
APATE: A Novel Approach for Automated Credit Card
Transaction Fraud Detection using Network-Based Extensions
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Abstract

In the last decade, the ease of online payment has opened up many new oppor-

tunities for e-commerce, lowering the geographical boundaries for retail. While

e-commerce is still gaining popularity, it is also the playground of fraudsters who

try to misuse the transparency of online purchases and the transfer of credit card

records. This paper proposes APATE, a novel approach to detect fraudulent

credit card transactions conducted in online stores. Our approach combines (1)

intrinsic features derived from the characteristics of incoming transactions and the

customer spending history using the fundamentals of RFM (Recency - Frequency

- Monetary); and (2) network-based features by exploiting the network of credit

card holders and merchants and deriving a time-dependent suspiciousness score

for each network object. Our results show that both intrinsic and network-based

features are two strongly intertwined sides of the same picture. The combination

of these two types of features leads to the best performing models which reach

AUC-scores higher than 0.98.
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1. Introduction

In recent years, e-commerce has gained a lot in popularity mainly due to the

ease of cross-border purchases and online credit card transactions. Customers are

no longer bound by the offers and conditions of local retailers, but can choose

between a multitude of retailers all over the world and are able to compare

their products, offered quality, price, services, etc. in just a few clicks. While

e-commerce is already a mature business with many players, security for online

payment lags behind. Recently, the European Central Bank (ECB) reported that

the value of card fraud increased in 2012 by 14.8% compared to the year before

(ECB, 2014). The main reason is the strong growth in online sales, resulting in

many ”card-not-present” transactions (CNP), a means of payment that catches

the attention of illicit people who try to mislead the system by pretending to be

someone else. As a consequence, credit card issuers need an automated system

that prevents the pursue of an incoming transaction if that transaction is highly

sensitive to fraud, i.e. the transaction does not correspond to normal customer

behavior.

This work focuses on automatically detecting online fraudulent transactions.

Data mining offers a plethora of techniques to find patterns in data, distinguishing

normal from suspicious transactions. A key challenge in fraud is to appropriately

deal with the atypical character of fraud. That is, there are many legitimate

transactions and only few evidence of fraudulent transactions to learn from, which

complicates the detection process. Carefully thinking about and creating signif-

icant characteristics that are able to capture irregular behavior, is an essential

step in an efficient fraud detection process. In this paper, we combine both in-
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Figure 1: Toy example of a credit card fraud network. Weights depict the recency of the

transaction between the merchant and credit card holder.

trinsic and network-related features. Intrinsic features analyze the transaction as

if it is an isolated entity, and compare whether the transaction fits in the nor-

mal customer profile. We create those features by deriving RFM attributes –

Recency, Frequency and Monetary Value – of the credit card holder’s past trans-

actions. Network-based features, on the other hand, characterize each transaction

by creating and analyzing a network consisting of credit card holders and mer-

chants which are related by means of transactions. A sample network is given in

Figure 1.

We use a collective inference algorithm to spread fraudulent influence through

the network by using a limited set of confirmed fraudulent transactions and decide

upon the suspiciousness of each network object by deriving an exposure score –

i.e. the extent to which the transaction, the associated account holder and the
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merchant are exposed to past fraudulent influences.

In this work, we will answer the following questions: (1) Is a new incoming

transaction in line with normal customer behavior, i.e. does it correspond to reg-

ular spending patterns of that customer in terms of (a) frequency or the average

number of transactions over a certain time window (b) recency or the average

time in between the current and previous transaction and (c) monetary value or

the amount spent on that transaction? (2) Which merchants, credit cards and

transactions are sensitive to fraud? Given past network-based information be-

tween merchants and credit card holders through the transactions made, how do

we derive a suspiciousness score for (a) merchants indicating which merchants are

often related to fraud, and as a consequence, form a risk of pursuing future fraud-

ulent transactions; (b) credit card holders who act irregularly or whose credit

card is stolen and (c) transactions by combining evidence of the associated credit

card holder and merchant; (3) Does our detection approach which combines both

intrinsic and network-based features, significantly boost the performance over tra-

ditional intrinsic-only models, and if so, which specific set of features contribute

in detecting efficiently fraud?

We propose APATE (short for: Anomaly Prevention using Advanced Trans-

action Exploration), a novel, automated and real-time approach to tackle credit

card transaction fraud by mapping past purchasing patterns and customer behav-

ior into meaningful features and compare those features with the characteristics

of a new, incoming transaction. We apply supervised data mining techniques to

uncover fraudulent patterns from a real-life credit card transaction data set ob-

tained from a large credit card issuer in Belgium. Our approach complies with

the six-seconds rule, i.e. within six seconds the APATE algorithm needs to de-

cide whether the transaction should or should not be pursued. We contribute by
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proposing a new propagation algorithm to propagate fraud from the network edges

(i.e., the transactions) towards all the network components (i.e., the credit card

holders and merchants) and derive for each transaction network-based features.

Those features are combined with a set of intrinsic features to feed the learning

algorithms. Our fraud detection model is able to dynamically adapt to a changing

environment and continues to operate under the condition that fraudsters invent

new ways to perpetrate their illegal activities.

The remainder of the paper is organized as follows. We introduce the credit

card fraud domain in Section 2. Section 3 discusses the proposed methodol-

ogy, and focuses on intrinsic and network-based feature extraction (Sections 3.1

and 3.2). In Section 4, we summarize the results. Section 5 concludes this paper.

2. Credit Card Transaction Fraud

2.1. Background

Credit card fraud detection is a widely studied research domain. Bhatla et al.

