
APEX: Access Pattern based Memory Architecture
Exploration.∗

Peter Grun Nikil Dutt Alex Nicolau
pgrun@cecs.uci.edu dutt@cecs.uci.edu nicolau@cecs.uci.edu

Center for Embedded Computer Systems
University of California, Irvine, CA 92697-3425, USA

ABSTRACT
Memory accesses represent a major bottleneck in embed-
ded systems power and performance. Traditionally, design-
ers tried to alleviate this problem by relying on a simple
cache hierarchy, or a limited use of special purpose memory
modules such as stream buffers. Although real-life appli-
cations contain a large number of memory references to a
diverse set of data structures, a significant percentage of
all memory accesses in the application are generated from
a few memory instructions that exhibit predictable, well-
known access patterns; this creates an opportunity for mem-
ory customization, targeting the needs of these access pat-
terns. We present APEX, an approach that extracts, an-
alyzes and clusters the most active access patterns in the
application, and aggressively customizes the memory archi-
tecture to match the needs of the application, exploring a
wide range of cost, performance and power designs. We use
a heuristic to prune the design space, guiding the exploration
towards the best cost/gain ratios. We present experiments
on a set of large real-life benchmarks, showing significant
performance improvements for varied cost and power char-
acteristics, allowing the designer to best target the system
goals.

1. INTRODUCTION
In programmable embedded systems, memory represents

a major performance and power bottleneck [16]. Tradition-
ally, designers have attempted to improve memory behavior
by exploring different cache configurations, with limited use
of more special purpose memory modules such as stream
buffers [9]. However, while real-life applications contain a
large number of memory references to a diverse set of data
structures, a significant percentage of all memory accesses
in the application are generated from a few instructions in
the code. For instance, in Vocoder, a GSM voice coding

∗This work was partially supported by grants from NSF
(MIP-9708067), DARPA (F33615-00-C-1632) and a Mo-
torola fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’01, October 1-3, 2001, Montréal, Québec, Canada.
Copyright 2001 ACM 1-58113-418-5/01/0010 ...$5.00.

application with 15K lines of code, 62% of all memory ac-
cesses are generated by only 15 instructions. Furthermore,
these instructions often exhibit well-known, predictable ac-
cess patterns. This presents a tremendous opportunity to
customize the memory architecture to match the needs of
the predominant access patterns in the application, and sig-
nificantly improve the memory system behavior.
In the context of disk file systems [14, 15] there have been

many approaches to employ the file access pattern to cus-
tomize the file system to best match the access character-
istic of the application. Likewise, many approaches have
proposed customizing the processor through special purpose
instructions and special functional units to target the pre-
dominant computations in embedded applications (such as
MAC, FFT, etc.). However, to our knowledge none of the
previous approaches have attempted to analyze the memory
access patterns information in the application, and use it to
aggressively customize the memory architecture. We present
here such an approach, where we extract, analyze and clus-
ter the most active memory access patterns in the appli-
cation, and customize the memory architecture by mixing-
and-matching custom memory modules from a library, to
explore a wide range of cost, performance and power de-
signs. We use a heuristic to prune the design space of such
memory customizations, and guide the search towards the
designs with best cost/gain ratios, exploring a space well be-
yond the one traditionally considered, allowing the designer
to efficiently target the system goals.
In Section 2 we present the related work in the area of

memory subsystem optimizations. In Section 3 we present
the flow of our approach. In Section 4 we use a large real-
life example to illustrate our approach and in Section 5 we
present an outline of our Access Pattern based Memory Ex-
ploration (APEX) approach. In Section 6 we present a set
of experiments that demonstrate the customization of the
memory architecture for a set of large multimedia and sci-
entific applications, and present exploration results showing
the wide range of performance, power and cost tradeoffs ob-
tained.

