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Abstract

The search for PD-MCI biomarkers has employed an array of neuroimaging techniques, but
still yields divergent findings. This may be due in part to MCI's broad definition, encompassing
heterogeneous cognitive domains, only some of which are affected in Parkinson's disease.
Most domains falling under the MCI umbrella include fronto-dependent executive functions,
whereas others, notably learning, rely on the basal ganglia. Given the deterioration of the
nigrostriatal dopaminergic system in Parkinson's disease, it has been the prime target of
PD-MCI investigation. By testing well defined cognitive deficits in Parkinson's disease, distinct
functions can be attributed to specific neural systems, overcoming conflicting results on
PD-MCI. Apart from dopamine, other systems such as the neurovascular or noradrenergic
systems are affected in Parkinson's disease. These factors may be at the basis of specific
facets of PD-MCI for which dopaminergic involvement has not been conclusive. Finally, the
impact of both dopaminergic and noradrenergic deficiency on motivational states in
Parkinson's disease is examined in light of a plausible [...]
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 CURRENT

OPINION Apathy and noradrenaline: silent partners to mild
cognitive impairment in Parkinson’s disease?

Leyla Loued-Khenissi a and Kerstin Preuschoff b

Purpose of review

Mild cognitive impairment (MCI) is a comorbid factor in Parkinson’s disease. The aim of this review is to
examine the recent neuroimaging findings in the search for Parkinson’s disease MCI (PD-MCI) biomarkers
to gain insight on whether MCI and specific cognitive deficits in Parkinson’s disease implicate striatal
dopamine or another system.

Recent findings

The evidence implicates a diffuse pathophysiology in PD-MCI rather than acute dopaminergic involvement.
On the one hand, performance in specific cognitive domains, notably in set-shifting and learning, appears
to vary with dopaminergic status. On the other hand, motivational states in Parkinson’s disease along with
their behavioral and physiological indices suggest a noradrenergic contribution to cognitive deficits in
Parkinson’s disease. Finally, Parkinson’s disease’s pattern of neurodegeneration offers an avenue for
continued research in nigrostriatal dopamine’s role in distinct behaviors, as well as the specification of
dorsal and ventral striatal functions.

Summary

The search for PD-MCI biomarkers has employed an array of neuroimaging techniques, but still yields
divergent findings. This may be due in part to MCI’s broad definition, encompassing heterogeneous
cognitive domains, only some of which are affected in Parkinson’s disease. Most domains falling under the
MCI umbrella include fronto-dependent executive functions, whereas others, notably learning, rely on the
basal ganglia. Given the deterioration of the nigrostriatal dopaminergic system in Parkinson’s disease, it
has been the prime target of PD-MCI investigation. By testing well defined cognitive deficits in Parkinson’s
disease, distinct functions can be attributed to specific neural systems, overcoming conflicting results on PD-
MCI. Apart from dopamine, other systems such as the neurovascular or noradrenergic systems are affected
in Parkinson’s disease. These factors may be at the basis of specific facets of PD-MCI for which
dopaminergic involvement has not been conclusive. Finally, the impact of both dopaminergic and
noradrenergic deficiency on motivational states in Parkinson’s disease is examined in light of a plausible
link between apathy and cognitive deficits.
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INTRODUCTION

Mild cognitive impairment (MCI) refers to cognitive
decline that does not meet the clinical criteria for
dementia. MCI is a widely reported comorbid factor
in Parkinson’s disease [1]. Whereas MCI can predict
dementia in Parkinson’s disease [2], MCI assessment
accuracy based on cognitive batteries is relatively
poor [3,4]. As such, neuroimaging techniques are
now being used to identify its neural signature. MCI
is a profile that arises in many populations, includ-
ing the aged and Alzheimer’s patients. Since its
cause is unknown, it is unclear whether the same
mechanism prompts its emergence in different dis-
eases [5]. Further, MCI incorporates deficits across

