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Apertures for Excitation of Algebraically Self-Dual E/M Fields 
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We propose a technique for setting up parallel (self-dual) stationary electromagnetic 

fields in the context of transformation optics. Several paradoxes that may appear in this 

regime are discussed. A particular type of communication based on stationary patterns 

through Aharonov-Bohm interferometry is also introduced as an alternative to a previous 

proposal by Putthof. 

 

1. Introduction 

 

 In a series of previous report [1 - 3] we presented certain theoretical arguments on the 

possibility of creating E/M fields with parallel electric and magnetic components. Previous 

search was based on the notion of so called “Beltrami” flows [5 - 7] that represent eigen-

modes of the rotation operator of which the application has shown similar theoretical results 

with controversial interpretation [8 - 11]. Till now there is a limited applicability of such 

results and only in very high frequencies as in laser cavities [12]. It is also expected that 

similar solutions of Maxwell equations are not general enough and they can only exist in 

closed regions or in plasma and astrophysical states with very special boundary conditions 

[13].  

Despite this, we have recently shown [4] that there exist special solutions inside spherical 

shells that satisfy a radiation condition due to their overall inverse radius dependence thus 

leading to the possibility of their existence in open space once the outer spherical wall gets 

removed towards infinity. Similar results with self-dual fields have appeared in Chubykalo 

et al. [14]. To avoid misunderstanding we have to make clear that any such E/M 

configuration is necessarily a set of stationary waves as the Poynting vector gets cancelled. 

Thus any such pattern once established is basically an accumulation of electromagnetic 

energy around the near field. 

Yet, there are still open problems with respect to the transient phase during establishment of 

such a pattern in the open space and the type of perturbation that this represents. To better 

understand the nature of this problem we present a very special aperture in which there are 

two symmetric (“dual”) types of radiation sources. In [2] we have shown that some of the 

Beltrami flows may be associated with the so-called self-dual solutions of Maxwell 

equations. 

Given such a double set of apertures it is in principle possible to perform the following 

experiment. When the first aperture starts operating it establishes a certain radiation pattern 

in the open space. After a while the second aperture starts operating and establishes a second 

radiation pattern in the open space. During a transient time interval all radiation must cancel 

as long as the superposition of the two fields leads to a perfect parallelization of the electric 

and magnetic components. It is quite obvious that such a cancellation cannot happen 

instantaneously –in which case we would have had a type of superluminal signaling- thus 

there must be a kind of “solitonic” cancellation front that propagates in the open space 

during the transient time interval.  

Such a type of propagation has never been tried experimentally before and in this report we 

present a preliminary examination of the equipment required for a subsequent experiment of 



 

�4/15 

 

this kind. It is also interesting to combine this with previous experiments on superluminal 

polarization sources with “synchrotron”-like spiral wave fronts of increased coherency that 

have been recently proved by Ardavan et al. [15]. This type of experimentation may lead to 

an entirely new class of communication channels. 

In section 2 we recall the necessary definition of self-duality in the context of Maxwell 

equations. In section 3 we give a simple prescription for setting up finite apertures based on 

ordinary dipolar sources and in section 4 we argue on the applicability of the above results 

on the case of weak linearized gravity in which the Weyl version of Einstein equations 

results in a set o Maxwell equations albeit with different source terms. The possibility of 

“latent” communication channels that make direct use of the phase shift in Aharonov-Bohm 

interferometry [27 - 30] based antennas are further discussed in section 5. 

 

2. Algebraically self-dual parallel electric and magnetic fields 

 

The notion of dual and self-dual fields and sources in classical electromagnetism was first 

introduced by Helmholtz [18, 19] at 1880s. In its most general form a duality transformation 

can be expressed as a linear transformation of the electric and magnetic components (E and 

B ���� E’ and B’) that leave Maxwell equations invariant. This bears some resemblance to the 

generic case of Lorentz transforms that also mixes electric and magnetic components but 

with a non linear structure in as much it involves the exterior products BvEv ×× , .  