2. RELATED WORK
There has been related work in four main domains: (I)

Disk file systems and databases, (II) High-level synthesis,
(III) Computer Architecture, and (IV) Programmable em-
bedded systems.
(I) In the domain of file systems and databases, there have

been several approaches to use the file access patterns to
improve the file system behavior. Parsons et al. [14] present
an approach allowing the application programmer to specify

25

the file I/O parallel behavior using a set of templates which
can be composed to form more complex access patterns.
Patterson et al. [15] advocate the use of hints describing the
access pattern (currently supporting sequential accesses and
an explicit list of accesses) to select particular prefetching
and caching policies in the file system.
(II) In the domain of High-Level Synthesis, custom syn-

thesis of the memory architecture has been addressed for
design of embedded ASICs. Catthoor et al. [2] address
memory allocation, packing the data structures according
to their size and bitwidth into memory modules from a
library, to minimize the memory cost, and optimize port
sharing. Wuytack et al. [22] present an approach to man-
age the memory bandwidth by increasing memory port uti-
lization, through memory mapping and code reordering op-
timizations. Bakshi et al. [1] present a memory explo-
ration approach, combining memory modules using differ-
ent connectivity and port configurations for pipelined DSP
systems. We complement this work by extracting and an-
alyzing the prevailing accesses in the application in terms
of access patterns, their relationships, similarities and in-
terferences, and customize the memory architecture using
memory modules from a library to generate a wide range
of cost/performance/power tradeoffs in the context of pro-
grammable embedded systems.
(III) In the domain of Computer Architecture, [9], [12]

propose the use of hardware stream buffers to enhance the
memory system performance. Reconfigurable cache archi-
tectures have been proposed recently [20] to improve the
cache behavior for general purpose processors, targeting a
large set of applications. However, the extra control needed
for adaptability and dynamic prediction of the access pat-
terns while acceptable in general purpose computing where
performance is the main target may result in a power over-
head which is prohibitive in embedded systems, that are
typically power constrained. Instead of using such dynamic
prediction mechanisms, we statically target the local mem-
ory architecture to the data access patterns.
On a related front, Hummel et al. [8] address the problem

of memory disambiguation in the presence of dynamic data
structures to improve the parallelization opportunities. In-
stead of using this information for memory disambiguation,
we use a similar type of closed form description generated by
standard compiler analysis to represent the access patterns,
and guide the memory architecture customization.
(IV) In the domain of programmable embedded systems,

Kulkarni et al. [10], Panda et al. [13] have addressed cus-
tomization of the memory architecture targeting different
cache configurations, or alternatively using on-chip scratch
pad SRAMs to store data with poor cache behavior. [5]
presents an approach that customizes the cache architec-
ture to match the locality needs of the access patterns in
the application. However, this work only targets the cache
architecture, and does not attempt to use custom memory
modules to target the different access patterns.
The work we present differs significantly from all the re-

lated work in that we aggressively analyze, cluster and map
memory access patterns to customized memory architec-
tures; this allows the designer to trade-off performance and
power against cost of the memory system.

3. OUR APPROACH
Figure 1 presents the flow of our Access Pattern based

Memory Exploration (APEX) approach. We start by ex-
tracting the most active access patterns from the input C ap-
plication; we then analyze and cluster these access patterns
according to similarities and interference, and customize the
memory architecture by allocating a set of memory mod-
ules from a Memory Modules IP Library. We explore the
space of these memory customizations by using a heuristic
to intelligently guide the search towards the most promising
cost/performance memory architecture tradeoffs. We prune
the design space by using a fast time-sampling simulation to
rule-out the non-interesting parts of the design space, and
then fully simulate and determine the power consumption
only for the selected memory architectures. After narrowing
down the search to the most promising cost/performance de-
signs, we allow the designer to best match the power require-
ments of the system, by providing full cost/performance/power
characteristics for the selected designs.

C Application

Full simulation

Memory Architecture
 Exploration

Access Pattern
 Extraction

Access Pattern
 Clustering

Memory Description
 EXPRESSION

Fast time−sampling
 Simulation

perf/cost

perf/power/cost

Selected Memory
 Architecture

Attempted Memory
 Architecture

Memory Modules
 IP Library

APEX

Cost

Perf

Figure 1: The flow of our Access Pattern based
Memory Exploration Approach (APEX).