(2003) and Delamaire et al. (2009) distinguishes between various types of fraud

like application fraud (i.e., acquiring a credit card with false information), stolen

or lost card, counterfeit card (i.e., card copying or using a card which does not

belong to the owner) and card-not-present (CNP) fraud (i.e., using credit card

details to make distance purchases). Our paper focuses on CNP fraud perpetrated

through online credit card transactions.

As manually processing credit card transactions is a time-consuming and

resource-demanding task, credit card issuers search for high-performing and ef-

ficient algorithms that automatically look for anomalies in the set of incoming

transactions. Data mining is a well-known and often suitable solution to big data

problems involving risk such as credit risk modelling (Baesens et al., 2003), churn
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prediction (Verbeke et al., 2011) and survival analysis (Backiel et al., 2014). Nev-

ertheless, fraud detection in general is an atypical prediction task which requires

a tailored approach to address and predict future fraud. We say that fraud is

an uncommon, well-considered, imperceptibly concealed, time-evolving and often

carefully organized crime which appears in many types and forms:

• Uncommon The number of legitimate transactions outnumbers the num-

ber of fraudulent transactions drastically. Many credit card fraud detection

studies report a fraud ratio of less than 0.5% (Brause et al., 1999; Shen

et al., 2007; Sánchez et al., 2009; Bhattacharyya et al., 2011; Duman and

Elikucuk, 2013; Bahnsen et al., 2013, 2014; Dal Pozzolo et al., 2014).

• Well-considered Once fraudsters find a way to swindle, they exploit it

until that type of fraud is discovered and prevention actions are taken. Ex-

tracting the right features and minimizing the opportunities of fraudsters

to perpetrate fraud without being caught is an essential step in the fraud

detection process.

• Imperceptibly concealed Fraudulent transactions often exhibit the same

characteristics as legitimate transactions. Maes et al. (2002) formulated

this as the presence of overlapping data. While many studies solely focus on

customer profiling – intra-account equivalence, i.e. the extent to which the

current behavior differs from previous customer behavior – models should

take advantage of the knowledge sprouted from previous accounts used by

fraudsters and compare this with currently legitimate customer – inter-

account equivalence, i.e. the extent to which the customer profile differs

from fraudulent profiles.

• Time-evolving An efficient fraud detection process is dynamic. There are

two reasons. First, fraudsters change their way of working. Models should
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Figure 2: Credit Card Detection Process

be fed with the most recent data to capture new types of fraud, and at the

same time, should be able to prevent “existing” fraud. Second, customer

changes in lifestyle might affect the spending patterns. Models that contrast

a new transaction against the customer’s transaction history mark changes

in spending patterns as suspiciously.

• Carefully organized Once a credit card is stolen, it is used in many fraud-

ulent transactions. Analogously, certain merchants are more sensitive to

fraud – merchants that perpetrate fraud by themselves or that are easily

accessible by fraudsters. Efficient detection models need to exploit the re-

lational structure among credit card holders and merchants.

Each of the aforementioned requirements need to be addressed before a de-

tection model can efficiently work in practice. In the remainder of the paper, we

formulate a solution that systematically incorporates all of these requirements.

2.2. Credit Card Fraud Detection Process

The credit card detection process is summarized in Figure 2. The ultimate

goal of such detection processes is to prevent the pursue of all transactions that

do not comply with the imposed regularities. When a new transaction arrives in

the system, a series of acceptance checks is performed. The transaction processing

system checks for example whether the user entered the right PIN or whether the
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spending amount is yet sufficient. If the transaction clears the acceptance checks,

it is passed on to the sanity check of the detection system. Here, the system

computes the probability that the transaction is fraudulent, e.g. by applying

a detection model learned from past transactions. If the probability exceeds a

certain threshold, the transaction does not proceed and is aborted. The sanity

check has both an on-line (i.e., in real time) and off-line module. The data set

under consideration consists of all processed transactions by Worldline Belgium.

A transaction is fraudulent if the transaction does not pass the (a) on-line or (b)

the off-line sanity check, or (c) by customer notification. While (a) is known in

real-time, (b) and (c) can take up to one week.

The on-line detection process is liable to the “six-seconds rule” of decision.

This means that both the acceptance check and the on-line sanity check need to

be processed within six seconds. Our approach discusses the sanity check, and

can be implemented both in an on-line as an off-line environment.

2.3. Related Work

Although fraud detection in the credit card industry is a much-discussed topic

which receives a lot of attention, the number of publicly available works is rather

limited. One of the reasons is that credit card issuers protect the sharing of data

sources and most algorithms are produced in-house concealing the model’s details.

In particular, credit card fraud detection techniques can be divided into two broad

categories: supervised and unsupervised methods. Unsupervised methods solely

use the customer (or transaction) characteristics to group them into small, similar

clusters while maximizing the difference between the extracted clusters. If a new

transaction of a certain customer is not allocated to the normal customer group,

then an alarm is raised for that transaction (Bolton et al., 2001). Unsupervised

techniques include peer group analysis (Bolton et al., 2001; Weston et al., 2008)

and self-organizing maps (Zaslavsky and Strizhak, 2006; Quah and Sriganesh,
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2008). More studies focus on supervised techniques using evidence of past fraud-

ulent transactions to infer the suspiciousness of future transactions. The most

prevalent technique for supervised credit card fraud detection is artificial neural

networks (ANN’s) (Ghosh and Reilly, 1994; Aleskerov et al., 1997; Dorronsoro

et al., 1997; Brause et al., 1999; Maes et al., 2002; Syeda et al., 2002; Shen et al.,

