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1. INTRODUCTION 

The object of this paper is to begin a geometric study of noncompact spaces 
whose local structure has bounded complexity. Manifolds of this sort arise as 
leaves of foliations of compact manifolds and as their universal covers. We 
shall introduce a coarse homology theory using chains of bounded complexity 
and study some of its first properties. 

The most interesting result characterizes when H ~f (X) vanishes as an ana-
logue and strengthening of FeIner's amenability criterion for groups in terms of 
isoperimetric inequalities. (See [4].) One can view this result as producing a 
successful infinite Ponzi scheme on any nonamenable space. Each point, with 
only finite resources, gives to some of its neighbors some of these resources, yet 
receives more from the remaining neighbors. As one can imagine this is useful 
for eliminating obstructions on noncompact spaces. 

This has a number of applications. We present two of them. The first pro-
duces tilings that are "unbalanced" on any nonamenable polyhedron. Unbal-
anced tilings are automatically aperiodic and this gives many examples of sets 
of tiles that tile only aperiodically. Unfortunately, imbalance is a particularly 
unsubtle reason for aperiodicity so that the aperiodic tilings of Euclidean space 
(Penrose tilings) are necessarily not accessible to our method. On the other 
hand, most other simply connected noncompact symmetric spaces even have 
unbalanced tilings using our criterion. 

The second application regards characteristic numbers of manifolds whose 
universal covers have positive scalar curvature. We prove a converse to a theo-
rem of Roe. We show that for any nonamenable group r one can find a spin 
manifold with fundamental group r, with nonzero A-genus whose universal 
cover has a uniformly positive scalar curvature metric of bounded geometry in 
the natural strict quasi-isometry class. 
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908 JONATHAN BLOCK AND SHMUEL WEINBERGER 

Future papers will develop a connection to indices of elliptic operators on 
noncompact manifolds and with information measured by higher homology 
groups. These lead to new bounded geometry homotopy invariants and more 
quantitative information about the shape of negative scalar curvature sets. One 
can also apply these ideas to understanding the growth of distortion of diffeo-
morphisms between noncompact manifolds. (See Oliver Attie's forthcoming 
Courant Ph.D. thesis and also [1].) But all of these developments will be pre-
sented elsewhere. 

2. UNIFORMLY FINITE HOMOLOGY 

In this section we introduce the uniformly finite homology groups H 71 (X) of 
a metric space X. We will derive some of its simplest properties, in particular 
its invariance under coarse quasi-isometry. 

Let X be a metric space and write X i+1 for the i + I-fold cartesian product 
with the metric 

Also, write ~ for the multidiagonal in X i+1 • No confusion should arise from 
this. Let C 71 (X; R) = C 71 (X) denote the vector space of infinite formal sums 

X i+1 R' f . x E , ax E satls ymg 
(1) There exists K> 0 (depending on c) such that laxl :::; K. 
(2) Given r > 0 there exists Kr so that for all y E X i+1 

#{x E B(y, r) I ax I- O} :::; K r • 

(3) There exists R > 0 (depending on c) so that ax = 0 if d(x, ~) > R. 

We will sometimes regard the coefficients as describing a function from the 
simplices to R and therefore we will use notation appropriate to functions. In 
particular, one chain is :::; another if all the coefficients are :::;. In a similar 
manner we can define C7/(X; Z). From now on we will let C7/ (X) denote 
either C7/ (X; R) or C7/ (X; Z) unless the considerations only apply to one 
of the groups. 

Define 8 : C 71 (X) -t C 7!1 (X) by 

i 

8(xo ,'" ,Xi) = ~)_l)i(xo'''' ,xi'''' ,Xi) 
i=O 

and extend by linearity. It is easy to check that (C ~I (X), 8) is a chain complex 
and we denote its homology by H 71 (X) (or if necessary, H 71 (X; Z) etc. if 
we need to specify coefficients), and call it the uniformly finite homology of X. 
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Note that we do not take the closure of the boundaries. In fact, the boundaries 
will in general not be closed in the L 00 -norm. 

