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Apartment Building Electricity System Impact of

Operational Electric Vehicle Charging Strategies
Juan Van Roy, Student Member, IEEE, Niels Leemput, Student Member, IEEE, Frederik Geth, Student

Member, IEEE, Robbe Salenbien, Jeroen Büscher, Member, IEEE, and Johan Driesen, Senior Member, IEEE

Abstract—This paper discusses the charging of multiple plug-
in hybrid electric vehicles in an apartment building, equipped
with a photovoltaic system. Different charging strategies and
charging power ratings are examined, which are assessed in terms
of their grid impact, the self-consumption of local electricity
generation and the electric driving range. The impact of a
residential building, which incorporates EV charging, on the
distribution grid can be significantly reduced by using simple
EV charging strategies. These strategies include complementing
nighttime with daytime charging, peak shaving at vehicle level
and charging the surplus of local generation. Effective results
are obtained using only knowledge of the present battery state
of charge, next departure time and the instantaneous local
generation surplus. The simultaneity of the EV charging and
the photovoltaic production increases. The increase in electric
driving range is negligible for three-phase charging.

Index Terms—Distributed coordinated charging, Electric vehi-
cles, Photovoltaic system, Residential building charging.

I. INTRODUCTION

G
LOBALLY, approximately 32 % of the total energy use

is consumed in residential and commercial buildings [1].

Residential and commercial buildings are responsible for about

30 % of the global total end-use energy-related CO2 emissions,

if the indirect upstream emissions are considered [1].

European climate and energy goals for 2020, i.e. the

20/20/20 targets, are set by the European Commission [2].

One of the targets is a 20 % improvement in the EU’s energy

efficiency compared to a business-as-usual scenario. Energy

goals and benchmarks at the level of individual buildings are

stated in the European Directive 2002/91/EC, which is recasted

in Directive 2010/31/EU [3]. It is stated that by 2020 all new

buildings need to be nearly zero energy buildings (nZEB),

targeting a high penetration of renewable energy resources

(RES) and a high energy efficiency in the built environment,

although the definition of an nZEB is not clearly defined.

Multiple definitions for ZEBs are available in the litera-

ture [4]. A ZEB requires increases of both the integration

of local RES and energy efficiency (e.g. proper insulation).

The latter also includes a further electrification through new,

more efficient technologies such as electric vehicles (EVs) and
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heat pumps (HPs). These have a certain flexibility to shift the

power consumption in time [5], [6] and significantly reduce

the consumption of greenhouse gas emitting fuels and local

pollutant emissions [1], [7].

However, from the grid point of view, these new technolo-

gies have a twofold impact. First, the power consumption

will increase. Second, there is an increased grid impact. To

minimize the latter, a proper synchronization of consumption

and production of both electricity and heat is needed through

demand side management (DSM), electrical and thermal sto-

rage and minimizing the power consumption [1].

A. Impact on the Power Consumption

EVs will increase the power consumption in buildings.

For full electric vehicles, charging the vehicle at home only

will nearly double the average household power consumption

(3,500 kWh per year in Flanders [8]). Given the Flemish

mobility behavior, the specific power consumption of existing

vehicles and a typical charging efficiency of 90 %, this

results in an additional power consumption of about 2,350

to 3,750 kWh per household using an EV [9].

Charging at home might be complemented with charging at

other locations (e.g. work and parking spots), which decreases

the impact on the household power consumption.

B. Impact on the Electricity Grid

The intermittent production character of RES and its po-

tential non-simultaneity with the power consumption has a

grid impact on the level of both the distribution (DSO) and

transmission system operator (TSO).

Photovoltaic (PV) systems and EVs have an increasing

impact on the low-voltage (LV) distribution grid [10]. The

injection of electricity by means of PV systems and the power

consumption of EVs may lead to peak loads and higher

resistive losses. As LV grids are mainly resistive, voltage

deviations and phase unbalance occur due to the active power

flows [10]–[13]. For instance, nighttime charging is often

preferred for load-leveling purposes on the transmission grid

level. However, for a high local EV penetration rate, new

peak loads may arise in the distribution grid due to a high

simultaneity with the evening household power consumption.