2007). While ANN’s generally achieve a high performance, they are black box

models which lack interpretability. Recently, the use of ensemble methods like

random forests is found to perform well in credit card fraud (Whitrow et al.,

2009; Bhattacharyya et al., 2011; Dal Pozzolo et al., 2014). Random forests work

especially well when there are many input features to learn from, which is often

the case in network-related classification problems (Henderson et al., 2011). Other

techniques for supervised learning in fraud are meta-learning (Chan et al., 1999),

case-based reasoning (Wheeler and Aitken, 2000), Bayesian belief networks (Maes

et al., 2002), decision trees (Shen et al., 2007), logistic regression (Shen et al., 2007;

Bhattacharyya et al., 2011), hidden Markov models (Srivastava et al., 2008), asso-

ciation rules (Sánchez et al., 2009), support vector machines (Bhattacharyya et al.,

2011), Bayes minimum risk (Bahnsen et al., 2013, 2014) and genetic algorithms

(Duman and Elikucuk, 2013).

The aforementioned models do not exploit the relational structures. To the

best of the authors’ knowledge, APATE is the first to include network knowledge

in the detection models.

3. Proposed Methodology

In this section, we discuss how the APATE detection process is implemented.

Note that the detection process comprises the sanity check as illustrated in Fig-

ure 2. Particularly, we start from a list of time stamped, labeled transactions and

learn a model to infer future fraudulent transactions. As fraud detection models

should adapt dynamically to a changing environment, we introduce a sliding time
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Figure 3: APATE ’s re-estimation process of the detection models using a sliding window.

window which characterizes a transaction based on current (i.e., short term), and

normal (i.e., medium and long term) customer’s past behavior. Both intrinsic

and network-based features are derived using those three time windows. Since

model estimation often cannot be executed within six seconds, we choose to daily

re-estimate the detection models at midnight the day before. Transactions made

during the next day are evaluated using the model trained on data of the day be-

fore. The transaction features are extracted at real-time and fed into the model.

This is depicted in Figure 3.

The APATE fraud detection process consists of two featurization steps:

1. Intrinsic feature extraction How does the incoming transaction differ

from the previous transactions performed by that credit card holder?

2. Network-based feature extraction APATE exploits the relationships

between credit card holders and merchants by means of transactions. The

set of network-related features measures the exposure of each network object

to fraud.
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Table 1: Summary of input features on short (ST), medium (MT) and long (LT) term.

Summary statistics
Variable Description ST MT LT

µ σ µ σ µ σ

Transaction features1

Location (dummy) Issuing region

Belgium 0.16 0.37

EU 0.76 0.43

MC Category (dummy) Category sensitivity to fraud

Low 0.67 0.47

Medium 0.31 0.47

Amount Amount of transaction 78.7 202.9

Recency Time passed since last transaction

MC at the merchant 8.95 13.01 235.69 417.62 2483.8 2887.5

MC Category at the merchant category 8.97 13.04 232.9 415.2 2652.03 2988.6

Global across all transactions 10.31 14.39 318.3 455.8 2996.4 3011.0

Country in the same country 9.29 13.63 242.6 420.1 2582.0 2950.7

Currency with the same currency 9.99 14.13 292.9 446.4 2957.6 3034.2

Frequency Total number of transactions

MC at the merchant 0.12 0.70 0.25 1.54 0.85 5.85

MC Category at the merchant category 0.13 0.74 0.28 1.63 0.92 6.11

Global across all transactions 0.23 1.53 0.52 2.62 1.82 9.99

Country in the same country 0.17 0.98 0.37 2.09 1.27 9.48

Currency with the same currency 0.19 1.04 0.42 2.18 1.52 9.79

Monetary Value Average amount of transactions

MC at the merchant 5.24 120.84 9.64 158.21 30.08 558.6

MC Category at the merchant category 6.54 139.09 13.39 198.45 47.05 783.66

Global across all transactions 18.49 259.54 60.1 1083.7 288.63 7041.3

Country in the same country 11.56 199.12 43.26 1002.4 227.67 6619.9

Currency with the same currency 13.57 220.06 50.45 1068.8 261.9 7033.4

Event occurrence First purchase?

MC at the merchant 0.93 0.24 0.89 0.30 0.80 0.40

MC Category at the merchant category 0.93 0.26 0.89 0.32 0.78 0.41

Global across all transactions 0.89 0.31 0.80 0.40 0.52 0.50

Country in the same country 0.91 0.29 0.86 0.35 0.72 0.45

Currency with the same currency 0.90 0.30 0.83 0.38 0.60 0.49

Average Transactions Average per time frame and level

Global across all transactions 78.5 181.09

Merchant at the same merchant 78.3 199.26

Exposure Score Extent to which transaction (TXN),

merchant (MC) and credit card

holder (CCH) are influenced by fraud

given the network.

Transaction (TXN) 0.11e-2 0.018 0.46e-3 0.45e-2 0.40e-4 0.29e-3

Merchant (MC) 0.063 0.500 0.092 0.390 0.141 0.259

Credit card holder (CCH) 0.26e-4 0.85e-2 0.34e-4 0.36e-2 0.27e-4 0.76e-3
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All features are summarized in Table 1. In the remainder of this section, we

will discuss in more details how we extracted each of the features to include in

our APATE models.

3.1. Intrinsic Feature Extraction

Traditionally, attempting to predict fraud using supervised data mining has

been supported by the characterization of the purchase patterns that the cus-

tomers present previous to the fraud event (Bhattacharyya et al., 2011). Most

models are constructed using an aggregation of the transactions and their value.