A map f: X --+ Y between two metric spaces is said to be effectively proper 
Lipschitz (or EPL) if it satisfies the conditions 

(1) Given r > 0 there exists an s > 0 so that d(f(x) , f(y)) < s if 
d(x, y) < r. (Roe calls this uniformly bomologous. We use the term 
Lipschitz even though it is only Lipschitz in some coarse sense. ) 

(2) Given r > 0 there exists s > 0 so that if d(f(x) , f(y)) < r then 
d(x, y) < s. (This condition alone is called effectively proper.) 

Note that f is not necessarily continuous. Also note that a coarse quasi-
isometry in the sense of Gromov is an EPL map. 

Let f: X --+ Y be an EPL map. Define f* : C ~f (X) --+ C ~f (Y) by 

Let 1: also denote the induced map on homology. Now consider two EPL maps 
fa, 1; : X --+ Y. We say fa is uniformly close to 1; if there exists R > 0 so 
that d(fa(x) , 1; (x)) < R, for all x EX. 

Proposition 2.1. If fa, fl : X --+ Yare two uniformly close EPL maps, then 
f o*' 1;* : (C~f(X), 8) --+ (C~f(y), 8) are chain homotopic. In particular, 
fo* = 1;* on homology. 
Proof fa and 1; being uniformly close means that {fa, 1;} : X x {O, 1} --+ Y 
is an EPL map and as usual the proposition is reduced to showing that the two 
maps io' i I : X --+ X x {O, 1} are chain homotopic. For this we merely write 
down the chain homotopy. Let h : C ~f (X) --+ C ~:I (X x {O, 1}) be defined by 

i 

h(xo' ... ,Xi) = ~)_1)i((xo' 0), ... ,(xi' 0), (Xi' 1), ... ,(Xi' 1)) 
i=O 

and extend by linearity. Then one computes that 8h + h8 = i l * - io*' 0 

Two spaces X and Yare uniformly close if there exists f: X --+ Y and 
g : Y --+ X , both EPL, such that fog and g 0 f are both uniformly close to 
the identity. 

Corollary 2.2. If X and Yare uniformly close then H ~f (X) ~ H ~f (Y). In 
particular, this is the case when X and Yare coarsely quasi-isometric (in the 
sense of Gromov). 

A subset reX is called c-dense or coarsely dense if there exists some 
number c > 0 so that Nc(r) = X. Here Nc(r) = {y E X I d(y, r) < c}. 
reX is called a quasi-lattice if r is c-dense in X and for all r > 0 there 
exists Kr > 0 so that 

#{x Ern B,(y)} :S Kr 
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910 JONATHAN BLOCK AND SHMUEL WEINBERGER 

for all y EX. Thus r defines a class [r] E H ~f (X). By the corollary, the 
inclusion reX induces an isomorphism H~f(r) ~ H~f(X). Not every 
metric space has a quasi-lattice, but spaces which are of bounded complexity in 
any reasonable sense do. See the beginning of the next section. 

Let us point out that when H ~f (X) i- 0, it tends to be rather large. For 
example, let X = Z (or R as they are coarse quasi-isometric ). Then it is easy 
to check that 

Huf(Z' Z) ~ {4>: Z -> Z IIIJ4>lloo < oo} 
0' {4>:Z->ZIII4>lloo<oo}' 

Here J4>(n) = 4>(n) - 4>(n - 1) and 11.1100 is the L 00 norm. Note, in particular, 
that H~f(Z; Z) is an R vector space via (A· 4»(n) = [Acf>(n)]. In fact, it can 
be shown in many circumstances that the map H ~f (X; Z) -> H ~f (X; R) is an 
isomorphism. 

Finally, we have the following very useful proposition characterizing vanish-
ing of H ~f in terms of particular "fundamental classes." 

