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An atomistic model for the dependence on interface orientation and velocity v of the solute
partition coeflicient k during rapid solidification is developed in detail. Starting with a simple
stepwise growth model, the simple continuous growth model result is obtained for £{v) when
the growth steps are assumed to pass at random intervals rather than periodically. The model
is applied to rapid solidification of silicon. Crystal growth at all orientations is assumed to
occur by the rapid lateral passage of (111) steps at speeds determined by the interface
velocity and orientation. Solute escape is parametrized by a diffusion coefficient at the edge of
the moving step and a diffusion coefficient at the terrace, far from the step edge. The model
results in an excellent fit to data for the velocity and orientation dependence of & of Bi in 8i.

. INTRODUCTION

When solidification of binary liquid alloys occurs at
interface velocities i on the order of or greater than the
diffusive velocity of the solute atoms at the liguid/solid
interface, nonequilibrium fractions k of the solute in the
liguid at the interface are incorporated into the solid.
This phenomenon is known as solute trapping. On the
one hand, the continuous growth model’ (CGM) fits
the k(v) data® quite well. In this model, solute-solvent
redistribution across the interface and the simultaneous
advance of the interface are treated as separate processes
that occur under microscopically steady-state condi-
tions. As originally derived, however, the CGM does
not provide a detailed atomistic description of the pro-
cess of solute trapping. On the other hand, the stepwise
growth model®* (SGM) provides a detailed atomistic
picture of the solute trapping process: crystallization of
a monolayer, occuring by the rapid lateral passage of a
growth step, and solute-solvent redistribution alternate
in time. However, in its simplest form the SGM yields a
form for k(v) with too strong a velocity dependence to
fit the data.

Using pulsed laser melting techniques, Aziz and
White* recently measured the orientation dependence
of k at constant v and accounted for their results with an
extension of the CGM. They assumed, as did Pfeiffer,’
that growth occurs by the periodic rapid lateral passage
of {111} steps separated by an interval determined by
the velocity and orientation of the interface, as shown in
Fig. 1. They also assumed that all of the solute escape
occurs at the edge of the moving step and that thereisno
escape once the solute atom is incorporated into the ter-

* Permanent address: Division of Applied Sciences, Harvard Univer-
sity, Cambridge, Massachusetts 02138,
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race. Their mode! recovers the CGM velocity depen-
dence and accounts fairly well for the observed sharp
rise in k as the {111} orientation is approached. How-
ever, the model predicts that k—1 at {111} where the
ledge velocity diverges. The data indicate that, while
significantly greater than at nearby orientations, k at
{111} is not unity but rather is in the range 0.2-0.5,
depending on velocity. Apparently there is a need to
account for escape from the terrace.

In this article we first show that the simple CGM
form for k{v) results from the lateral passage of steps if
the interval between the passage of steps is assumed to
be random, rather than constant. We then combine this
model for the escape of solute that has been incorporat-
ed into the terrace with the model of Aziz and White for
solute incorporation at the step edge. We obtain excel-
lent agreement with the data for velocity and orientation
dependence of solute partitioning of Bi in Si.

H. THE MODEL

A. Equivélence of random interval SGM and
simple CGM

In the SGM solute trapping is a two-stage process.
The first stage is the incorporation of a monolayer of
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FIG. I. Solute trapping by the lateral passage of random length {111}
steps, with solute escape through the step edge and step terrace.
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height A in the liquid at the interface into the solid with-
out a change in composition. In this process solute
atoms are forced onto lattice sites when their solvent
neighbors assume lattice positions. The solute atoms
may experience an increase in their chemical potential
during this process. This stage is assumed to be very fast,
as would be the case if it occurred by the rapid lateral
passage of a growth step. The second stage is the diffu-
sion of solute back into the liquid. Diffusion comes to an
end when the next monolayer is added to the crystal,
permanently trapping the remaining solute atoms in the
solid. The layers are added periedically, with period
r =2 /v, where 4 is the monolayer step height. In the
interval between the addition of monolayers the decay
of C,;, the composition of the solid interface layer is
given by

dc,; D,

'""&T= _(F)[C.ﬂ(r)_ke(m)cla]! (1)
where C,; is the composition of the liquid at the inter-
face, assumed to be constant, D, is the coefficient for
interdiffusion across the interface, and &, (7;) is the
equilibrium partition coefficient (i.e., the ratio of the
solidus composition to the liquidus composition) at the
interface temperature 7;. Integrating this expression,
defining the reduced concentration C, (1} = C,; (1)/C,,
and applying the initial condition that C, (0} = 1 yields