Therefore, it is important to analyze coordination strategies,

which reduce the impact of EV charging on the grid, in order

to minimize the impact of these technologies on the lifetime

of e.g. the distribution grid assets. Peak shaving can e.g. be

implemented to smoothen out the power profile and to increase

the simultaneity with local generation [11].
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C. Flexibility of EVs for Charging Coordination

Passenger vehicles stand still over 90 % of the time. This

offers charging flexibility, e.g. by spreading the charging by

charging at a lower power, while respecting the mobility re-

quirements. Fig. 1 shows the average availability of a Flemish

vehicle fleet at home, at work and at other locations [9].

Fig. 1 also shows a normalized household synthetic load

profile for a random day [8]. The evening peak coincides

with the arrival of the EVs at home during the evening. As

mentioned in Section I-B, the EV charging may increase the

household load peak. During daytime, on average more than

20 % of the vehicles are parked at home. This allows for

additional daytime charging, which can decrease the impact

of evening and nighttime residential EV charging and increase

the simultaneity with local PV production.
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Fig. 1. Average availability during a day of a Flemish vehicle fleet at home,
at work and at other locations (including being on the road) [9] and a random
normalized residential synthetic load profile (dashdotted line) [8].

The charging flexibility of EVs is limited by the mobility

objective, the available charging power ratings, battery state

of charge (SOC) and battery limitations. This flexibility can

be represented by a flexibility curve (see Fig. 2). This graph

defines a solution set of possible charging paths, limited by

an upper and lower bound curve which give respectively

the operation curve without any delay and with maximum

charging delay. For instance, the trend towards higher charging

powers increases the charging flexibility. Also, this flexibility

represents an opportunity to coordinate the EV charging [14].

This approach is also valid for other technologies, such as

heat pumps and combined heat and power units, which provide

a certain flexibility to shift the generation of heat and the

consumption and production of electricity [6], [15]. In future

work, these technologies should be combined with the EV

charging integration in buildings. This may result in improved

solutions for the integration of these technologies in buildings.

The opportunities for vehicle-to-building (V2B) and

vehicle-to-grid (V2G) services are envisioned [13], as well

as mechanisms such as droop-based voltage support [16].

D. Coordinated Charging

The coordination of EV charging has been investigated on

several scales in the literature. Besides, the integration with

renewables has been studied [14]. The focus of EV charging

on the building scale mainly focusses on the optimization for

technical and/or economical objectives. As a technical objec-

tive, e.g. a peak shaving objective is implemented which uses
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Fig. 2. A flexibility curve, indicating the possible charging paths and upper
(no charging delay) and lower limits (maximum charging delay).

the information from the building and/or district level to co-

ordinate the EV charging [17]–[20]. Other studies coordinate

the EV charging in buildings by cost minimization [21]–[23].

Similar approaches can be found for EV charging coordination

on the distribution grid level [11], [14].

These coordination strategies mainly require the knowledge

during a certain optimization horizon of e.g. the EV behavior,

the power consumption of the buildings or grid and electri-

city cost. Also extensive communication infrastructure may be

required. Other coordination strategies, which require minimal

prior knowledge and communication, such as grid stabilizing

strategies [16], are not widely discussed in the literature.

However, for the initial EV rollout and before a widespread

coordination is expected, the cost of charging infrastructure

should be low [24] and should be weighed against the benefits

and drawbacks [25]. Also, high EV penetrations may first

occur on the local level exceeding local technical grid limits.

Therefore, simple operational charging strategies, which do

not require an EV charging optimization and which can be

easily implemented, e.g. on the on-board battery management

system, are discussed in this paper. The investigated strate-

gies only require the knowledge of the next departure time,

a measurement of the present battery state of charge and

local generation and which require minimal communication

infrastructure.

E. Scope of Paper

This paper focuses on the impact of different EV charging

strategies in large residential buildings. The strategies are

compared in terms of their distribution grid impact, the self-

consumption of local generation and the EV utility factor.

The investigated charging strategies include only charging

during the night and a combination in which daytime charging

complements nighttime charging. Charging can start arriving

at home at full charging power or can be postponed as long as

possible, which allows to investigate the impact of the upper

and lower limits of the EV charging flexibility (see Fig. 2).