Proposition 2.3. Suppose reX is a quasi-lattice. Then the following are equiv-
alent: 

(1) H~f(X; Z) = O. 
(2) H~f(X; R) = O. 
(3) There exists c = LXEr axx, with integer ax > 0, such that [c] = 0 in 

H~f(X; Z). 
(4) There exists c = Lxaaxx, with real ax ~ e > 0, such that [c] = 0 in 

H~f(X;R). 

Proof As usual H~f(r) = H~f(X) so we work just with r. We prove (3) 
imples (1) and (2), and (4) implies (3). 

Lemma 2.4. Suppose c = LXEr axx such that ax ~ 0 are integers and so that 
[c] = 0 in H~f(r; Z). Then for every x such that ax > 0 there exists tx E 

C ~f (r; Z) such that a (t x) = x and the sum Lx t x is a locally finite bounded 
sum, that is, Lx tx E C ~f (r; Z) . 

We think of the tx's as tails off to infinity and the condition that their sum 
is in C ~f (r; Z) is the statement that in any ball of fixed radius, the number of 
tails passing through is uniformly bounded. 

Proof of the lemma. Suppose given such a c. Then c = a If/, If/ E C ~f (r; Z) . 
If/lookslike L(x.y)b(x.y)(x,y). By replacing (x,y) by (y,x) we can assume 
b(x,y) ~ O. We induct on the maximum of the ax's. Let Xo E r be such 
that ax realizes this maximum. There exists XI E r so that the coefficient 

o 
in front of (XI' xo) in If/ is positive. Then there is also an x2 so that the 
coefficient of (X2' XI) in If/ is positive (since the coeffiecient in front of XI 

in alf/ is positive). Continuing in this manner we construct txo = (XI' xo) + 
(x2 ' X I) + . .. . Now a (If/ - t xo) again satisfies the hypotheses of the theorem 
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SO we may iterate this procedure to construct tx for every x with ax > o. 
Lx tx E c~f(r; Z) since the simplices making up this sum are a subset of 
those making up ",. This proves the lemma. 

To continue with the proof of the proposition, let c be as in (3). Then by 
Lemma 2.4, let tx E C~f(r; Z) satisfy otx = x. Then any b = Lx bxx E 

c~f(r; Z) is the boundary O(Lx bxtx ). Hence H~f(r; Z) = o. The same 
argument shows that (3) implies (2). 

To show that (4) implies (3) let c = Lax·x E c~f(r; R) with ax ~ e > 0 
and such that c = 0"" '" E C~f(r; R). Suppose supp", c Nr(!l.) and let 
K > 0 be such that #{Br(Y)} ~ K for all Y E r. Set a = (K:l). Define 
",'(x, y) = [a",(x, y)]. Then ",' E C~f(r; Z) and 0",' E C~f(r; Z). Now 
o",'(x) ~ 1. Hence 0",' E C~f(r; Z) satisfies (3). 0 

3. AMENABILITY 

Let X be a metric space. It is not true that X necessarily has a quasi-
lattice. However, if X has bounded geometry in some sense then it does. For 
example, if X is a complete Riemannian manifold which has the property 
that its injectivity radius is bounded away from zero and its Ricci curvature is 
bounded from below by a constant -(n - l)R, R > 0, then X has a quasi-
lattice. In particular any maximal subset of X so that any two points are 
distance greater than a half (Zorn's lemma) is a quasi-lattice. Similarly, let 
X be a polyhedron with a given triangulation K and consider the standard 
metric defined using barycentric coordinates. Call this metric d K • The topology 
induced by this metric is the same as the original topology on X as long as K 
is locally finite. Then if K has bounded complexity in the sense that in any 
ball of radius r > 0 there is a uniformly bounded number of simplices, then 
the set of vertices is a quasi-lattice. Note that if K has bounded complexity, 
then so does K' , its barycentric subdivision. 

A metric space will be said to be of coarse bounded geometry if it has a 
quasi-lattice. For a subset U c X let 0rU = {x E X I d(x, U) < rand 
d(x, X - U) < r}. X will be called amenable if it has a quasi-lattice rand 
for any r, J > 0 there exists finite U c r so that 

#{Or U } ~ 
#{U} < u. 