C,(1) =Tk, + (1—kJexp— (D;1/25)]. (2)

Note that C, (1) is not the partition coefficient, but is
rather the instantaneous composition of the solid inter-
face layer relative to €. The final value of C, (t) occurs
when addition of the next monolayer at time t=r
brings diffusion to a halt. If the diffusive speed is defined
asvp = D, /A and the normalized velocity as f = v/vp,
we have the SGM result:

k=C (1) =k, + (1 =k, )exp— (1/8). (3
If, instead, we assume that the layers are added random-
ly in time, rather than periodically, then the probability
that a given layer is not covered at time ¢, but is then
covered in the next time interval df is given by

-1/t -
P{t)dr = € " d’. (4)

The composition of the solid, averaged over many 7, is
then given by

k= .r C,(HH)P(1)dt = Lﬁ—t—’f&)—,
o B+1

which is the simple CGM result. It should be noted that
in the case of the SGM it is not necessary to add com-
plete atomic layers (i.e., a wholelayer at a time ). In fact,
since in this mode] the action at the interface is indepen-
dent of any lateral correlation, the layers can be added in
any fashion that is periodic with period 7. However,

(3)

there are few ways of adding layers that satisfy periodic-
ity and are physically plausible. One way that satisfies
both conditions is the lateral passage of growth steps.

B. Application to redistribution at step edges and
at terraces

We now apply this result to the orientation depen-
dence experiment. It was originally suggested that trap-
ping occurs only at the step edges moving with lateral
speed v, = v/sin 6, where @ is the inclination angle
from (111), and that no escape flux passes through the
terrace. The present model allows for an additionat es-
cape flux through the terraces. We introduce a second
parameter v}, the speed of diffusion out of the terrace
once the solute atom is incorporated into the solid mon-
olayer. Since in this position the solute atom is triply or
quadruply coordinated, we expect v}, < v}, the latter be-
ing the corresponding quantity at the step edge where
the atom is doubly coordinated.

We retain the original assumption that trapping oc-
curs at the step edges and is characterized by the CGM,
i.e., the amount of solute initially incorporated into the
terrace by the lateral passage of the step is given by Eq.
(2) of Ref. 4:

{[v. (&) /03] + k.}

{{v. (@)W1 +1}
In this picture the kinetics of continuous lateral ledge
motion versus lateral solute—solvent redistribution lead
to a C, (1 = 0) representative of partial trapping of sol-
ute onto the terrace. This initial trapping process is de-
scribed by the simple CGM, except that v; replaces v
and vk replaces vy, (Of course, the process could be
equally well described by the aperiodic lateral passage of
kinks.)

Some solute atoms then escape through the terrace
before the next ledge passes and permanently covers the
remaining solute. This process is accounted for by inte-
grating Eq. (1), using the initial condition given by Eq.
(6). The result is very similar to Eq. (2):

C.(ty=k,+{[B +k)/(B +1)] -k}
xXexp— (DIt/3 %), (N

where D] is the diffusion coefficient perpendicular to
the terrace and B, = v, /v5. If the ledges are randomly
spaced (asin Fig. 1), then the measured partition coeffi-

C.(0)= (6)

‘cient is an average over all terrace lengths. This is for-

mally identical to having layers added with random pe-
ried, and we can therefore apply Eq. (5) to obtain the
final partition coefficient:

_ {k. +B (B +k)/ (B + 1]}
(B, +1) '

where 8, = (v/cos 8)/v],. Expression (8) will be re-

k {8)
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ferred to as the apericdic stepwise growth model
{ASGM), as it describes solute trapping as occurring by
the aperiodic passage of steps. Note that if v}, = 0 the
above expression reduces to that of Aziz and White for
no escape through the terraces,