(Krivko, 2010) uses both the number of transactions and the monetary value of

them to estimate rolling windows that are then used to train the model, Whitrow

et al. (2009) use several aggregation techniques on the data and study the effects

of the aggregation on the results, and Jha et al. (2012) construct a detailed data

set that contains several transaction aggregations, plus information on the country

in which the transaction occurred, to name a few. The literature seems to agree

that there are three conditions that assist in predicting fraud: the transaction

details, the time framework, and the location in which they occur.

Following this, the first set of variables that we propose for studying this prob-

lem are a mixture of literature variables, plus some other indicators that arose

during our research, and it refers to the characteristics of the transactions them-

selves. We start by constructing variables inspired by the transaction analysis,

including all variables that we were able to replicate from the studies in the litera-

ture. Our variables include the number of transactions that occur in a given time

framework (frequency), the amount of money spent in those transactions (mon-

etary value), and the time between two subsequent transactions in a particular

time period if any (recency).

1Independent of time window

12



These variables fit within the Recency - Frequency - Monetary Value (RFM)

framework, which is widely used in marketing (Blattberg et al., 2008). There

is no agreement in the literature regarding which one is an appropriate time

framework to estimate these variables, ranging from hourly to averages over three

months, so we propose to study both the short, the medium and the long term:

the last hour of transactions (attempting to capture cards that are heavily used

and then dropped), the last day of transactions (attempting to capture specific,

consumption-prone days), and the last week of transactions (attempting to cap-

ture the normal behavior of the customer). As will be shown in the experimental

part (Section 4), we have one month of transactions available, so analysis of longer

time periods were not possible. Jha et al. (2012) suggests that useful information

can be extracted regarding the merchant at which the purchases occur. Data

that is available, and that will be used to aggregate the merchants, concerns the

merchant itself, a gross category in which the spending occurs (i.e. supermar-

kets, clothing stores, etc.), and an aggregated global variable with all merchants.

The literature (e.g. Bhattacharyya et al. (2011)) seems to suggest that perform-

ing the RFM analysis segmented by the currency and the country in which the

transactions occurred would also bring information relevant to the study.

An additional set of binary variables was created to mark for when no purchase

has occurred. These variables (FirstPurchase) mark if the transaction is the first

one in that measured time frame, for each of the dimensions that are measured (see

Table 1). This information is relevant mostly to a generalized linear model such

as logistic regression, as discussed in Allison (2001). We construct 15 variables

accounting for each level of aggregation and time period.

In summary, using three time periods, three types of RFM variables, and five

types of transaction aggregations (single merchant, category, country, currency

and global), we develop a set of 60 (3 × 3 × 5 + 3 × 5) variables aggregating

the past transactions. All variables have the following naming scheme: Level
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of Aggregation, RFM Type, Time Period. So for example, GlobalRecencyHour

refers to the Recency (time between consecutive purchases) within one hour, when

considering all available merchants.

The second step is to characterize the transaction itself using the location

in which it occurred and the merchant info. Given the characteristics of the

European credit card users, there is a strong pattern of credit card use European

Union-wide, rather than in the country where the card is emitted. Transactions

that occur outside the EU (mostly in the US) are rarer. We include dummy

variables for these three zones (EU, Belgium, and Rest-of-World, ROW) to capture

this information. Table 2 shows relevant information supporting this segmentation

for the data set available for this work.

Table 2: Transactions per Region and Fraud Percentage

Region % of Transactions % Fraudulent

Belgium 16,13% 0,05%

European Union 75,39% 0,45%

ROW 8,48% 5,36%

Total 100% 0,78%

We completed this part of the data set with the variables from the literature

that do not fit the RFM framework. There were some variables from the literature

which could not be implemented in our study, given the availability of data: some

works in the literature use three months of data (Bhattacharyya et al., 2011), but

we only have one month available so it was impossible. We also have available

only online transactions of one issuer, so bank-related and POS related variables

are not applicable, such as in Sánchez et al. (2009) and Whitrow et al. (2009).

We included dummy variables representing the currency in which the transaction

occurred, categorizing them in euros, US dollars, and other currencies. We also

included variables regarding the average amount of the transactions during the
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last week, as suggested by Bhattacharyya et al. (2011) and Whitrow et al. (2009),

which were estimated both at global transaction level and at merchant level.

The last set of constructed variables deal with the categories of merchants. The

data provider manifested that there were suspicions that fraudulent transactions

tended to accumulate in certain categories. Using this information, the available

categories (19) were segmented into three large categories using the individual

categories’ fraud percentage. This leads to three dummy variables (CategoryLow,

CategoryMid, and CategoryHigh) capturing this assumption.

After constructing the data set along the intrinsic (transaction related) vari-

ables, we complement the information by exploring a novel approach of network

analysis, as described in the next subsection.

3.2. Network Feature Extraction

3.2.1. Network definition

Complex network analysis (CNA) studies the structure, characteristics and

dynamics of networks that are irregular, complex and dynamically evolving in

time (Boccaletti et al., 2006). Those networks often consist of millions of closely

interconnected units. Most real-life networks are complex. CNA uses graph theory

to extract useful statistics from the network. Boccaletti et al. (2006) define graph

theory as the natural framework for the exact mathematical treatment of complex

networks, and consequently, they formalize a complex network as a graph. A

graph G = (V, E) consists of a set of vertices or nodes v ∈ V which are connected

to each other by a set of edges or links e ∈ E . Graphs can be directed or undirected,

depending on whether the edges impose a direction or an order in the network.