(Or is computed in r; #{orU} is finite by the coarse bounded geometry.) For 
a finitely generated group r with its word metric this is equivalent by Fellner's 
condition to amenability of the group [4]. Also, if M is a manifold of bounded 
geometry, this is equivalent to not having a linear isoperimetric inequality. 

The main result of this section is the following 
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Theorem 3.1. Let X be a metric space of coarse bounded geometry. Then 
H~f(X) = 0 if and only if X is not amenable. (By Proposition 2.3 it does 
not matter what the coefficients are.) 
Proof Let reX be a quasi-lattice. Then H ~f (r) ~ H ~f (X) so that we might 
as well work with H ~f (r). First we will show that H ~f (r) = 0 implies r is 
not amenable. Since H ~f (r) = 0, ¢o = LXEr x = 8'11 , for some 'II E C ~f (r) . 
We will show there exists r, 6 > 0 so that 

#{8rU)} > 6 
#{U} -

for all finite subsets U cr. Let r be so that sUPP'll C Nr(/l). Also, let K > 0 
be such that #{Br(Y)} ~ K for all y E r. Then 

#{U} = L ¢o(x) = L 8 'II (x) 
xEU xEU 

= L L 'II(Y, x) - 'II (x , y) 

= L L('II(Y, x) - 'II (x , y)) + L L ('II(Y, x) - 'II (x , y)). 
xEU yEU xEU yEr-U 

The first term vanishes by symmetry. Hence we have 

~ L L I 'II(Y, x) - 'II (x , Y)I· 
xEUyEr-U 

In order that the summand not vanish, d(x, y) < r so 

L L I 'II(Y, x) - 'II (x , y)1 
xE(8,U)nU yEr-U 

< L L I'II(Y, x) - 'II (x , y)1 
XE(8,U)nu yEB,(x) 

< L 211'11II(XlK ~ 2#{8r U}II'IIII(XlK 
XE(8,U)nU 

or 
#~f0} ~ (211'11II(XlK)-'. 

To prove the other direction, assume that H ~f (r; R) =I- o. Let.91 = 
{¢ E C~f(r; R) I 3K > 0 with ¢(x) ~ K Vx E r}. By Proposition 2.3 
.91 n8C~f(r; R) = 0 and in fact .91 is an open convex subset of C~f(r; R). 
By the Hahn-Banach theorem, there exists m E C ~f (r; R)' of norm one, so 
that m(¢) ~ 0 for all ¢ E .91, m(8C ~f(r; R)) = 0 and m(¢o) = I, where 
¢o = LXEr x. Let fin E I' (r) be a net satisfying lifin II = I, fin ~ 0 and 
fin --+ m in the weak-* topology. This is possible by the weak-* density of [' (r) 
in C ~f (r; R)' ~ [(Xl (r)' . We also may assume that each fin has finite support. 
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Now we must show that given r, e > 0 that there exists V c f' so that 

#{8r V} 
#{V} < e. 

We first prove 

Lemma 3.2. Given e, r > 0 there exists ¢ E {I (1) with finite support so that 
II¢III = 1 and ¢ 2: 0 and 

L I¢(x) - ¢(Y)I < e. 
d(x ,y)<r 

Proof of the {emma. Let 

C/I)(f'; R) = {1fI: f' x f' -+ R I Vr > 0, L IIfI(X, y)1 < <Xl}. 
d(x ,y)<r 

This is a topological vector space with respect to the semi-norms II ifill I ,r 

.Ed(x,y)<r IIfI(x, Y)I· The topological dual of C/I)(f'; R) is easily seen to be 
C~f(f'; R). (Basically, C/I)(f'; R) ~ lim.-{I(Nr(il)) and so C/I)(f'; R)' ~ 
lim-> rx'(Nr(il)) = C~f(f'; R).) For fl E {I (f') write 0fl(X, y) = fl(X) - fl(Y). 
Then Ofl E C/I)(f'; R), and for fl E {I (f') and IfI E C~f(f'; R) we have 