Individual peak shaving at vehicle level allows to use the

full flexibility of the EV by charging at a lower charging

power in order to fully charge the EV by the next departure

time without influencing the mobility requirements. Besides,

different charging power ratings are investigated for their

benefits and disadvantages regarding the trend towards higher

charging power ratings for residential EV charging.

These strategies allow to discuss what is feasible with

simple implementable strategies before implementing wide-

spread coordination mechanisms to meet the stakeholders’

technical objectives, and the benefits for the different actors.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSTE.2013.2281463

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

II. METHODOLOGY

The assessment is performed in Modelica, an open source,

object-oriented and equation based modeling language. The

electrical models are part of the KU Leuven IDEAS tool [12].

A. Grid Impact

It is important to take into account the grid impact of diffe-

rent technologies and coordination strategies for EV charging.

An overview of several grid impact indicators is available in

the literature [26], [27].

The bidirectional power flow exchanges between the buil-

ding and the distribution grid will be assessed for the different

EV charging strategies, EV charging power ratings and EV

penetration levels. Modified box plots are used to represent the

load duration diagrams. Besides, the one percent peak power

(OPP) is calculated for each scenario. The OPP is defined as

the mean power of the one percent highest power peaks [27].

In this paper, the OPP is calculated separately for both the

demand and injection powers.

B. Self-consumption

Cover factors are defined to quantify the mismatch between

local demand and production of a certain energy flow. They

represent the ratio of the local supply to the local demand

(self-consumption, γS) and vice versa (self-generation, γD).

The electric cover factors, defined in [27], are calculated as:

γx =

R t2

t1
min{PS , PD}dt
R t2

t1
Pxdt

, (1)

with x ∈ [S,D]. γS and γD are respectively the electric supply

and demand cover factors. PS and PD are respectively the

local electricity supply and demand. The ZEB level is reached

when
R
PSdt =

R
PDdt, which is valid when γS = γD.

C. Utility factor of EVs

EPRI has defined a utility factor (UF) for individual

PHEVs [7]. The UF is defined as the ratio of the annual

electric kilometers and the annual vehicle kilometers traveled.

This factor varies for each PHEV and depends on the charging

opportunities, the distances traveled and the all-electric range

of the EV.

III. SCENARIO DESCRIPTION

This section gives a description of the models and the

scenarios. Two new models are created in Modelica, namely

a battery storage and an EV model.

A. Apartment Building

An apartment building for the Brussels-Capital Region is

chosen as a representative case for the residential power con-

sumption and sizing of the PV installation [28]. The building

consists of five floors with four individual apartments each

and a ground floor with garage space. It is assumed that there

is one garage per apartment. Each flat has a floor surface of

89 m2. Therefore, it is assumed that the roof has a total area

of 356 m2. Due to shading effects (e.g. tilted PV panels and

other obstacles) the roof can only be partially covered with

a perfect oriented PV installation. This available surface has

been set to 65 % of the roof surface, i.e. 231 m2 [29].

The average household power consumption of a typical

family in Flanders is 3500 kWh per year [8]. A synthetic load

profile (SLP) is used to represent the total power consumption

of the building. The SLP represents the average power profiles

of the Flemish residential electricity consumers. Yearly SLPs

are available with a 15-minute resolution [8]. This approach

is only valid when aggregating multiple households, since one

household typically has a power profile with faster varying

temporal load profiles.

B. Photovoltaic System

The PV production profile is generated using the five-

parameter model of [30], which is temperature-dependent. The

model is implemented in Modelica [31]. Meteorological data

for Uccle in Belgium is used [32]. Based on the manufacturer

data and the available roof area, the PV system has a peak

power of about 38.9 kW.

The calculations are based on characteristics that are pro-

vided by the solar panel manufacturer [33]. The required spe-

cifications are the current Impp and voltage Vmpp at maximum

power point under standard testing conditions (STC), the short

circuit current Isc and open circuit voltage Voc under the same

STC and the temperature coefficients of respectively the short

circuit current ki and open circuit voltage kv . The parameter

values are listed in Table I. The DC power output is converted

to an active AC power by means of an inverter with a constant

efficiency of 95 %. It is assumed that the panels are perfectly

oriented southwards with an optimal inclination of 34�. This

fixed orientation results in the maximum annual electricity

production for the considered location. This perfect orientation

is a valid assumption for flat roofs.