The basic idea is to target specifically the needs of the
most active memory access patterns in the application, and
customize a memory architecture, exploring a wide range of
designs, that exhibit varied cost, performance, and power
characteristics.
Figure 2 presents the memory architecture template. The

memory access requests from the processor are routed to
one of the memory modules 0 through n or to the cache,
based on the address. The custom memory modules can
read the data directly from the DRAM, or alternatively can
go through the cache which is already present in the archi-
tecture, allowing access patterns which exhibit locality to
make use of the locality properties of the cache. The cus-
tom memory modules implement different types of access
patterns, such as stream accesses, linked-list accesses, or a
simple SRAM to store hard-to-predict or random accesses.
We use custom memory modules to target the most active
access patterns in the application, while the remaining, less
frequent access patterns are serviced by the on-chip cache.

4. ILLUSTRATIVE EXAMPLE
We use the compress benchmark (from SPEC95) to illus-

trate the performance, power and cost trade-offs generated

26

CPU DRAM

Cache

Module 0
 Stream

Module 1
 Indirect

Module n
 SRAM

Module n−1
 List

Figure 2: Memory architecture template.

while (...)
...
... = htab[code];
code = codetab[code];
...

while (...)
...
... = rmask[r off]
...

Access patterns:
ap1 = htab[ap2]
ap2 = codetabl[ap2]
ap3 = rmask[unknown]

Figure 3: Example access patterns.

by our approach. The benchmark contains a varied set of
access patterns, presenting interesting opportunities for cus-
tomizing the memory architecture. We start by profiling the
application, to determine the most active basic blocks and
memory references. In the compress benchmark, 40% of
all memory accesses are generated by only 19 instructions.
Indeed, this is a typical situation: in many large real-life ap-
plications, a significant percentage of the memory accesses
are generated from a few instructions in the code.
By traversing the most active basic blocks, we extract the

most active access patterns from the application. Figure 3
shows an excerpt of code from compress, containing refer-
ences to 3 arrays: htab, codetab, and rmask. htab is a hash-
ing table represented as an array of 69001 unsigned longs
(we assume that both longs and ints are stored on 32 bits),
codetab is an array of 69001 shorts, and rmask is an array
of 9 characters. The sequence of accesses to htab, codetab,
and rmask represent access patterns ap1, ap2 and ap3 re-
spectively. The hashing table htab is traversed using the
array codetab as an indirect index, and the sequence of ac-
cesses to the array codetab is generated by a self-indirection,
by using the values read from the array itself as the next in-
dex. The sequence in which the array rmask is traversed is
difficult to predict, due to a complex index expression com-
puted across multiple functions. Therefore we consider the
order of accesses as unknown. However, rmask represents a
small table of coefficients, accessed very often.

Compress contains many other memory references exhibit-
ing different types of access patters such as streams with
positive or negative stride. We extract the most active ac-
cess patterns in the application, and cluster them according
to similarity and interference. Since all the access patterns
in a cluster will be treated together, we group together the
access patterns which are compatible (for instance access

patterns which are similar and do not interfere) in the hope
that all the access patterns in a cluster can be mapped to
one custom memory module.
Next, for each such access pattern cluster we allocate a

custom memory module from the memory modules library.
We use a library of parameterizable memory modules con-
taining both generic structures such as caches and on-chip
SRAMs, as well as a set of parameterizable custom mem-
ory modules developed for specific types of access patterns
such as streams with positive, negative, or non-unit strides,
indirect accesses, self-indirect accesses, linked-list accesses.
Although these custom memory modules themselves are not
the contribution of the paper (we simply use them as in-
put to our memory architecture exploration algorithm), we
briefly describe one such module for illustration purposes.
The custom memory modules are based on approaches pro-
posed in the general purpose computing domain [3, 9, 18],
with the modification that the dynamic prediction mecha-
nisms are replaced with the static compile-time analysis of
the access patterns, and the prefetched data is stored in
special purpose FIFOs.
For instance, for the example access pattern ap2 from