The simplest case of duality appears in the form of the simple exchange EBBE →−→ , . 

The fields are called self-dual if they further satisfy iEBiBE ±=±= , the simplest case being 

that of circularly polarized plane waves. A generic form of self-dual transform is given by 

the 2x2 matrix 

 










±

±

1

1

i

i
     (1) 

 

Despite its elegant symmetry, ordinary multipole solutions require also a similar symmetry 

of the sources which is reflected to a generic reformulation of Maxwell equations which 

includes magnetic monopole currents. As far as these remain elusive it seems impossible to 

construct such solutions in actual experiments. This is mostly reflected in the so called 

Beltrami-Maxwell reformulation first given by Lakhtakia [6, 20, 21] for applications in 

chiral media. In this rephrasement, Maxwell equations are given in terms of complex 

combinations of the electric and magnetic components which then become eigen-functions 

of the rotation operator (Beltrami flows), thus naturally including the duality symmetry. 

We will now show that it is possible to construct algebraically self-dual combinations of 

electric and magnetic components that are based on special permutation symmetry of the 

scalar components of the fields thus allowing parallelization of electric and magnetic 

components.  

First of all we observe that given a generic transformation matrix with complex components 

there is a possibility of a complete parallelization of the resulting field components due to 

mixing thus ending with BE ′=′ λ . While this might be impossible with simple multipoles or 

other modes one can envisage a superposition sequence of sources { }ii J,ρ  and their 

resulting fields converging towards a set of parallel electric and magnetic components thus 

satisfying the generic algebraic condition 

 

( ) ( )∑∑ +=+
i

iiii

i

iiii dcba BEBE λ    (2) 

 

or in terms of the field scalar components 
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Given an arbitrary length vector of complex coefficients z and a similar triplet of vector of 

all the separate scalars per coordinate { }3 1, =j
jj

be  we may rewrite the above in the 

algebraically interesting form 

 

1=
•

•
jm

je

bz

ez
     (4) 

 

In case we have the additional algebraic condition 

 

1=








ii

ii

bd

ca

λ
λ

     (5) 

 

there is a connection of the procedure represented by (4) with the projective Mobious group.  

McDonald in [19] gives an example of two ideal electric and magnetic dipoles superposed 

with electric and magnetic dipole moments p and m respectively, satisfying ipm ±= which 

results in circularly polarized radiation. This example hides more than it shows because in 

an actual experiment with two radiators we can have two independent oscillators with 

independent phase control, a fact that makes the phase factor misleading in the sense that it 

hides certain purely algebraic symmetries that appear especially in the case of dipolar fields. 

In particular, we may see that given both electric and magnetic ideal Hertzian dipoles their 

real parts can be written in the following abstract - so called TE and TM - form as 

 

θϕ

ϕθ

ˆ),(ˆ),(,ˆ),(

ˆ),(,ˆ),(ˆ),(

trgrtrftrh

trhtrgrtrf

TMT

TETE

+=−=

=+=

Μ HE

HE
  (6) 

 

where f, g, h are functions  of both current amplitudes and wavevectors (see [17], [19]) 

taking units such that 2/1|||| == mp . It is now easier to see that simple superposition of the 

real parts that are the actually measured fields results in 

 

ϕθ

ϕθ

eeeH

eeeE

hgf

hgf

r

r

++=

−+=
    (7) 

 

We are now a step closer to making the fields to obtain the desirable alignment and it is only 

a matter of appropriate choice of phase factors or more generally of complex coefficients in 

(2) to do so especially in the much simpler far-field limit. Before showing this in the next 

section we discuss some further implications of the technique introduced as well as some 

more general incomplete types of symmetry that may appear in case of more complex 

multipole combinations that deserve further attention. 

The essence in the above technique is slightly different from what Helmholtz originally 

thought and it is based on a functional symmetrization of the spatial field components. 