(0 fl, 1fI) = (fl, 8 1fI) 

where (, ) denotes the obvious pairings. 
Now for all IfI E C ~f (f'; R) we have (0 fln' 1fI) = (fln , 8 1fI) -+ (m, 8 1fI) = 0 

since fln -+ m weak-*. Hence Ofln -+ 0 in the weak topology of C/I)(f'; R). 
Since for convex sets the weak and the strong topology closures are the same, 
we can take finite convex combinations of the fln' say, ¢n so that o¢n -+ 0 
strongly while we still have II¢nlll = 1 and ¢n 2: 0 (because fln 2: 0). But this 
is the statement of the lemma. This proves the lemma. 

To continue with the proof of the theorem, given r, e > 0 let ¢ be as in the 
lemma. Since ¢ has finite support, we can write 

so that V i+1 C Vi' .E ai = 1 and ai 2: O. Then 

(1) 
N Ixu (x) - xu(y)1 

e> L I¢(x) - ¢(Y)I = L La i '#{U} , 
d(x ,y)<r d(x ,y)<r i=1 I 

N 

= L #tU} L Ixu,(x) - xu,(y)1 
i=1 I d(x,y)<r 
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914 JONATHAN BWCK AND SHMUEL WEINBERGER 

~ #{O,UJ 
~ L., ai #{ u.} 

i=1 I 

Therefore for at least one of the i's we have #i{t~Y < e which proves the 
theorem. 0 

Remark. It is interesting to note that for an n-manifold of bounded geometry 
M, H~J(M; R) ~ nbounded(M)/d(bounded), in the notation of Gromov. 
Hence, the theorem above implies a theorem of Gromov that M is open at 
infinity if and only if every bounded n-form is d(bounded). (See [2, §4.1].) 

4. APERIODIC TILINGS 

In this section we will describe certain types of tilings of a space X which 
are necessarily aperiodic. We then give a necessary and sufficient condition for 
a space to have such a tiling. Let X be a polyhedron. We will say X is a 
singular n manifold if it has a triangulation K such that every simplex (J E K 
is contained in an n-simplex. Recall the metric d K described at the beginning 
of §3. Note that dK is quasi-isometric to dK , where K' is the barycentric 
subdivision of K. 

Let (X, d) be a metric space which is a singular n-manifold and let K be 
a triangulation so that d is quasi-isometric to dK • A set of tiles (!T,!T) is a 
finite collection of compact metric singular n manifolds t E!T and a collection 
of sub singular (n - 1) manifolds I E !T , together with an opposition function 
o : !T -+ !T. A metric singular n manifold X is tiled by the set (!T,!T) if 
there is a decomposition of X as U At A where each t A is isometric to one of 
the tiles in !T and such that if two tiles t A ' t p. intersect, then they intersect in 
lEtA and o(J) E tp. and such that there are no free faces. 

A finite set of tiles (!T,!T) is semibalanced if there exists a weight function 
w : !T -+ Z such that 

(1) w(o(J)) = -w(J). 
(2) For all t E!T, LJEt w(J) ~ O. 

The set is called unbalanced if the sum in (2) is > O. The impurity set D of a 
semibalanced tiling is the collection of centers of gravity of the set of positive 
weight tiles. (The center of gravity of a tile is any point in the tile.) This defines 
a well-defined element in H ~J (X; Z) . 

The following proposition states that a semibalanced set of tiles can only tile 
aperiodically. 

Proposition 4.1. II X has a semibalanced tiling by (!T,!T) with impurity D :/= 
0, then there exists no cocompact tile preserving action on X. 
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Proof. Suppose r is a group acting on X preserving tiles and such that the 
quotient is compact. Then the finite sum 

I: I:w(f»O 
t).cx/r fEt). 