TABLE I
PV PANEL RATINGS AND PARAMETERS AS GIVEN BY A

MANUFACTURER [33].

Impp [A] 6.71 Voc [V] 42.3

Vmpp [V] 34.3 ki [mA/�C] 2.17

Isc [A] 7.22 kv [V/�C] -0.106

C. Electric Vehicles

The EV model consists of three submodels: that of a battery,

the mobility behavior and the charging behavior.

1) Battery model: The implementation of the battery model

is based on the model used in [34], which consists of the

dynamic SOC equations and the battery parameter constraints.

The SOC at each time step t is calculated by:

SOCt = SOCt�1 − δsdt +∆SOCt
t�1

, (2)

with δsdt the self-discharge of the battery in a time step t and

∆SOCt
t�1

the difference in SOC in the period [t − 1,t]. To
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extend the battery cycle life [35], the usable battery capacity

is limited to 80 % of the total capacity.

Lithium-ion (Li-ion) batteries are chosen for the EVs. The

charge ηc and discharge efficiencies ηd of the power elec-

tronics and battery and the self-discharge δsd are respectively

88.2 %, 98.0 % and 3.0 %SOC /month.

The EVs are modeled as PHEVs such that all mobility

requirements are met, even if the battery is depleted. The total

battery capacities are 20, 30 and 40 kWh for respectively the

subcompact, midsize and large vehicles (see Section III-C2).

2) Mobility Behavior: A mobility simulation tool is used to

generate the mobility behavior profiles for a fleet of EVs [9].

To have a realistic driving pattern for each individual vehicle

in the fleet, statistical data on Flemish transport behavior is

used in this tool. It is assumed that the mobility behavior with

EVs remains the same as with conventional vehicles. This tool

creates a unique behavior for each vehicle: whether the vehicle

is driving or standing still and where it is parked (e.g. at home,

at work, or at a visit). Fig. 3 gives a one-day driving pattern

example for one vehicle.

The variation of vehicle types and vehicle fuels (gasoline

and diesel) on the yearly driven distance in the Flemish

vehicle fleet is taken into account. Therefore, the vehicles

are divided in subcompact, midsize and large vehicles. These

vehicle categories have each their specific power consump-

tion. To take into account the impact of parameters such

as the ambient temperature, wind, altitude, road grade and

surface, the specific power consumption calculated in [9] is

increased with a correction factor of 15 % [36]. The specific

power consumption values are respectively 0.185, 0.220 and

0.293 kWh/km.

3) Charging Strategies: Only the possibility to charge at

home is considered. This can be considered as the worst-

case from the building point of view. Two periods of charging

are considered: charging during the day (6 am – 10 pm) and

night (10 pm – 6 am). These periods coincide with the present

double day-night tariff periods in Belgium.

The investigated charging strategies are depicted in Table II.

At night, all EVs start charging when arriving at home, either

at maximum charging power or with a reduced charging power

(individual peak shaving). This reduced power for individual

peak shaving is calculated from the next departure time and

the required energy to fully charge the battery by the departure

time. During daytime, one or more strategies are possible:

• Uncoordinated (D.1): Charging starts after arrival at

home, either at maximum charging power or with a

reduced charging power (individual peak shaving).
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Fig. 3. A one-day driving pattern example for a vehicle. A vehicle can be
driving and it can be parked at home, at work or another location (absent).

TABLE II
OVERVIEW OF EV CHARGING STRATEGIES DURING DAYTIME AND THE

AVAILABILITY OF INDIVIDUAL PEAK SHAVING DURING THE DAY/NIGHT.
STRATEGIES 1 AND 2 ONLY INCLUDE NIGHTTIME CHARGING.