Essentially we ask from the transformed electric and magnetic components to adopt the form 

of a purely diagonal field D),( trφ where ],,[ 321 eeeD = in a particular curvilinear coordinate 
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system into which alignment becomes natural for purely geometrical reasons. We should 

though note with caution that such coordinate systems may not belong to the subset for 

which the wave equation is separable. Given that such transformation may result in severly 

distorted coordinate systems analytical approximations may be difficult but there is a 

strongly related numerical method known as Transformation Optics first devised by Pendry 

[27, 28, 29]. 

Specifically, we derive a postulate according to which, a given choice of coordinate system 

will be appropriate for our decomposition if it can effectively enclose all of the solenoidal 

magnetic flux while leaving any other part of the electric flux projected to the 

complementary sub-manifold coordinates. The key in the above definition is that given a 

certain functional algebraic symmetry of the field components in such decomposition, 

successful application of (2) and (3) only in the closed sub-manifold might be trivial given 

an appropriate structure of the sources.  

However, the result of such a superposition may result in a paradoxical situation where part 

of the radiation gets cancelled while the rest may appear as due to a purely scalar term 

depending on the measurement method. To explain the situation in simple terms, it is well 

known that the vector potential can be derived by another one called the Hertz potential as 

ZA ×∇= which in its turn can be expressed through the Monge decomposition as ζξ∇∝Z . 

There will now be cases where the Hertz potential in itself becomes a Beltrami flow [5-7] 

such that ZZ λ=×∇ where λ the eigen-vorticity constant. In such a case it would be possible 

to express the total vector potential in the form of a generalized Euler-Clebsh-Monge [24 - 

26] decomposition as 

 

)(

)(~

2

0

ζξλ

λζξλφ

∇×∇∝

+∝∇×∇+∇∝

H

HAAE
    (8) 

 

In fact, a similar treatment has been given by Ranada in [22], [23] and it has been recently 

associated with the so called optical knots in [35], while experimental verification for their 

existence is still waiting. In the generic case of (8) above, the radiation remnant will be of 

the form ( ) ( )ζξϕλζξϕλ ∇×∇×∇∝∇×∇×∇ 32 . This may in some cases result in a 

paradoxical kind of which the first part will appear inseparable from a time-varying scalar 

potential with a phenomenal longtitudinal variation while the second will be the stationary 

part that can evade ordinary detection. To show this by example, it is sufficient to make the 

choice in spherical coordinates 
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That we can find source terms for which the above become compatible with Maxwell 

equations is due to the fact that we use 3 degrees of freedom given by the scalars{ }ζξφ ,, . It 

is also implied that we assume radiation boundary conditions at infinity. It is now a trivial 

exercise to verify that the radiation term has a component proportional to 

 

3r

re
g ∝       (10) 
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The reader may see that the trick behind (9) was in properly splitting the curvature elements 

(1/ ϕsinr ) of the particular coordinate system that enter the cross-product, thus one has the 

freedom to choose appropriate field configurations in other curvilinear systems as well. It is 

also notable that symmetry enforces the use of a helf-angle (φ/2) in (9) which happens to be 

one of the standard characteristics in the bosonic Spin-Angular Momentum algebra . 

Whether or not this might have implications for unification theories with electromagnetic 

mass is left for another study. 

 

3. Ideal and finite apertures 

 

The simplest example of a mixture of fields as described above can be given with the 

aid of a combined system of radiators composed of an ideal Hertzian dipole which 

corresponds to an infinitesimally small antenna with current I in the centre of a current loop 

of current Iloop and radius R. In [16, 17] simple expressions for the far-field spatial 

configurations of finite length radiators of the above type assuming ordinary harmonic time 

dependence are given in the form 

θ
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  (11) 

  

where loopIRmcZ 2

0 ,73.376~ πµ =Ω= and the barred I is the Fourier transform of the source 

current 
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~ zk

L

L

ezIzd
′

−
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We also take θ as the azimuthal angle. Superposition of both fields results in 

 

 

(13)  

 

 

For an ideal Hertzian dipole with current )()( zIlzI δ= we get IlI =
~

. Thus we can make the 

amplitudes of the electric and magnetic components identical by choosing Κ== Ilkm which 

results in  

 

loopI
c

R
I

ωπ 2

=       (14) 

 

The magnitude of the above coefficient depends not only on the frequency used but also on 

whether we ask from the loop antenna to be resonant which puts restrictions on the radius R. 