When edges express the intensity of relationships between nodes, we say that the

graph Gw = (V, E) is weighted.

Mathematically, a graph can be represented by an adjacency matrix An×n =

(ai,j) with n the number of vertices in the network. The adjacency matrix is
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an n × n matrix, and ai,j = 1 if a link between node i and j exists, ai,j = 0

otherwise. A weighted matrix Wn×n = (wi,j) is the matrix representation of a

weighted graph and wi,j ∈ ]0, 1] expresses the intensity between node i and j if a

link exists, or wi,j = 0 otherwise.

A graph that represents heterogeneous node types, is a multipartite graph. In

particular, the credit card fraud network in this work is represented as a bipartite

graph G = (V1,V2, E), containing two node types – i.e. credit card holders and

merchants – and satisfies the following property:

e(v1, v2) subset of V1 × V2 (1)

with v1 ∈ V1 the set of credit card holder nodes, and v2 ∈ V2 the set of

merchant nodes. Property 1 enforces that a transaction can only exist between

different node types, i.e. credit card holders and merchants. A toy example of

the credit card network is shown in Figure 1.

The corresponding adjacency matrix Ac×m = (ai,j) of a bipartite graph is a

matrix of size c × m with c and m the total number of credit card holder and

merchant nodes respectively. The weight matrix Wc×m = (wi,j) represents the

weighted graph as a matrix.

In order to address the dynamic character of fraud, we integrate time into the

network such that the edges express the recency of the transaction. Inspired by

the half-life decay of atoms, we exponentially decay the intensity of a relationship

in time, where:

 wi,j = e−γh if a relationship exists between node i and j

wi,j = 0 otherwise

with γ the decay constant and h the time passed since the transaction pursued,

measured according to the interval being studied (minutes for short term, hours

for medium term and days for long term). We set the decay constant γ such that
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the edge weight is close to zero after one month (long-term: γ = 0.0001), one

week (medium-term: γ = 0.004) and one day (short-term: γ = 0.03) respectively.

A high weight represents a recent transaction.

3.2.2. Network fraud propagation

Given a credit card network, how can we use the fraud label of the edges – i.e.

the transactions – to infer a score for each network object? That is, we want to

infer a score for each credit card holder, merchant and transaction. The derived

score expresses the extent to which the network object is exposed to fraud, and

is therefore called the exposure or suspiciousness score.

Influence propagation in networks is a widely researched topic, with many

good results in fraud detection (Akoglu et al., 2014, 2013; Pandit et al., 2007).

In earlier work, we proposed GOTCHA! ’s fraud propagation algorithm for social

security fraud to analyze bipartite graphs. GOTCHA! ’s propagation algorithm is

an iterative fraud scoring algorithm that is designed such that it scores two node

types (cfr. bipartite graphs) based on the label of one node type. Assume that a

graph consists of c type-one nodes and m type-two nodes. After k iterations, the

vector containing the exposure scores of each node equals:

~ξk = α ·Qnorm · ~ξk−1 + (1− α) · ~znorm (2)

with ~ξk the (c + m)-vector containing the exposure scores of each node after

k iterations, ~ξ0 a random vector with values between [0, 1], 1 − α the restart

probability (according to Page et al. (1999), we choose α = 0.85), Qnorm the

column-normalized weight matrix of size ((c + m) × (c + m)), and ~znorm the

normalized degree-adapted starting vector of size (c + m). Both Qnorm and

~znorm are weighted in time to address the dynamic characteristic of fraud.

Equation 2 starts from a limited set of labeled nodes to infer a score for the

remaining nodes. However, in the credit card fraud case, we require to start from a
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limited set of labeled edges to derive a score for both the edges and nodes. There-

fore, APATE ’s network propagation algorithm adapts Equation 2 by making two

changes: (1) Qnorm is transformed into a tripartite graph including transactions

as a node in the network; (2) ~znorm is a time-dependent normalized vector indi-

cating the fraudulent transactions. These adaptations are discussed next.

(1) Edge-to-node transformation

In order to be able to propagate influence from edges, we include the edges as

a separate entity in the network. That is, we transform the edges into nodes and

create a tripartite graph G = (V1,V2,V3, E) with E ⊆ (V1 ×V3)∪ (V2 ×V3), such

that the following property holds:

∀ v3 ∈ V3 :∃! v1 ∈ V1 | e(v1, v3) ∈ E

&∃! v2 ∈ V2 | e(v2, v3) ∈ E .
(3)

with v1 ∈ V1 the set of credit card holder nodes, v2 ∈ V2 the set of merchant

nodes and v3 ∈ V3 the set of transaction nodes. Property 3 enforces that credit

card holder nodes and merchant nodes can only be connected to transaction nodes.

We note that the edge weight in the tripartite graph between the transaction and

both the credit card holder and merchant is equal to the edge weight between the

credit card holder and the merchant in the original bipartite graph Wc×m. Let’s

say that c, m and t are the total number of credit card holder nodes, merchant

nodes and transaction nodes respectively, then the weighted matrix M(c+m)×t is

the mathematical representation of the tripartite graph which is exponentially

decayed over time (see Section 3.2.1).

As Equation 2 requires a symmetric matrix, we transform the tripartite graph

into a symmetric unipartite graph. Mathematically,
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Qtri =

 0(c+m)×(c+m) M

M ′ 0t×t

 (4)

Matrix Qtri is a matrix with c + m + t rows and columns. After normalizing

the columns such that each column sums up to 1, the resulting matrix is Qtri
norm.