}il. COMPARISON OF THEORY TO DATA

The two fitting parameters in the ASGM are v}, and
v5. In Fig. 2 we compare the ASGM to the data for the
orientation dependence of k at constant velocity. Two
distinct velocities were achieved experimentally, 1.7 and
5m/s. For the curves drawn in Fig. 2, the fitting param-
eters were v}, = 6 m/s and vf, = 20 m/s. The former is
determined solely by fitting k at (111). The latter is then
varied to bring the curves into agreement with the rest of
the data. The resulting fit is excellent. In Fig. 3 we com-
pare the ASGM to the data for velocity dependence at
(001). While the fit of the ASGM to the data is accepta-
ble, the simple CGM provides a somewhat better fit to
the velocity-dependence data. Heat flow calculations
were used to determine the interface velocity in the ori-
entation-dependence experiment. In the velocity-depen-
dence experiment v was measured directly. The values
of the fitting parameters v}, and v were determined by a
fit to the former data. The discrepancy between the lat-
ter data and the ASGM may arise from small systematic
errors in the heat flow calculations of v and their effect
on the fitting of v}, and v5. { Note that the two circles in
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FIG. 2. Comparison of aperiodic stepwise growth mode! to data for
the orientation dependence of partition coefficient at 1.7 m/s (circles)
and 5 m/s (squares). The fitting parameters in the ASGM are
v} = 6 m/s and v§ = 20 m/s.

1.0 : .
0.8] ) w
B velocity measured .

0.8l e velocity colculoted
0.7L

0.6}

0.51
041

Partition Coefficient

0.3
021
011

0.0 .
107" 10° 10' 10°
interfoce Speed {m/s)

FIG. 3. Comparison of aperiodic stepwise growth model to data for
the velocity dependence of partition coefficent at the (001) orienta-

“tion. The fitting parameters are v}, = 6 m/s and v5 = 20 m/s.

Fig. 2, which came from the orientation-dependence ex-
periment, show better agreement with the ASGM than
do the rest of the data.) )

Consider the height of the ledges in Fig. 1. If the
ledge is more than one atomic layer in height then the
sojute composition of the buried layers {which are never
free to exchange solute atoms with the liguid through
the terraces since the motion of a fourfold-coordinated
dopant would be governed by the bulk diffusivity, which
is exceedingly small) should be described by the moedel
of Aziz and White. The overall partition coefficient
would be the average of the partition coefficient of all of
the layers. If the ledges were at least two atomic layers
high, then the k of the top layer is described by the
ASGM, while that of the remaining layer is described by
the Aziz—White model. Since at (111} v; divergesand k
of the bottom layer will always be 1 in the Aziz-White
model, the minimum overall & that could be measured
at any speed would be 0.5. The data in Fig. 2 show
k=0.23atv = 1.7m/sfor (111). Therefore, within the
context of this model, ledges must be only one atomic
layer in height. This simple argument holds only at or
near (111). However, quantitative analysis of our mod-
el, inciuding the possibility of large step heights at orien-
tations far from (111) and both forms of solute escape,
indicates that the ASGM is consistent with the data only
if growth at any orientation occurs by the lateral passage
of monolayer {111} steps. This argument does not rule
out the possibility of large facets advancing by the nu-
cleation at the reentrant corners and subsequent motion
of monolayer growth steps.

In the well-known “facet effect,”S k ata (111) facet
appears to be higher than k at an unfaceted orientation
during Czochralski growth. This is not inconsistent
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with ASGM if the effect is relatively small. Using v}, and
vh obtained from high v data, we estimate that at these
speeds differences of ~ 1% might be found for Bi in Si.
It is conceivable that for other dopants there might be a
somewhat more pronounced facet effect. However, an
effect such as that reported for Tein InSb,” in which % at
{111) is greater than unity despite & at other orienta-
tions being less than unity, is inconsistent with simple
models such as the ASGM. More complicated trapping
models that include adsorption at the interface®'? are
necessary to explain such behavior.

IV. CONCLUSIONS

We have developed a simple atomistic model for
solute trapping that is based on (a) random intervals
between the passage of growth steps and (b) two
chances for solute escape: one at the edge of the moving
step and another out of the terrace. With one fitting
parameter to characterize each flux, the mode! yields an
excellent fit to the data for the velocity and orientation
dependence of solute trapping of Bi in Si.
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