We are now asked to find a way to apply the generic condition (2) which corresponds to an 

appropriate set of four complex numbers for the transformation matrix. We first observe that 

the imaginary unit in front of the electric part in (13) corresponds to a phase factor that can 

be removed if the two feeding oscillators are to be set in anti-phase condition. Secondly only 

the vectorial part of the two components in (13) is important as long as we have equilibrated 

the currents through (14) and set the common factor in the form KFF =′ . Hence conditions 

(2) and (3) result in the transformation sequence 

[ ] [ ]φθφθ θθ eeHeeiE −=+= ),(,
~
),( rkmFZIrF
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In the above, I is the identity matrix and R is an effective rotation matrix which alters the 

polarization state apart from the need for some amplitude and imaginary phase correction 

factors. To simplify we consider only three free parameters in the form    

 










−
=

γβγ
γγ

cossin

sincosa
R      (16) 

 

In the spirit of (3) we get  

 

( ) ( ) 0cossinsincos =Ζ−−+−+ ϕθ λγλβγγλγ eieia   (17) 

 

from which we deduce that 

 

γγλβ

γγλ

sectan
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1 Ζ+=
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= i
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The matrix elements above represent the adjustments including amplitudes and phases that 

should be imposed in the separate electric and magnetic components inside an appropriate 

medium. To actually construct an equivalent configuration we may make use of the method 

of “Transformation Optics” [27].  In this method, an appropriate metamaterial with properly 

chosen functions of a variable permittivity and permeability must be designed based on the 

transformation law of the desired field configuration.  

For this we can use a spherical shell surrounding the dipole radiator with a radius R’ 

sufficient for the far-field approximation to hold true as shown in Fig. 1. According to 

Pendry’s main result, the transformed Maxwell equations to a new, distorted coordinate 

system remain invariant apart from a change in the ε and µ that carry the geometric distortion 

through. In a generic coordinate system of which the Jacobian is given as j

ii

j xX ∂∂= /J the 

new values are given as 

 

( )
( ) ijTij

ijTij

µµ

εε

JJJ

JJJ

1

1

||||

||||

−

−

=′
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     (19) 

 

The spherical shell acts as a modulator of the field streamlines and subsequent refraction 

causes them to align with the external loop streamlines. In our case (15) implies an affine 

coordinate transformation given by either  

 

( ) ϕϕθθ γγ eeeie ′→′−→ sin,cosa     (20a) 

or 

( ) ϕϕθθ γβγ eieee ′Ζ+→′→ cos,sin     (20b) 

 

We will not pursue this strategy further as this is only a feasibility report. Instead we are 

looking at the next paragraphs for appropriate geometric complementation strategies for 

achieving a full alignment. 
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In particular, if we analyze (11) back in Cartesian coordinates we may observe that 

alignment can be achieved by simply taking linear combinations of as many copies of the 

original system as necessary, each rotated by an angle γi, that is by moving the loop 

including the vertical dipole at the centre. We note here that moving the sources this way is 

equivalent to moving the dipolar fields as if they were solid bodies. 

The reasoning behind this strategy is that successful application of rotation matrices produce 

linear combinations of the scalar functions defining the fields thus bringing them close to the 

purely diagonal form [ ]zyx ˆ,ˆ,ˆ),( trφ . From the expressions of the unit vectors we see that 

there are five scalar functions of the coordinates thus we should devise a sequence of 

transformations that results in an expression  

 

θϕϕθϕθϕφ sincossincossincoscos),( 54321 ccccctr ++++=  (21) 

 

For this we may write the transformation sequence as 
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A special symbolic algorithm is under construction for exploring the sequence (22) that will 

be available in the author’s site [36]. If the above procedure does not reach absolute 

convergence there is a second possibility of introducing translations apart from rotations in a 

second loop. 