(2) Starting vector

The starting vector is originally created to personalize the ranking of web pages

by guiding the algorithm with the user’s interests (Page et al., 1999). Rather than

initializing the starting vector as a uniformly distributed vector, the starting vec-

tor can be used to emphasize the influence of certain nodes on the final ranking.

The same reasoning holds for fraud. As we are not interested in any influence

to propagate through the network, but only in fraudulent influence, we guide the

algorithm by specifying the confirmed fraudulent transactions using the starting

vector. That is, the starting vector ~z tri of size (c+m+ t) equals:

 ztri
i = e−γh if node i is a fraudulent transaction

ztri
i = 0 otherwise

with γ the decay constant, and h the time passed since the transaction is

labeled as fraudulent. Dependent on the time window of analysis, we exponentially

decay the fraudulent influence on long (γ = 0.0001), medium (γ = 0.004) or short

(γ = 0.03) term. All credit card holder and merchant nodes have a zero weight

for the starting vector. Remark that we assign a higher weight to fraudulent

transactions that occurred more recently.

The starting vector is normalized to ~z tri
norm, summing up to 1.

Using the previous modification to the bipartite propagation algorithm as
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stated in Equation 2, we derive APATE ’s propagation algorithm for edge and

node labeling, where:

~ξk = α ·Qtri
norm · ~ξk−1 + (1− α) · ~z tri

norm (5)

The resulting score ~ξk is computed using the power-iteration method, iterating

until convergence. Convergence is reached after a maximum number of iteration

steps or when the change in the scores is marginal.

3.2.3. Feature extraction

As we use a long-, medium- and short-term time window in the analysis,

matrix Qtri
norm and ~z tri

norm in Equation 5 are computed with different α values

(α = 0.0001, 0.004, 0.03) to infer an exposure score of each node and edge using

information up until one month, week and day respectively. For example, the long-

term exposure score indicates the extent to which the transaction (or merchant,

or credit card holder) is sensitive to fraud during the last month. In general,

the higher the exposure score of a network object, the more the node or edge is

surrounded by fraud in its neighborhood.

For each new incoming transaction, the following features are computed: (a)

credit card holder exposure score (CCHScore), (b) merchants exposure score (MC-

Score) and (c) transaction (TXScore) exposure score on long (LT), medium (MT)

and short (ST) term. We re-estimate the exposure scores for every network object

each day at midnight in order to extract the evidential features for transactions

that occur the next day.

The credit card holder and merchant exposure score are derived from Equa-

tion 5. If the credit card holder or merchant did not yet appear in the network –

i.e., he/she did not perform any transaction during the time period of analysis –

we assign a score of zero, as they are not yet exposed to fraudulent influences.
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The transaction exposure score combines the influence of the associated credit

card holder and merchant. If a transaction already occurred between the credit

card holder and the merchant, we use the exposure score as calculated in Equa-

tion 5. If multiple transactions occurred between the same credit card holder

and merchant, we use the score assigned to the most recent transaction. When

a transaction did not yet happen between a certain credit card holder and mer-

chant, we compute the exposure score of that transaction by using the exposure

scores of its direct neighborhood. Therefore, we say that we locally update the

exposure scores in the network, where:

TXNi,k,score =
1∑n

j=1wi,j + 1
CCHi,score +

1∑m
j=1wk,j + 1

MCk,score (6)

with TXNi,k,score the exposure score of a transaction between credit card

holder i and merchant k, CCHi,score the exposure score of credit card holder

i, MCk,score the exposure score of merchant k, wx,y the link weight between

node x and y, and n and m the total number of links from credit card holder i

and merchant k respectively. The local updating algorithm redivides the fraud-

ulent influences. Instead of propagating the exposure score of the credit card

holder/merchant only among the past transactions, the exposure score is now

partly absorbed by the newly added transaction. We note that the edge weight

of the new transaction is set to 1, as it represents a current relationship.

The network feature extraction step results in 9 features for each transaction:

long-, medium- and short-term exposure scores for the transaction, associated

credit card holder and merchant.

In the following section, we will estimate analytic models using three sets of

variables: intrinsic (18), network-based (9) and demographics (5); and measure

the capabilities they have for predicting fraud. In all cases, we seek to estimate

the probability of fraud given the variables available, that is:
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P (Y = fraud|XIntrinsic, XNetwork, XDemographics) (7)

4. Results

To test the proposed approach, a unique data set of approximately 3.3M trans-

actions from a large Belgian credit card issuer has been used. The data consists

of a supervised data set with all the information related to transactions occur-

ring during five consecutive weeks, plus a fraud or no fraud mark added for each

transaction by the company after suspicious transactions were investigated (after

two weeks at most). The data set is highly imbalanced, with only 48 000 frauds

among the transactions (< %1).

We test the approach seeking to answer three questions: What is the best

model for the approach? How can the model be applied in a real life-situation?

And finally, what is the added value of using network variables for this problem?

For all questions we will create an out-of-time test set consisting of all transactions

that occur in the last week (approximately 500k), while the first two weeks will

be used as the data pool for creating the RFM and network variables for the

following two weeks of data (the training set).

During data cleansing and pre-processing, all transactions that were rejected

due to normal banking reasons (wrong PIN, input errors, and other non-purchase

related reasons) were eliminated from the data set. These transactions account

for 15% of all transactions. Additionally, all transactions over 5000 EUR were

also dropped from the data set, to avoid distortions in the set. These transactions

are clear outliers: they consist of less than 1% of all transactions (none of them

fraudulent) and they were almost 25 standard deviations from regular transac-

tions, as shown in Table 1, so eliminating them leads to more stable models. The

final training set consists of 2.2M transactions, and the final test set consists of

500k transactions. For each case, the variables described in Section 3 are calcu-
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lated, accounting for 78 different variables, 9 which are network-based, 60 RFM

variables, and the remaining variables being the non-RFM literature variables, or

demographic and location-related.