compress, we use a custom memory module implementing
self-indirect access pattern, while for the access pattern ap3,
due to the small size of the array rmask, we use a small
on-chip SRAM [13]. Figure 4 presents an outline of the
self-indirect custom memory module architecture used for
the access pattern ap2, where the value read from the ar-
ray is used as the index for the next access to the array.
The base register stores the base address of the array, the
index register stores the previous value which will be used
as an index in the next access, and the small FIFO stores
the stream of values read from the next memory level, along
with the address tag used for write coherency. When the
CPU sends a read request, the data is provided from the
FIFO. The empty spot in the FIFO initiates a fetch from
the next level memory to bring in the next data element.
The adder computes the address for the next data element
based on the base address and the previous data value. We
assume that the base register is initialized to the base of
the codetab array and the index register to the initial index
through a memory mapped control register model (a store
to the address corresponding to the base register writes the
base address value into the register).
The custom memory modules from the library can be com-

bined together, based on the relationships between the ac-
cess patterns. For instance, the access pattern ap1 uses the
access pattern ap2 as an index for the references. In such
a case we use the self-indirection memory module imple-
menting ap2 in conjunction with a simple indirection mem-
ory module, which computes the sequence of addresses by
adding the base address of the array htab with the values
produced by ap2, and generate ap1=htab[ap2].
After selecting a set of custom memory modules from the

library, we map the access pattern clusters to memory mod-
ules. Starting from the traditional memory architecture,
containing a small cache, we incrementally customize ac-
cess pattern clusters, to significantly improve the memory
behavior. Many such memory module allocations and map-
pings are possible. Exploring the full space of such designs
would be prohibitively expensive. In order to provide the
designer with a spectrum of such design points without the
time penalty of investigating the full space, we use a heuris-

27

Address

Data

FIFO

Next Address

Next Data

To CPU

CE Control
 FSM

Indirect
 addr

+

To Next Memory
 Level

Base register Index register

Self−indirect memory module (ap=array[ap], p=p−>next)

M
U

X

Figure 4: Self-indirect custom memory module.

tic to select the most promising memory architectures, pro-
viding the best cost/performance/power tradeoffs.
For the compress benchmark we explore the design space

choosing a set of 5 memory architectures which provide ad-
vantageous cost/performance tradeoffs. The overall miss
rate of the memory system is reduced by 39%, generating
a significant performance improvement for varied cost and
power characteristics (we present the details of the explo-
ration in Section 6). In this manner we can customize the
memory architecture by extracting and analyzing the access
patterns in the application, thus substantially improving the
memory system behavior, and allowing the designer to trade
off the different goals of the system.

5. THE ACCESS PATTERN BASED MEM-
ORY EXPLORATION (APEX) APPROACH

Our Access Pattern based Memory Exploration (APEX)
approach is a heuristic method to extract, analyze, and clus-
ter the most active access patterns in the application, and
customize the memory architecture, explore the design space
to tradeoff the different goals of the system. It contains two
phases: (I) Access pattern clustering and (II) Exploration
of custom memory configurations.

5.1 Access Pattern Clustering
In the first phase of our approach, we extract the access

patterns from the application, analyze and group them into
access pattern clusters, according to their relationships, sim-
ilarities and interferences. Figure 5 presents an outline of
the access pattern extraction and clustering algorithm. The
access pattern clustering algorithm contains 4 steps.
(1) We extract the most active access patterns from the in-

put application. We consider three types of access patterns:
(a) Access patterns which can be determined automatically
by analyzing the application code, (b) Access patterns about
which the user has prior knowledge, and (c) Access patterns
that are difficult to determine, or are input-dependent.
(a) Often access patterns can be determined at compile

time, using traditional compiler analysis. Especially in DSP
and embedded systems, the access patterns tend to be more
regular, and predictable at compile time (e.g., in video, im-
age and voice compression).
First, we use profiling to determine the most active ba-

sic blocks in the application. For each memory reference in
these basic blocks we traverse the use-def chains to construct
the address expression, until we reach statically known vari-
ables, constants, loop indexes, or other access patterns. This
closed form formula represents the access pattern of the