Despite the phenomenal simplicity of (22) the engineering problems of setting up all these 

sources especially in case the index j runs in very large numbers to achieve convergence may 

be higher than in the case of the transformation refractive sphere. Hence, for all practical 

purposes, the solution of transformation optics appears to be much more elegant and 

practically feasible.  

 

4. Helicity Modulators and latent communication channels  

 

In [2] we argued on the possibility of a new type of modulation based on local alteration of 

helicity which is normally defined in a volume Ω through  

 

∫
Ω

•= BAdVh       (23) 

 

 For simple monochromatic harmonic time dependence, this becomes analogous to the 

average over Ω of the first electromagnetic invariant BE•=Ι1 . The meaning of invariance 

here should not be taken without certain precautions as it depends on where we put the 

boundaries of the system and what conditions we apply to them.  

While the total helicity of a certain flow on a closed isolated volume with well defined 

boundary conditions may be considered as a global invariant – a result that links Maxwell 

electrodynamics with Euler ideal hydrodynamics – it is not with the same ease that we can 

agree on what is an electromagnetically isolated system. This of course may be crucially 

dependent on the frequency range we examine. Consider for a moment the ULF –ELF range 

as it appears inside the ionospheric waveguide and it will be immediately obvious what the 

connection with frequency band really is! As nowadays RF engineering is moving to higher 

and higher frequencies this might appear a little odd, but it is not when one thinks of the 

connection between helicity and certain topological quantities (like the linking and writhing 

numbers) related to the recombination of the flux streamlines, especially in a dynamical 

situation. 
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In high frequencies as in optics, it is preferable to understand helicity as the difference 

between the average populations of left and right polarized photons. For the same reason, 

helicity can also be expressed through the so called Pauli-Lubanski vector ps
rr

• or ks
rr

• in 

the microscopic regime. On the other hand this may not be helpful in case one would like to 

find the appropriate frequency range to transmit a message through some mechanism of 

direct manipulation of the field geometric structure if not the field topology directly. In such 

a case, the overall image would most probably spread in an entire range of frequencies so 

that reception by an ordinary dipole antenna would not be efficient. There are of course by 

now broadband antennas including even fractal antennas as well as phased arrays that might 

be useful unless one would really like to move to a true ELF-ULF range for very special 

applications. 

There is now an interesting result that comes as a consequence of Stokes theorem applied in 

the case of an Euler-Clebsch-Monge decomposition of the electric and magnetic vector 

fields according to which whenever there exist a triplet of scalars such that β∇+Φ∇= aA  

we may replace (24) with an average over the surface of a ball enclosing the volume Ω. In 

fact for an ideal inviscid flow it holds that ( )AΦ∇=h so that for every vortex tube it cancels 

out exactly. The situation differs in electromagnetism due to the presence of polarization and 

a type of modulation that can be used in high frequencies in optical fibers has already 

appeared in the form of a skrew-like helical configuration of the polarization plane. In the 

general case one can write 

 

∫
Ω∂

= BφdSh      (24) 

  

Then for an equipotential surface we should have Msh Φ∝φ where ΜΦ the magnetic flux 

through the surface. According to this a recipe for setting up a generic helicity modulator is 

given simply by any method that manipulates the magnetic flux through say a charged 

sphere or any other appropriate surface of constant potential. This method would be easily 

applicable in the case of low frequencies. Such a case is presented in Fig. 2 with the 

situation of Fig. 1 inverted. A current ring now lies inside a conducting spherical surface. 

This situation can be analyzed with the aid of the initial loop dipolar field superposed over 

an image dipole coming from an image of the ring current.  

If we want to modulate the magnetic flux from the interior we must arrange for a number of 

“holes” or “cuts”. One way to achieve this is to construct a type of Fresnel sphere using the 

image of some Fresnel diffraction zones cut into copper in which case the sphere will act as 

a grating. An example of such a possibility is shown in Fig. 3 without the sources in the 

interior. 