Charging Daytime (6h-22h) Individual

Strategy strategy peak shaving

D.1 D.2 D.3 Night Day

1

2 x

3 x

4 x x x

5 x x

6 x x x

7 x x x x

• PV surplus (D.2): The PV surplus power is divided over

the available EVs connected to the grid in order not to

give preference to one or more vehicles. If the PV surplus

per vehicle is less than the minimum charging power, the

vehicles will charge with minimum charging power.

• Delayed (D.3): The EV charging (until fully charged

batteries) is delayed as long as possible. The time step to

start charging is calculated from the next departure time,

the required energy and the available charging power.

Practically, it is assumed that the EV user can enter the next

departure time (or when the charging should be completed).

The available PV surplus for each EV can for instance be

communicated by a building energy management system.

Different charging powers are examined, which are typical

for mode 2 and mode 3 charging as defined in IEC 61851-1.

Only single-phase (230 V) charging is considered here with the

following charging powers available: 2.07 kW (10 A), 2.98 kW

(16 A) and 5.96 kW (32 A) [37]. A 10 % margin takes into

account the maximum allowed voltage deviations. An extra

10 % margin is used to prevent tripping of standard 16/32 A

fuses. This last margin is not used for the 10 A charging power

(16 A fuse). To prevent a low partial load efficiency of the

power electronics, it is assumed that the minimum charging

power is 250 W.

IV. RESULTS

This section discusses the results for the case study, both the

reference scenario without EVs and the different EV charging

strategies regarding the grid impact, self-consumption of local

PV generation and the UF. General conclusions are given in

the discussion (Section V) and conclusion part (Section VI).

Yearly simulations are performed to take into account the

seasonal variations of the PV generation.

A. Reference Scenario: no EVs

Fig. 4 (a) shows the load duration diagram of the reference

scenario without EVs. The demand and injection peak power

are respectively 17 kW and 35.9 kW. The demand and

injection OPP are respectively 14.9 kW and 30 kW. Since

the PV system is undersized relative to the yearly power
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Fig. 4. Results reference scenario: (a) Load duration diagram and the OPPs
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box (white) spans the 5th to 95th percentiles. The outer whiskers extend to
the minimum and maximum values. The OPPs (shorter line) are included.

consumption, due to the limited roof surface, and since the

consumption of the different households is non-coincident, the

self-consumption is 56.1 %. This means 43.9 % of the surplus

energy is injected into the distribution grid.

A modified box plot is used to represent the load profile

throughout the rest of this paper. The box plot is illustrated in

Fig. 4 (b). The inner box spans the 25th to 75th percentiles

and the outer box spans the 5th to 95th percentiles. The outer

whiskers extend to the peak values and the OPPs are included.

B. Grid Impact of EVs

Fig. 5 shows the modified box plots of the load duration

diagrams for the different scenarios, EV penetration rates and

charging powers. In the first scenario, night charging has no

impact on the injection peaks. Due to a high simultaneity

between the EV charging and evening household demand peak,

an increased EV penetration rate and charging power rating

result in higher demand power peaks and OPPs.

Individual peak shaving (scenario 2) during the night has

a low impact on the peak powers for low charging powers.

Nevertheless, the impact is high for a charging power of

5.96 kW and a high amount of EVs, e.g. a peak demand

power decrease of almost 50 % compared to scenario 1 for 20

vehicles. In all cases the demand OPP is much lower compared

to the first scenario. Besides, the spreading of the EV charging

in time is shown by the broader 25th to 75th percentile.

In scenario 3, the EVs are also charged when arriving at

home during the day. This results in decreased night charging.

As a result of this lower simultaneity with the household

evening power demand, the OPP decreases compared to sce-

nario 1. For a charging power rating of 2.07 and 2.98 kW,

the 25th to 75th percentile decreases compared to scenario 1.

However, this is not valid for the highest charging power

rating. The decrease of the peak power is however very limited.

The grid impact decreases even more when individual peak

shaving is possible during the entire day (scenario 4). The de-

mand peak power and OPP are even lower than in scenario 2.

Due to the daytime charging, also the injection peak power and

OPP decrease, up to 5 and 10 % for respectively scenario 3

and 4. This decrease is higher for individual peak shaving,

since spreading the charging increases the simultaneity with

PV power production.