If, instead, we sum over the faces, then 

I: I: w(f) = I: w(f) + w(o(f)) = O. 
t).cx/r fEt). fEx/r 

o 
Theorem 4.2. Let X be a noncompact singular n-manifold n ~ 2 with triangu-
lation K, and metric d K and assume X is of finite complexity. Then 

(1) X has an unbalanced tiling if and only if X is nonamenable. 
(2) Let D c X be such that there exists an r > 0 so that for any two 

elements x and y in D, d(x, y) > r. Then X has a semibalanced 
tiling with impurity D if and only if [D] = 0 in H ~f (X; Z) . 

Proof. First we prove (2). Suppose X is tiled by (.9",.9") an unbalanced set 
of tiles with weight function w. Let D be the impurity set of the tiling, so D 
defines an element in H ~f (X; Z). For each pair of elements x and y in D, 
let tx and ty be the tiles containing x and y and define a(x,y) = w(f) where 
f is the face of ty in the intersection tx and ty ' or equal to 0 if they have 
no common face. Then 

{) I: a(x,y)(x, y) = I:(I: w(f)) > O. 
(X,y) xED fEtx 

Hence [D] = 0 in Huf(D; Z) = 0 by Proposition 2.3 and so is also zero in 
H ~f (X; Z). The same argument implies the "only if" part of (1). 

Now let D be as in (2). By subdividing K enough times we may assume 
that each n simplex in X contains at most one element of D. We may even 
assume that each element of D is a vertex of K . Let V be the set of vertices of 
K. By assumption, D is a boundary so let D = {)1fI where IfI E C ~f (V ; Z) . 
By replacing the chain (x, y) E C~f(V; Z) by (xo' XI) + (XI' x 2 ) + ... + 
(xm_ l , xm) where Xo = X, xm = y, d(xj , x j + l ) = 1, we may assume that 
supp IfI C NI (.1) . 

Now let K' be the barycentric subdivision of K. For x E V let *x = 
U nEK' E nan. Since K' has finite complexity, there are only a finite number 

(J ,x a 
of combinatorial types of *x as x runs over V. Now for each edge e = 
(x, y) E K, let *e = *X n *y. As with the *X's, there are also a finite number 
of combinatorial types of *e's. Let .9'" be the collection of combinatorial 
types of *x's and .9"' the types of *e's. Certainly, X is tiled by the set 
(.9'" , .9"'). We now derive from (.9",.9") and IfI a new set of tiles (.9",.9") 
and a weight function making (.9",.9") semi-balanced with impurity D. First 
we assign weights to the faces of each tile in this tiling of X as follows. For a 
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tile *x, with faces *e x where ex is an edge containing x, assign the weight 
w(*ex) = ±'II(ex ) where the ± is chosen a~cording to whether x is the final 
or initial point of ex. Then 

" {I XED} ~ w(f) = 8 'II (x) = 0 if not . 
!E*x 

(2) 

Now construct the new set of tiles as follows. Consider the set of tiles t E X 
together with their configuration of faces and weight functions. This is a finite 
set since the initial set of tiles were finite and since 'II E C~! (V; Z) , that is 'II 
assumes only a finite number of different values. This will basically be our new 
set of tiles. The only thing left to do is to make the faces with different weights 
combinatorially distinct which we can do since n - 1 2: 1 . Thus we arrive at a 
new set of tiles (!T, 7) and the tiling is seen to have impurity D. 

The proof of the "if' part of (1) is the same. 0 

This construction may also be carried out in some situations on Riemannian 
manifolds. For example, 

Proposition 4.4. Let M --+ M be a covering space of a compact Riemannian 
manifold M, and consider M to have the lifted metric. Then M has an 
unbalanced tiling if and only if the covering group is not amenable. 

There is also a statement about semibalanced tilings. The proof of this is 
similar to that of the previous proposition except that the combinatorics is 
handled via the group and a fundamental domain. 

