce that the adversarial
examples produced by PGD attack locate in a dense region of adversarial examples and can
be taken as an anchor in that region. In addition, according to the perspective that the PGD
attacked examples leave the manifold, we infer that they are not far away from manifold as the
legitimate examples on manifold have a slight decline of accuracy after the legitimate
examples are processed by ApaNet.

Table 6 The accuracy of FaceNet under different black-box attacks (Dodging/Impersonation) on different
datasets (%)

Dataset Defense Type PGD FGSM DeepFool CW NATTACK

LFW No Defense 62.6/15.5 70.9/12.5 76.5/10.5 62.3/15.1 14.3/16.6
ApaNet 78.3/92.6 79.3/92.3 80.1/91.5 77.4/92.7 93.2/98.6

YouTube Faces DB No Defense 54.2/23.5 65.3/34.5 57.2/25.6 53.2/19.8 7.5/14.2
ApaNet 73.7/87.5 82.5/97.6 77.7/86.7 74.9/84.3 89.5/94.3

CASIA-FaceV5 No Defense 57.5/25.0 75/27.4 53.4/19.5 49.5/14.1 10.7/13.6
ApaNet 70.8/67.8 75.9/75.7 69.4/74.4 72.3/73.4 87.5/85.3

Table 7 The success rates of PGD attacking FaceNet and the combination of ApaNet and FaceNet (%)

Dataset Targeted model Dodging Impersonation

LFW FaceNet 99.9 92.3
ApaNet+FaceNet 35.1 38.4

YouTube Faces DB FaceNet 89.0 67.5
ApaNet+FaceNet 30.0 23.5

CASIA-FaceV5 FaceNet 88 76.5
ApaNet+FaceNet 36.7 40.5

Table 8 The accuracy of FaceNet under the protection of ApaNet optimized with different loss functions (%)

Input type Pixel-level loss Reduction loss Dropout loss Embedding loss Joint loss

Dodging 10.9 51.6 70.9 72.6 99.2
Impersonation 52.4 73.8 85.6 87.4 98.3
Legitimate 98.1 97.2 96.3 95.7 97.8

The bold entries in table means our proposed method and the best results
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5 Conclusion

In this paper, we investigate how to defend target DNNs in face verification scenario by
alleviating adversarial perturbations injected into the input facial image. Specifically, we
design ApaNet which is implemented with stacked residual structures. Then we employ
FaceNet as target network and PGD attack to generate dodging and impersonation adversarial
examples, along with the corresponding legitimate counterparts as supervision. To have a
supervised learner for ApaNet, we define a joint loss function which measures the discrepancy
between the output image and legitimate image depending on the representations from the
output of Reduction-B block, dropout layer and the final embedding layer of FaceNet. The
representations of these layers convey more semantic information and are crucial for alleviat-
ing effects. The ablation experiment confirms the advantage of joint using of the three loss
items over the sole loss item. In addition to PGD attack, ApaNet has shown a satisfied
generalization on FGSM, CW, DeepFool, LOTS, WU attacks and even is capable of resisting
black-box attacks including transfer-based attacks and NATTACK. Especially, compared with
several currently available defensive techniques, the proposed ApaNet performs better. It is
worth emphasizing that the training of ApaNet is based on LFW dataset, its testing has
extended to YouTube Faces DB and CASIA-FaceV5 so as to show its generalization across
datasets.

Although we focus on face verification task, the mechanism proposed in our work can be
readily extended to other applications, for instance, image classification, object detection and
semantic segmentation. In addition, the network that serves for constructing loss function, like
FaceNet, could be an adversarial trained version. In the future, we will develop investigation
towards these aspects.

Appendices

A detailed attack algorithm

The method of attacking FaceNet through classifier conversion

Once the feature is extracted from embedding of FaceNet, Eq.(3 ~ 5) can be used to convert
attacking FaceNet into attacking a binary classifier in our work. At this point, Eq.(5) is used as
the loss function of classifier for implementing attack based on gradient. Take FGSM and PGD
for example. The adversarial examples can be expressed in the following formula (‘+‘for
dodging, ‘-‘for impersonation):

Xadv
FGSM ¼ X � ε � sign ∇X LE θ;X ;X refer

� �� � ð7Þ

X adv
PGD ¼ ClipX ;ε

h
X adv

k � αsign
�
∇X LE θ;X ;X refer

� �i ð8Þ

Note that in our experiments, Eq.(5) is also used for the optimization of DeepFool and CW
attacks.
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The method of attacking FaceNet through LOTS

Layerwise origin-target synthesis (LOTS) generates adversarial examples by imitating the
deep features of the target. Here, LOTS use Euclidean distance to measure the input itself or
the discrepancy between the adversarial input. To be more effective, we attack the activation of
Reduction-B block of FaceNet, which is also one of the layers used for training. The targeted
(Impersonation) and untargeted (Dodging) adversarial examples can be expressed in the
following formula:

X target
LOTS ¼ ClipX ;ε X adv

k −α∇X ϕB X adv
k

� �
−ϕB Xtarget

� ��� ��
2

h i
ð9Þ

X untargeted
LOTS ¼ ClipX ;ε X adv

k þ α∇X X adv
k

� ��� ��
2

h i
ð10Þ

The method of attacking FaceNet through WU

The method proposed by Dr. Yuxin Wu in 2018 GeekPwn CAAD is a attack against FaceNet.
First, N face images of target identities are collected, and N embedding vectors Vi are extracted
by running FaceNet. Then adversarial examples are generated by minimizing the average
distance of input image and embedding of N images:

minimize L ¼ 1

N
∑N

i¼1dist Ex;Við Þ ð11Þ

The adversarial examples generation method refers to PGD and can be expressed in the
following formula:

X adv
WU ;kþ1 ¼ ClipX ;ε X adv

k � α � ∇X
1

128
E X adv

k

� �� ET X target
� �� �� 	

ð12Þ

In our experiment, required parameters for WU attack are set as: the attack strength ε=8, the
attack step size α=0.9 and the number of attack iterations k = 200.
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Qualitative examples

Fig. 5 A collection of legitimate images, adversarial images (PGD, LOTS and WU attacks) and perturbations
alleviated images after ApaNet in the LFW dataset

Fig. 6 A collection of legitimate images, adversarial images (PGD, LOTS and WU attacks) and perturbations
alleviated images after ApaNet in the YouTube Faces DB dataset
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