heterogeneous cognitive domains [6], most related
to fronto-dependent executive function [7], but at
times inclusive of learning processes [8,9]. Studies
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on Parkinson’s disease MCI (PD-MCI) have been
inconclusive with regards to the domains affected
and dopaminergic involvement. PD-MCI is thought
to be a consequence of cortical dopaminergic
changes in Parkinson’s disease arising from com-
promised fronto-striatal circuits, notably the meso-
cortical and nigrostriatal loops (see Fig. 1) [10].
However, evidence of changes in prefrontal dopa-
mine is equivocal [8,11,12]. Since Parkinson’s disease

is marked by nigrostriatal dopaminergic loss, basal-
ganglia-dependent learning processes have been
studied extensively [13,14], with a particular focus
on the striatum. It is generally thought that the
ventral and dorsal striatum play distinct functional
roles, which are only partially understood to date.
The dopamine overdose hypothesis may explain
observed selective impairment in Parkinson’s
disease patients on dopaminergic replacement
therapy (PDON) relative to unmedicated patients
(PDOFF) [15]. In early Parkinson’s disease, the dor-
sal striatum displays extensive degeneration,
whereas the ventral striatum remains preserved.
Dopaminergic medication relieves dorso-related
motor symptoms, but may overdose a functional
ventral striatum, prompting selective behavioral
impairments such as impulse control disorders
(ICDs). PDOFF populations thus offer a window
into dorsal striatum-dependent functions. Further
questions regarding cognitive deficits converge on
recent recognition that apathy is a common symp-
tom in early Parkinson’s disease [16]. Questions on
apathy’s behavioral impact and its neural basis
remain open. Dopamine has long been the focus
of Parkinson’s disease research; however, disease
characteristics extend beyond the dopaminergic
system, suggesting other factorsmay drive observed
deficits.

KEY POINTS

� Neuroimaging research supports a diffuse neural
marker for PD-MCI with a neurovascular basis
emerging as a strong candidate in its cause.

� Though difficult to image, the locus coeruleus
noradrenaline complex, given its widespread cortical
projections, chemical link to dopamine, and marked
deterioration in Parkinson’s disease, should be
investigated as a strong contributor to Parkinson’s
disease behavioral impairments.

� The widespread emergence of apathy in Parkinson’s
disease, supported by behavioral and EEG markers,
should be investigated in relation to a dopaminergic or
noradrenergic neural basis and known cognitive
profiles in Parkinson’s disease.

Motor area

Nigrostriatal pathway

LC projections

Locus coeruleus

Ventral tegmental

Substantia nigra

Dorsal striatum

Mesocortical pathway

Anterior cingulate

cortex (ACC)

Prefrontal
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FIGURE 1. An overview of brain regions implicated in MCI, Parkinson’s disease, and the locus coeruleus noradrenergic
system. MCI test batteries primarily include executive function, which is traditionally linked to the prefrontal cortex (as well as
the anterior cingulate cortex). PD is characterized by a damaged nigrostriatal pathway that starts in the substantia nigra and
projects to the dorsal striatum (dashed lines). Noradrenergic projections start from the locus coeruleus and project out to the
cortex and the cerebellum (dotted lines). LC, locus coeruleus; MCI, mild cognitive impairment; PD, Parkinson’s disease.
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NEUROIMAGING MILD COGNITIVE

IMPAIRMENT

The search for biomarkers of PD-MCI has employed
various neuroimaging measures including func-
tional, structural, and diffusion measures. Although
this endeavor has yielded a number of potential
biomarkers, the evidence has simultaneously gener-
ated a less ordered view of PD-MCI signatures and
causes. Cognitive scores in Parkinson’s disease
patients correlate with dorso-fronto parietal connec-
tivity; inhibited subcortical primary sensory acti-
vation; and preserved nigrostriatal pathways in
resting-state functional magnetic resonance imag-
ing (fMRI), but not with presynaptic dopaminergic
uptake [17]. Atrophy in various cortical regions is
associated with neuropsychiatric symptoms [18