There is now no reason to assume that the sphere potential is constant in time. In fact, one 

may use an old construct first tried by Tesla as shown in Fig.4. Although, in this circuit there 

is no return current, a fact that has led to a lot of misunderstandings with respect to what 

Tesla was actually trying to achieve, the important is that even in the case of absence of 

radiation, the vector potential cannot be blocked as we now know from Aharonov research 

and its subsequent experimental verification with electron interferometry. Things were more 

complicated due to the fact that Tesla himself declared in his US patent [33] that he does not 

intend to use “Hertzian waves”! This caused lot of misunderstandings which were all the 

more amplified by the fact that Tesla was very secretive on his own work. 

In another much more recent case, Puthoff first presented a patent [34] for an invisible 

communication channel based on variations of vector potential. Is it possible that Tesla was 

the first to envision this possibility long before Aharonov and Puthoff? Whatever the case, it 

seems now possible that by setting appropriate types of sources causing parallelization of 

electric and magnetic components a resulting world-wide system of stationary earth waves 

could resemble the original idea of the genius Nicola Tesla. 
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While in [34], Puthoff presents a simplicial system, it is quite possible that a more proper 

passive detector of a vector potential based latent communication system would come in the 

form of Aharonov-Bohm interferometers that are now fabricated on chips in various labs 

worldwide. In the simplest case of a rectangular interferometer loop, the affection of both the 

electric and magnetic components is summarized as   

 

( ) ( )ttS φ
σ

φ
σ

φ −Φ=−=∆ Μ|||
hh

B
    (25) 

 

where S is the loop surface, t is the exposure time depending on the electron velocity in the 

loop conductor used, σ is the surface charge density and φ is the electric scalar present. In 

(25) we have the same factors involved also in a basic helicity modulation scheme thus 

allowing for a passive reception scheme. In particular by setting two interferometers with 

opposite electron trajectories and orientations we can infer both factors through their linear 

relationship with the associated shifts 2,1ϕ∆ thus writing the local helicity in the form 

 
2

1

2

2 ϕϕ ∆−∆∝h       (26) 

 

It might though be possible to use a slightly more cunning method where a single electron 

interferometer with an internal asymmetry would be possible with the topology of a 

Moebius strip as shown in Fig. 5. Although just a schematic, what is implied in Fig. 5 is an 

inversion of the electron trajectory inside the double loop conductor together with a 

difference in the radii ratio r1/r2 of the two loops. 

Whether this is sufficient to set up a latent communication channel –leaving aside 

engineering questions on the bit rate possible and thus the necessary bandwidth – is a matter 

of future experimental research. 

 

5. Conclusions 

 

The author hopes that the present exposition was sufficient to prove that the field of 

Maxwell dynamics is more than closed and that proper exploration of the macroscopic 

regime of field geometry and topology instead of the reductionistic photon-particle approach 

hides many treasures for the future researcher. 

It is also suggested that a reexamination of the microscopic regime of Maxwell dynamics 

might be able to answer questions even at the realm of the elusive nucleus dynamics. We 

remind that laws of macroscopic, classical electromagnetism are in fact empirical postulates 

as already mentioned in [6] and thus it is not at all necessary that they should not admit 

certain modifications at the extreme limits of the Planckian or the cosmic scale. 

It is quite possible that introduction of a natural self-duality in the sub-atomic regime 

including the presence of some form of nuclear magnetic monopoles confinement in 

association with the presently acclaimed quark-gluon confinement could offer alternatives 

that are totally unexplored that they would lead to more natural and realistic interpretation of 

nuclear dynamics. Evidence towards this direction already exists in the work of other 

researchers like Hillion, Kiehn and others that have revived the Einsteinian spinorial version 

of Maxwell equations. 

Finally, it is hoped that similar contributions will aid the appearance of a more natural and 

realistic unified field theory.  
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