Fig. 5. Load duration diagrams (modified box plots) for the different charging
scenarios and EV penetration rates (y-axis) for a charging power of 2.07 kW
(left), 2.98 kW (middle) and 5.96 kW (right).

For scenario 5 and 6, the charging during the day is delayed

as long as possible making sure the mobility requirements

are still met. Postponing the charging may result in a higher

simultaneity of the EV charging with the household demand

in the evening (before 10 pm). Therefore, the peak demand

powers and the OPPs are a little higher compared to the

uncoordinated charging in scenario 3 and 4. On the other

hand, the possibility to charge the surplus PV power, has a

small positive impact on the injection peak power and OPP

compared to scenario 3 and 4. The impact of individual peak

shaving (scenario 6 compared to scenario 5) is similar to the

difference between the first and second scenario.

The last scenario can be compared to scenario 4, but the

individual peak shaving can be overruled if the PV power

surplus is larger. This results in a higher PV self-consumption.

The peak demand power and OPP are only slightly lower

compared to scenario 4, which means that the peaks occur

on days with low or no PV production.

As shown before, increasing the charging power rating leads

to an increased grid impact regarding the demand power peaks

and demand OPP. However, a higher charging power rating
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also has a negative impact on the injection power peaks and

injection OPP. This has a twofold cause. First, a lower charging

time leads to a simultaneity decrease with the PV power

production. Second, in case of charging at times when the

PV production is lower than the charging power, this local

production is less optimally charged. This impact is larger for

higher charging power ratings.

As a rule of thumb for apartment buildings without electrical

heating, 2.5 kVA per apartment is taken as connection capacity

for the whole building. This results in a connection capacity

of 50 kVA for the apartment building. For the lowest charging

power, there are virtually no cases with any overload assuming

a power factor of one. In case of overload, this is for less than

1 % of the time. For 2.98 kW, overload occurs more frequently,

however for less than 5 % of the time. Only in scenario 4

and 7, the peak demand power is below 50 kW for an EV

penetration rate of 100 %. Similar conclusions can be taken

for the highest charging power. In case of an EV penetration

rate of less than 14 EVs, there is no overload in any scenario.

C. Impact on the Self-consumption

The self-consumption of the building without EVs is

56.1 %. When only night charging occurs, this value remains

unchanged. When daytime charging is possible, the self-

consumption increases, depending on the chosen charging

strategy and charging power rating. This is shown in Table III.

In scenario 3, uncoordinated charging during the day is

applied, which results in a self-consumption increase of about

2.4 % to 20.2 % depending on the EV penetration rate. For

a charging power of 2.98 kW, the self-consumption drops

compared to 2.07 kW, due to faster charging and a lower

simultaneity with PV power production. However, the self-

consumption decrease for 5.96 kW is less, which is explained

by the fact that a higher amount of PV power can be used

for charging. The self-consumption can be further increased

when individual peak shaving is applied during both the day

and night (scenario 4). The self-consumption increases because

of two distinct reasons. First, due to individual peak shaving,

the vehicles will be charged more during the day. On the other

hand, spreading the charging during the day, the simultaneity

between the charging and PV power production increases.

When a higher charging power rating is available, the self-

consumption increase is larger.

When the charging during the day is delayed and the PV

power surplus is charged (scenario 5), the self-consumption is

higher than in the uncoordinated case (scenario 3). However,

the minimum charging power results in a decreasing self-

consumption for an increase in charging power. The minimum

charging power means that even when the PV power surplus

per connected vehicle is lower than this value, the vehicle

will charge at minimum charging power. Thus, the lower the

charging power, the larger the simultaneity with the PV power

production will be. Individual peak shaving during the night

(scenario 6) will lead to more charging during the day, thus a

higher self-consumption.

In the last scenario, individual peak shaving is applied

during the night and day. During the day, the individual peak

TABLE III
SELF-CONSUMPTION (%) FOR THE DIFFERENT CHARGING SCENARIOS

(CS), EV PENETRATION RATES AND CHARGING POWER RATINGS (P).