4.1. Prediction Results

According to the findings of related research (see Section 2.3), we will bench-

mark three of them: logistic regression, the standard general linear model for

classification used in many banking related activities, which is the less powerful

of the group in terms of predictive capabilities, but is very simple to understand;

a feed-forward, one hidden layer, neural network, one of the most powerful non-

linear models, but that is considered a black box; and a random forest, a very

powerful ensemble of decision trees which has brought very good results in many

publications dealing with multiple applications.

To tackle the imbalance problem, we will apply standard case weighting for

neural networks and logistic regression. For random forests we will use the sub-

sampling capabilities of random forests, with each tree constructed using all fraud-

ulent transactions and a randomly selected subset of the non-fraudulent ones such

that they account for two times the number of fraudulent ones, as explained in

Chen et al. (2004). We used 500 trees for the random forest model, which gives

non-fraudulent cases an a priori chance of being selected similar to the one of

simple random sampling. For parameter tuning, in the case of neural networks,

20% of the training data set was reserved for tuning the parameters, selecting

the best combination of epochs and number of neurons over the grid given by

(Neurons,Epochs) ∈ [16, 156] × [100, 1000], with the epochs increased in incre-

ments of 50, and the neurons in increments of one.

The results, in Table 3, show a very high accuracy and Area-Under-the-ROC-

Curve (AUC) values. The models are almost perfect, correctly predicting 98.7%

of cases in the case of the random forest (the highest value), and with an AUC
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Table 3: Comparison of models

Model AUC Accuracy

Logistic Regression 0.972 95.92%

Neural Networks 0.974 93.84%

Random Forests 0.986 98.77%
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Figure 4: ROC Curve for Different Models

of 0.987. The relatively lower accuracy in the other two models is caused by a

higher fraud detection rate when contrasted with false positives: the models are

good at detecting frauds, but that comes at a cost of some extra non-fraudulent

transactions being detected as fraudulent, which does not occur with random

forests. This hits accuracy given the high imbalance of the data set. The very

high AUC obtained can be seen in Figure 4.

To make a fairer comparison, possibly closer to a real application of the model,

we will study the case when at most a 1% false positives are acceptable. The

rationale behind this is that there is a reputational cost whenever a false positive
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occurs, given that users of the credit card will get a rejection on a non-fraudulent

transaction, with all the consequences and annoyances that such an action brings.

Table 4 shows the obtained results.

Table 4: Accuracy and AUC (test set) at 1% Maximum False Positive Rate

Model Cut-Off Balanced Acc. Specificity

Logistic Regression 0.85 87.4% 75.7%

Neural Networks 0.99 87.9% 76.8%

Random Forests 0.53 93.2% 87.4%

The results continue to be very good, but now the effects of the highly im-

balanced problem are apparent. Random forest is the best model overall, with

an 87.4% accuracy in the positive (fraudulent) cases, and a balanced accuracy of

93.2%. It is followed by neural networks, with a 76.8% specificity. The results

hint at a highly non-linear problem, since there is a clear advantage when using

non-linear models, which can be as large as the 12% increase in specificity when

comparing random forests with logistic regression. The difference between neural

networks and the random forest also suggests that the problem is not only highly

non-linear, but that it is necessary to apply an ensemble model that searches for

patterns in the sub-spaces that arise when applying a random forest. In any case,

the results are very good. A user could use the model and detect close to 90% of

all fraudulent transactions, flagging incorrectly only 1% of non-fraudulent ones.

4.2. Variable Importance and Network Variable Impact

The final question we would like to answer is which variables are more im-

portant, and try to measure their effect in the model overall. There are three

main sets of variables in the problem: The RFM and demographic variables, the

variables that are suggested in the literature that extend the RFM methodology,

and the network variables. In order to contrast these sets we will estimate three
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additional random forests – since they give the best results –, one for each subset

of variables. The results of these models can be seen in Table 5.

Table 5: AUC for Different Subsets of Variables.

Type AUC Accuracy

Only RFM 0.953 97.83%

Literature 0.955 97.87%

All Variables - First transaction 0.971 99.46%

Only Social Networks 0.920 94.37%

All variables 0.986 98.77%

It can be seen that only using the 9 network variables available the model

reaches an AUC of 0.920. A model with only the RFM and demographic variables

reaches an AUC 0.953, slightly higher. The inclusion of currency and country

variables, together with the transaction averages (from the literature) make the

AUC increase only slightly to 0.955. From these results we can conclude that

the RFM variables are a very good set of variables to predict fraud, permitting to

reach a very high AUC measure. The inclusion of the extended literature variables

increase only slightly the AUC from a pure RFM approach, which might be caused

due to regional behavior described in the data set we have available: variables

representing currency and country do not present a strictly different behavior in

Europe – with a unified currency, small travel distances and an integrated market,

which might be even stronger when considering online sales – than what it might

occur on different regions, such as North America or Australia. We can conclude

that the inclusion of transaction averages, currency, and country variables has a

minor, albeit positive, impact on the description of fraud for our data set.