&

], as
well as MCI in some studies [19,20,21

&

,22
&

,23],
though others found no such differences in
PD-MCI compared to Parkinson’s disease without
MCI [24,25]. The expected effect of MCI on the
subcortical regions is even less clear, though hippo-
campal atrophy was found to predict conversion to
PD-MCI and to dementia from PD-MCI in a longi-
tudinal study [26]. Research has also investigated
white matter differences, which can indicate neuro-
vascular abnormalities [27]. White matter hyper-
intensities were found to predict cognitive decline
[24], and several recent studies reported white
matter abnormalities in PD-MCI [26,28,29]. Early
Parkinson’s disease patients specifically show evi-
dence of atherosclerosis alongside white matter
hyperintensities – factors that lead to microvascular
injury and possible cognitive decline [30

&&

]. Inter-
estingly, both orthostatic and prandial hypotension
is a sign of noradrenergic disturbance [13,31], a
neurotransmitter which is affected early in Parkin-
son’s disease [32]. The evidence suggests PD-MCI’s
neural footprint remains difficult to delineate even
with various imaging measures, though neurovas-
cular abnormalities emerge as strong causal candi-
dates. Neurovascular differences indeed correlate
with MCI in other patient populations [33–36].
The studies above do not show a distinct link
between dopamine and PD-MCI, but they do yield
an array of diffuse neural correlates, which may
reflect the fuzzy nature of MCI’s behavioral charac-
terization.

COGNITIVE FLEXIBILITY IN PARKINSON’S

DISEASE

Parkinson’s disease patients display executive dys-
function, but evidence on specific domains affected
remainsmurky [37,38]. One persistent finding is set-
shifting impairment in Parkinson’s disease patients
[1,39]. Cognitive flexibility appears to rely on the

dorsal striatum [40
&&

] and medication response cor-
relates with improved task switching in Parkinson’s
disease, further supporting the dorsal striatum’s
role in cognitive flexibility [41]. One fMRI study
in PDOFF patients found no impairment in
set-shifting, but did reveal atypical task-related
activation in the cortex, suggesting compensatory
anomalous cortical activity inhibits behavioral
impairment [42]. Previous studies produced con-
flicting results on medication’s remedial effects on
set-shifting impairment, but the studies above sup-
port striatal dopamine’s role in cognitive flexibility,
as well as a cortical up-regulation in early stages of
the disease, perhaps masking striatal deficiencies.

LEARNING DEFICITS IN PARKINSON’S

DISEASE

Reinforcement learning has been extensively
studied in Parkinson’s disease [43–45] to support
models cast within a basal ganglia dopaminergic
framework. When controlling for medication
effects, studies reveal deficits in learning from
trial-by-trial feedback [46], a hallmark of implicit
learning [47]. Indeed, a meta-analysis found Parkin-
son’s disease patients to be significantly impaired in
implicit learning across 27 studies using the serial
reaction time task [48]. While implicit learning is
thought to depend on the basal ganglia, explicit,
declarative learning relies on the hippocampus and
medial temporal lobe [49]. The interplay between
the two systems has yet to be defined [50], but a
selective impairment in Parkinson’s disease would
suggest implicit learning occurs in the dorsal stria-
tum. Most tasks measuring one type of learning
versus another rely on both mechanisms [51], but
recent evidence suggests explicit and implicit learn-
ing can be dissociated bymanipulating a task’s feed-
back structure (delayed versus discrete) [52]. An
[11C] raclopride PET study showed striatal (accum-
bens) D2 release accompanied learning from dis-
crete feedback in a probabilistic classification task
[53

&&

]. Further, learning from delayed feedback acti-
vates the hippocampus, whereas learning from
immediate feedback engages the striatum [48]. A
study investigated competing learning mechanisms
in Parkinson’s disease, with two initial tasks that
tested novel tool features (explicit) and novel tool
skill (implicit), and a follow-up task that assessed
both learning acquisitions 3weeks later. Patients did
not differ from controls in either the initial learning
session or on knowledge of novel tool attributes in
the follow-up session; however, the Parkinson’s dis-
ease group did not retain skilled tool use [54