In the case where the group of the cover contains a nonabelian free group one 
can actually produce unbalanced tilings effectively. We do not know how to do 
this in general. (We remind the reader that Grigorchuk has produced examples 
of nonamenable groups without free subgroups [4].) 

5. ApPLICATIONS TO POSITIVE SCALAR CURVATURE 

Let 7r : M --+ M be a covering space over a compact manifold M with 
an amenable covering group r. Then if M is spin the A(M) is an obstruc-
tion to finding a metric of positive scalar curvature on M in the same strict 
quasi-isometry class as the pull back metric from M according to Roe [5, II, 
Proposition 3.3]. The following proposition shows that the necessity of the 
amenability hypothesis is not at all a weakness of Roe's methods, but is inher-
ent to the problem. 
Proposition 5.1. Let r be a nonamenable group. Then there exists a r-covering 
space 7r : M --+ M so that M is compact spin manifold, A(M) 1= 0 and so that 
M has a metric of positive scalar curvature in the same strict quasi-isometry class 
as the pullback metric from M. 

In fact we will prove something slightly more general. 

Lemma 5.2. Let W be a 4k-dimensional Riemannian manifold of bounded ge-
ometry (k > 1) which has a metric of positive scalar curvature. Let L denote a 
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compact simply connected spin manifold 0/ dimension 4k with A(L) f= 0 and 
diameter d. Let DeW be a subset such that any two points are separated by at 
least 2d. D then defines a class [D] E H ~f (W; Z) (since W has bounded ge-
ometry). Then if [D] = 0 in H~f(W; Z) the manifold W#D(DL) has a metric 
o/positive scalar curvature in the same strict quasi-isometry class as W#D(DL). 

Note that the strict quasi-isometry class of W#DDL is independant of the 
metric on L. As an example, L could be K x K where K is a Kummer 
surface. The proposition follows from the lemma by letting M be a spin 8-
manifold with positive scalar curvature and fundamental group r. Such an 
M can be produced by taking the product of an arbitrary spin 5-manifold 
with the correct fundamental group and a round sphere of tiny radius. Then 
A(M#L) =I- 0, M#L is spin, has fundamental group r, and its universal cover 
has metric of positive scalar curvature in the strict quasi-isometry class as the 
pullback metric. 

To prove the lemma we will apply the theorem of Gromov and Lawson that 
a manifold obtained from a manifold of positive scalar curvature from per-
forming surgeries in codimension ~ 3 also carries a metric of positive scalar 
curvature, [3, Theorem A]. It also follows from the proof of their theorem that 
we can leave the metric on the original manifold unchanged in the complement 
of the region where the surgeries are carried out. Now let D be as above and 
assume [D] = 0 and let D = 8'11 = 8 L(x,y) b(x,y)(x, y). Let r be such that 
supp 'II c N,(/J.). For a single term b(X,y)(x, y) we can construct a cobordism 
from W to W#(Y_x)b(X,y)L by starting with (W x l) and connect summing 
W x {1}#y(b(x,y)L x {O})#x(-b(X,y)L x {I}). Now it is easy to see that the 
spin structures on Wand L extend over this cobordism. Hence, by apply-
ing the argument in the proof of [3, Theorem B], we see that W#(y_x)b(x ,y)L 
can be obtained from W by applying surgeries in codimension ~ 3. Thus 
W#(y_x)b(x ,y)L has a metric of positive scalar curvature and so that the metric 
has not changed at distances greater than say 2r from x and y. Continuing in 
this manner for each term b(x ,y)(x, y) we construct a metric of positive scalar 
curvature on W#DDL. (A crucial point is that the theorem of Smale on the 
structure of cobordisms, cited in the proof of [3, Theorem B], also works in the 
relative case.) So that once we have done our work in one region of the the 
manifold W, of which there is only a finite amount since 'II E C ~f (W; Z) , we 
can leave this region forever and never disturb it again. The metric we have con-
structed is in the same strict quasi-isometry class as the original metric since all 
the surgeries take place on a uniformly large scale and since 'II E C ~f (W ; Z) . 
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