CS P Number of vehicles

[kW] 2 5 8 11 14 17 20

2.07 57.5 59.8 61.8 63.5 64.9 66.1 67.5

3 2.98 57.4 59.7 61.4 63.2 64.3 65.5 66.8

5.96 57.5 60.6 62.2 64.0 65.0 66.3 67.5

2.07 57.7 60.7 63.4 65.5 67.0 68.5 70.3

4 2.98 57.7 60.9 63.5 65.7 67.2 68.7 70.6

5.96 57.8 61.6 64.3 66.5 68.0 69.6 71.4

2.07 57.8 60.8 63.3 65.4 67.0 68.5 70.2

5 2.98 57.7 60.5 62.6 64.6 65.9 67.2 68.6

5.96 57.8 61.0 62.7 64.6 65.6 66.7 67.8

2.07 57.8 61.0 63.8 66.0 67.6 69.1 71.0

6 2.98 57.8 60.9 63.2 65.3 66.7 68.0 69.6

5.96 57.9 61.3 63.4 65.3 66.4 67.7 68.9

2.07 57.9 61.4 64.6 67.1 68.8 70.5 72.5

7 2.98 58.1 61.8 65.0 67.5 69.3 71.0 73.1

5.96 58.3 62.8 63.4 68.5 70.2 72.0 74.0

shaving can be overruled to charge during PV power surplus.

This charging strategy results in the highest self-consumption.

A charging power rating of 2.07 kW even leads to a higher

self-consumption than in the other scenarios.

D. Impact on the Utility Factor of EVs

Table IV shows the average UF of the fleet for the different

scenarios and charging power rates. The scenarios can be

divided in three groups of scenarios: (i) scenarios with only

night charging (Scenario 1 and 2), (ii) scenarios with night

and day charging without individual peak shaving during the

day (Scenario 3, 5 and 6) and (iii) scenarios with individual

peak shaving during the day (Scenario 4 and 7).

Increasing the charging power results in a higher UF, since

the batteries can be charged more in case the battery was not

fully charged in case of a lower charging power. With further

increases in charging power, its additional impact decreases.

For identical charging powers, adding daytime charging

results in a higher UF. In that case, the impact of a higher

charging power decreases even more.

When daytime individual peak shaving is applied, the UFs

increase. This is due to the fact that in the chosen charging

algorithm, the charging power is recalculated at each time step

in order to have a fully charged battery at departure.

TABLE IV
THE AVERAGE UTILITY FACTOR OF THE 20-VEHICLE FLEET FOR THE

DIFFERENT CHARGING STRATEGIES AND CHARGING POWER RATINGS.

Charging power rating

Charging strategy 2.07 kW 2.98 kW 5.96 kW

Night 88.6 % 92.2 % 93.3 %

Night & day 93.2 % 93.9 % 94.4 %

Daytime individual peak shaving 94.5 % 95.0 % 95.2 %
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E. Higher Residential Charging Power Ratings

There is a trend towards higher charging power ratings for

EVs since it may help to overcome range-anxiety, it might

be required to meet the driving behavior requirements and it

increases the charging flexibility. Nevertheless, for residential

EV charging, the extra investments in charging infrastructure

will have to be weighed against the benefits and drawbacks

shown in this section. So far, the EV charging power ratings

are limited to 5.96 kW in this discussion. With a three-phase

connection, the ratings can be increased to 8.94 kW and

17.88 kW for respectively a 16 A and 32 A connection if

standard 16/32 A fuses are used.

For a charging power rating of 5.96 kW, Table V gives

the number of charging opportunities for which a charging

power is required that is higher than 5.96, 8.94 and 17.88 kW

to fully charge the battery by the next departure time. A

charging opportunity is considered as each period after arrival

at home. When only night charging is available (first and

second scenario), only about 1.3 % of the nightly charging

opportunities require a charging power that is higher than

5.96 kW. When night charging is complemented by day

charging, this increases to 6.6 to 7.8 %, depending on the

charging scenario. These numbers are higher since there are

more charging opportunities and the time at home between

two trips is generally shorter during daytime.

TABLE V
THE NUMBER OF CHARGING OPPORTUNITIES (%) AT HOME THAT THE

REQUIRED CHARGING POWER, TO FULLY CHARGE THE EVS BY THE NEXT

DEPARTURE MOMENT, IS HIGHER THAN A CERTAIN POWER.