&&

]. Two
more recent studies highlight differences in reten-
tion for Parkinson’s disease patients. An initial test
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of sequence learning was not affected in Parkinson’s
disease, though patient retention a week later was
[55]. Patients tested on an implicit learning
sequence task performed as well as healthy controls
in a first block, but not in a second block [56].
Further, no differences were found in an implicit
learning task of semantic categorization between
healthy controls and Parkinson’s disease patients
[57,58]. These divergent findings call into question
the impairment of implicit learning in Parkinson’s
disease, as well as its dependence on the dorsal
striatum. It has been posited that dorsal striatal
dopaminergic signals are necessary for performance,
or action-selection, rather than learning per se
[14,43,59,60]. These two roles may be specific to
distinct striatal regions, but action-selection is often
used to determine learning. Thus, recent studies
have examined the functional dissociation of the
dorsal and ventral striatum in relation to learning
acquisition (or memory encoding) and action-selec-
tion (or memory retrieval). An fMRI study in the
healthy controls investigated stimulus-response
learning with feedback, followed by a session that
assessed how well associations were learned. Acti-
vation in the ventral striatum was confined to the
learning session, whereas activation in the dorsal
striatum emerged in the second session, where
associations had already been learned and the task
demand was appropriate response selection [61]. A
novel fMRI study dissociated dopamine’s roles in
anticipation and reward to determine whether
placebo would be as effective as dopaminergic
replacement therapy in Parkinson’s disease reward
learning. Both placebo and medication groups
exhibited learning signals in the ventral striatum
[62]. Vo et al. [63], in 2014, found PDOFF patients
learned stimulus–response associations as well as
controls, whereas PDON patients were impaired.
Further, PDOFF patients outperformed controls
and PDON patients, supporting the hypothesis that
cortical D1 is up-regulated in Parkinson’s disease
[64,65]. The studies listed above support the dorsal
striatum’s role in action-selection, but a recent case
study of a patient suffering bilateral damage to the
dorsal striatum showed specific impairment in
learning stimulus values and not action values
[66]. The evidence suggests a different frame within
which to study functions specific to the ventral and
dorsal striatum. Notably, learning’s dependence on
the ventral striatum and action-selection’s reliance
on the dorsal striatum merit closer scrutiny in
future studies.

APATHY

Apathy is a common, early symptom in Parkinson’s
disease that predictsMCI and dementia [67]. Apathy

may significantly impact processes requiring motiv-
ation, such as action-selection and cognitive task
performance, if not cognition itself. While apathy’s
neural correlates remain unknown, the search for a
neural mechanism of Parkinson’s disease apathy
focuses on the dopaminergic system. Compared to
healthy and Parkinson’s disease controls, apathetic
patients showed a reduction in left limbic striatal
and frontal connectivities in resting-state fMRI,
though apathy scores showed no correlation with
structural differences [68

&&

]. An fMRI study [69]
examined dopaminergic medication effects during
an emotional Stroop task in PDON and PDOFF
patients, and found that when presented with nega-
tive Stroop stimuli, PDOFF patients had higher apa-
thy scores, decreased fear recognition, and reduced
anterior cingulate cortex (ACC) activation. While
ACC activation was recovered with medication, it is
interesting to note that the cingulate receives pro-
jections from the locus coeruleus noradrenaline
(LC-NE) system [70]. Though Parkinson’s disease-
related apathy is an early symptom, it can also
emerge following deep brain stimulation (DBS)
implantation as a suspected consequence of dopa-
minergic medication washout. Increased apathy
after DBS correlated with reduced right ventral stria-
tal activity in a PET study [71]. Further, dopamine-
resistant apathy correlated with nucleus accumbens
atrophy [72