The inclusion of social network variables in combination with all the RFM

variables has a very strong impact on the prediction results, reaching an AUC of

0.987. The main conclusion that we can derive from this result is that, considering
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Figure 5: ROC Curve for Different Subsets of Variables

that the social network variables have a very small correlation with respect to the

other sets (the largest is 0.1), the information that these variables bring allows

increasing the capabilities of the data set, interacting multidimensionally with the

other two sets of variables, which translates into an increase of 5% in the AUC of

the model. The ROC curves of the three different models (Figure 5) show that

the models perform similarly in terms of the separation of false positives and false

negatives, but the full model has less false positives in the early stages of the

model, and that gain comes from the combination of the data sets.

When dealing with fraud, it is common to see several transactions that occur

in a very short period of time, with a very high accumulated monetary value. As

such, detecting the first transaction that is fraudulent is an interesting problem.

In Table 5 we estimated the AUC of first transactions only (the ones with Glob-

alFrequencyHour equal to zero). It can be seen that the AUC, although lower,

is still very high, which suggests that the purchasing patterns that precede fraud

in the long term are the most relevant for predicting it, or, conversely, that it is
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Figure 6: Importance of each variable for the random forest built using all available

variables. In parentheses after each variable is the relevant information from the logistic

regression output: A + or - sign of significant coefficients, NS when the variable was not

significant, and C when it was highly correlated (greater than 0.9) with another variable

in the data set.

the contrast between the current and the past behaviors that allow to correctly

estimate fraud, and this is correctly captured by the variables in the model.

The exact relevance of the variable can also be extracted from the random

forest model, and sheds light on the multidimensional increase in predictive ca-

pabilities of the model. Figure 6 shows the relative importance of each variable

according to the random forest. It is interesting to note that the top two (with

very similar importance) are one for each set, and are both related to the mer-

chant at which the purchase occurs: AvgAmountMerchantWeek corresponds to

the average monetary value per week before the current transaction at the mer-

chant, so it shows the normal behavior on any given week, whereas LT TXScore

shows the long-term behavior of the network associated with the transaction it-

self, representing the normal, long-term, relation between merchants and the user

of the credit card, weighting in the expected patterns of both fraud and non-fraud
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given the structure of the network. The next set of variables are again some lit-

erature and RFM variables mixed with network variables, but now referring to

the medium-term (day) purchases, followed by the short-term network scores for

both the merchant and the transaction. The variables representing transactions

during the last hour seem to be of lower importance, and the currency variables

close the list, which suggest, as shown before, that the purchase pattern in Eu-

rope is marked by the euro, so effects on currency that were present in previous

works in the literature are annulled. It follows that it is from these relationships

between the social network variables and the purchase patterns that the learning

process is able to extract a significant amount of information that allows for a

very high accuracy and AUC. As was expected, the first purchase variables are of

limited importance in the random forest, but they can be significant in the logis-

tic regression, considering that we knew that the information of those variables

was included in a mixture of information from other variables which cannot be

recovered easily in generalized linear models.

Regarding the signs and significance, most short term variables are non-

significant in the logistic model, which suggests that the hourly behavior requires

a deeper multivariate analysis that random forests delivers. All currency-related,

and many country-related variables are highly correlated with other variables in

the data set which suggest that the purchasing patterns of the data set are highly

localized. The signs of the significant variables show that the hourly behavior

tends to have a positive sign, which increases the odds of fraud, showing that

when there are short-term increases in purchasing there is a higher risk of fraud.

Something similar happens with the global variables: a higher global frequency is

related to higher fraud, but a higher monetary value is related to lower odds of

fraud. All long term social network variables are relevant, with varying signs: the

long-term merchant score has a negative sign, showing that there are less risky

merchants when dealing with fraud, but the transaction and customer long term
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score has a positive sign, which suggests that there are riskier customers, more

prone to be subject to fraudulent activities.

5. Conclusions

In summary, this paper tackles credit card transaction fraud by proposing a

novel, automated and real-time approach APATE (short for: Anomaly Preven-

tion using Advanced Transaction Exploration). For each new incoming trans-

action, APATE decides whether the transaction might hint towards fraud and

whether or not it should be pursued. A major component of APATE is the fea-

ture extraction part, where we opt to combine both intrinsic and network-based

attributes. Our approach uses the RFM framework (Recency - Frequency - Mon-

etary Value) complemented with demographic information of the transaction to

define intrinsic features. As opposed to many previous studies, we enrich the de-

tection models with network variables. The credit card fraud network consists of

a network where credit card holders are connected to the merchants through the

transactions they make. In particular, this paper discusses a new technique for

fraud propagation through the network starting from a limited set of labeled edges

(i.e., fraudulent transactions) and inferring a score for all the network components

(i.e., credit card holders, merchants and transactions).

We tested the proposed approach on a company data set with more than three

million transactions, and estimated a logistic regression, a neural network and a

random forest model. Results show that our proposed approach leads to a very

high AUC score and accuracy, especially for the random forest model. Even after

adjusting the model to only allow 1% false positives, we obtain a high specificity,

meaning that our models efficiently identify fraudulent transactions. Although

each set of features separately results in a good model performance, the best re-

sults are reached when we combine both intrinsic and network variables, which

suggest that there is a multidimensional component that is inherent of the combi-
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nations of the RFM and network approaches, potentially capturing both a short

term change in behavior – contrasting the short term purchase pattern with the

normal ones, either daily or weekly one – and a long term structure of the trans-

actions, which arises from analyzing the different networks that can be inferred

from the data. Finally, we show that APATE is not only able to find almost

all fraudulent transactions, but also accurately pick out the first transaction in a

series of fraudulent transactions, which is an important requirement in curtailing

credit card transaction fraud.

While this work focuses on finding individual fraud, future work should inves-

tigate group behavior, i.e. the existence of fraudulent setups in the network of

credit card holders and merchants.
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