Charging period > 5.96 kW > 8.94 kW > 17.88 kW

Night 1.3 % 1.1 % 0.5 %

Night & day 6.6–7.8 % 4.1–5.1 % 1.6–1.9 %

Nevertheless, it should be noted that Table V represents the

worst-case numbers, since charging at a higher power during a

charging opportunity may reduce the required charging power

during future charging opportunities. Also, it does not take

into account if the driving behavior requires a fully charged

battery, i.e. a higher charging power, at each departure at home

and the numbers do not include any charging opportunities

at other places. Also note that these numbers do not contain

information on the length of each charging opportunity.

The results on the UF in Section IV-D showed a decreasing

impact on the UF for higher charging power ratings due to

a lower increase of the power consumption. For a charging

power rating of 8.94 kW, the increase in power consumption is

even smaller compared to the difference between 2.98 kW and

5.96 kW. Therefore, the UF only slightly increases compared

to the UF for a charging power rating of 5.96 kW; up to

0.13 percentage points, depending on the charging scenario.

V. DISCUSSION

As a result of long standstill times and the high grid

connection probability during daytime for EVs, additional

daytime charging can result in benefits for different actors.

For the EV user, additional charging in general increases his

electric driving range. Second, daytime charging decreases

the simultaneity of EV charging with the residential power

peak, which occurs in general at the beginning of the night-

tariff period. Furthermore, it increases the simultaneity with

the local PV production. Therefore, the DSO benefits from a

lower grid impact. The TSO may benefit from an improved

renewable integration. On the other hand, the spreading of EV

charging may increase the simultaneity of the EV charging

with the high demand at TSO level during daytime.

In general, individual peak shaving decreases the charging

powers as a result of the long standstill times of the EVs.

Therefore, peak power demand of EV charging is significantly

reduced. Moreover, due to the spreading of the EV charging

in time, the simultaneity of the EV charging and the local PV

generation increases, resulting in a higher self-consumption.

The EV owner in turn benefits from an increased battery

lifetime due to lower charging currents [35].

Increasing the residential charging power increases the grid

impact, but it also increases the charging flexibility and it

allows to charge higher PV production peaks. Since vehicles

have on average long standstill times at home, the results

show that the need for three-phase charging at home is very

low. Therefore, increasing the charging power has a decreasing

positive impact on the electric range and self-consumption.

VI. CONCLUSIONS

The charging of multiple PHEVs in an apartment building,

equipped with a PV system, is discussed. Different charging

strategies are investigated which take advantage of the avai-

lable EV charging flexibility. These strategies require only

limited prior knowledge to coordinate the charging without

the need for optimization and they require minimal com-

munication infrastructure. With these simple strategies, the

grid impact of a residential building, which incorporates EV

charging, can be significantly reduced.

The simplest solution to decrease the local grid impact and

to increase the electric EV range, is to encourage daytime EV

charging at all possible locations. This incorporates the prin-

ciple of charging when the car is parked instead of stopping

for charging, which is valid for conventional vehicles [37].

Although the latter may be inevitable due to a limited electric

range. Nevertheless, a suitable charging strategy is required

at these other locations to charge the EVs in a grid-friendly

manner, both from a DSO and TSO point-of-view.

Individual peak shaving can be seen as an important strategy

to be implemented on EVs in the near future, in order to limit

the grid impact of EV charging without influencing the mobi-

lity behavior. Individual peak shaving can be implemented on

the EV onboard battery management system and does not need

any communication infrastructure and only requires the next

departure time and present battery SOC as input. However, an

incentive is needed for the EV owner to adopt this strategy.

Less than 10 % of the residential charging opportunities

require three-phase charging. Therefore, higher power ratings

at residential buildings have a negligible impact on the electric

driving range. These higher power ratings require extra invest-

ments in e.g. charging infrastructure and have an increasing
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grid impact. On the other hand, higher charging powers can

be combined with individual peak shaving. The latter allows

to decrease the grid impact, to overcome range-anxiety and to

increase the charging flexibility.
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