&

]. Like MCI, apathy in Parkinson’s dis-
ease is primarily assessed via psychometric scale
[73], but electroencephalogram (EEG) studies have
yielded compelling behavioral and physiological
consequences of Parkinson’s disease apathy. An
event related potential (ERP) study measured feed-
back-related negativity (FRN) in response to gains
and losses. Apathetic patients showed a reduced
difference between FRN for losses and FRN for gains
when compared to Parkinson’s disease patients and
healthy controls [74]. In a similar vein, an EEG study
examined differences in ERPs between Parkinson’s
disease patients and healthy controls during the
Iowa Gambling Task – a task of decision-making
under ambiguity [75]. ERP for gains differed from
ERP for losses in the healthy controls, as expected,
but no differences emerged in Parkinson’s disease
patients. Another study reported a blunted P3 signal
in apathetic PDOFF patients [76] (a P3 signal arises
upon encounter of a salient stimulus). Furthermore,
Parkinson’s disease patients did not display the Von
Restorff effect, where novelty enhances stimulus
recall [77

&

]. In the same study, the P3 signal was
larger for novel stimuli in healthy controls relative
to patients, irrespective of medication status, impli-
cating a nondopaminergic system. A potential can-
didate is the noradrenergic system whose activation
has been linked to the P3 signal via pupillometry
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studies [78,79]. And while the neural correlates to
apathy above implicate the ventral striatum, it
should be noted that the region receives projections
from the LC in addition to its dopaminergic projec-
tions. The dearth in research on apathy’s link to
observed cognitive deficits provides an avenue of
investigation into the motivational factors of
cognitive performance.

THE NORADRENERGIC SYSTEM

Parkinson’s disease research has centered on the
dopaminergic system; however, many of the
observed cognitive deficits may also be linked to a
pathological noradrenergic system in Parkinson’s
disease patients. Post mortem analysis of Parkinso-
nian brains reveals Lewy body accumulation in the
LC [80], as well as a reduction in frontal norepi-
nephrine and serotonin, but not dopamine [81,82].
LC degeneration precedes nigrostriatal neural loss
[32]. Dopamine and noradrenaline are both tyro-
sine-derived catecholamines; their interaction may
be of particular interest [83], given that the LC-NE
system has widespread cortical projections (Fig. 2)
[84]; noradrenaline may protect against dopamin-
ergic deficiency [85]; and noradrenaline modulates
dopaminergic activation [86]. Indeed, recent
research in learning and decision-making has
already moved beyond the bounds of the basal
ganglia to scrutinize LC-NE’s contribution to these
functions [87,88]. As such, there is now compelling

evidence that LC-NE degeneration in Parkinson’s
disease may contribute to PD-MCI [89]. Specifically,
cognitive inflexibility in early Parkinson’s disease
could reflect early dysfunction of the LC-NE system
[90]. Adaptive gain theory [91] describes LC
neurons’ dual firing modes: a phasic mode that
signals exploitation, and a tonic mode that prompts
exploration. A compromised LC-NE system could
lead to decreased tonic noradrenergic transmission,
inhibiting flexibility and enhancing perseveration
[90]. A dysfunctional LC-NE system could further
prevent patients from registering salient signals
demanding action, which may explain action-selec-
tion deficits and contribute to Parkinson’s disease-
related apathy. Neuroimaging evidence of LC-NE
involvement in Parkinson’s disease has been sparse
to date, due to the difficulty inherent in imaging a
small, brainstem region [92], but among the many
neurotransmitter systems affected in Parkinson’s
disease [93,94], noradrenaline’s characteristics stand
out as markedly relevant to the study of cognitive
function.

CONCLUSION

Mild cognitive impairment in Parkinson’s disease
is not confined to dopaminergic deficits per se,
behooving us to consider nondopaminergic mech-
anisms for its emergence. Two lines of investigation
merit closer future inspection: the role apathy plays
in observed behavioral deficits and the LC-NE’s

PD-MCI

MCI in other

disease

populations Neurovascular

deficits

Locus

coeruleus

degeneration

Apathy

Set

shifting

deficit
Executive

dysfunction

Action
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Dorsal striatal

degeneration

Substantia

nigra

degeneration

Learning

deficits

FIGURE 2. An overview of recent findings related to PD-MCI. Circles represent known neural correlates; diamonds represent
putative behavioral symptoms. Solid lines indicate known relationships while dashed lines represent possible links between
factors. MCI, mild cognitive impairment; PD, Parkinson’s disease.
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influence on learning, apathy, and distinct
measures of MCI in a Parkinson’s disease model.
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