Procedure GenerateAccessPatternClusters
Input: Application in C and Access Pattern Assertions
Output: Access Pattern Clusters
begin

1. Extract Access Patterns from application
2. Build Access Pattern Graph APG(AP,Arcs)
3. Build Access Pattern Compatibility Graph

APCG(AP,CompatibilityArcs)
4. Choose Cliques Of Compatibility Arcs to form

Access Pattern Clusters
end

Figure 5: Access Pattern Clustering algorithm.

memory reference. If all the elements in this expression
are statically predictable, and the loop indexes have known
bounds, the access pattern represented by this formula is
predictable.
(b) In the case of well-known data structures (e.g., hashing

tables, linked lists, etc.), or well-understood high-level con-
cepts (such as the traversal algorithms in well-known DSP
functions), the programmer has prior knowledge on the data
structures and the access patterns. By providing this infor-
mation in the form of assertions, he can give hints on the
predominant accesses in the application. Especially when
the memory references depend on variables which traverse
multiple functions, indirections, and aliasing, and determin-
ing the access pattern automatically is difficult, allowing the
user to input such readily available information, significantly
improves the memory architecture customization opportuni-
ties.
(c) In the case of memory references that are complex

and difficult to predict, or depend on input data, we treat
them as random access patterns. While for such references
it is often impossible to fully understand the access pattern,
it may be useful to use generic memory modules such as
caches or on-chip scratch pad memories, to exploit the lo-
cality trends exhibited. A detailed description of the access
pattern clustering algorithm is presented in [6].
(2) In the second step of the Access Pattern Clustering

algorithm we build the Access Pattern Graph (APG), con-
taining as vertices the most active access patterns from the
application. The arcs in the APG represent properties such
as similarity, interference, whether two access patterns refer
to the same data structure, or whether an access pattern
uses another access pattern as an index for indirect address-
ing, or pointer computation.
(3) Based on the APG, we build the Access Pattern Com-

patibility Graph (APCG), which has the same vertices as the
APG (the access patterns), but the arcs represent compati-
bility between access patterns. We say two access patterns
are compatible, if they can belong to the same access pat-
tern cluster. For instance, access patterns that are similar
(e.g., both have stream-like behavior), but which have little
interference (are accessed in different loops) may share the
same custom memory module, and it makes sense to place
them in the same cluster. The meaning of the access pat-
tern clusters is that all the access patterns in a cluster will
be allocated to one memory module.
(4) In the last step of the Access Pattern Clustering al-

gorithm, we find the cliques of fully connected subgraphs
in the APCG compatibility graph. Each such clique repre-
sents an access pattern cluster, where all the access patterns

28

Procedure Exploration
Input: Access Pattern Clusters, and the Memory Modules Library
Output: The Memory Architecture design points w/ best cost/perf ratios
begin

Initialize the memory architecture to contain the initial cache
While cost of memory architecture < cost constraint do

While cost of memory architecture < cost constraint and
more allocations and mappings possible do
For all access pattern clusters sharing a memory module

Allocate a memory module and map the cluster to it
Estimate cost of new memory architecture
If (cost of new memory architecture > cost constraint) continue
Estimate performance of new memory architecture (time-sampling)
Save current memory architecture alternative
Undo memory module allocation and mapping

end
Choose the memory architecture with best cost/performance
Perform full simulation of new design point

end
Double the cache size

end
end

Figure 6: Exploration algorithm.

are compatible, according to the compatibility criteria de-
termined from the previous step (for a complete description
of the compatibility criteria, please refer to [6]). Each such
access pattern cluster will be mapped in the following phase
to a memory module from the library.

5.2 Exploring Custom Memory Configurations
In the second phase of the APEX approach, we explore the

custom memory module implementations and access pattern
cluster mappings, using a heuristic to find the most promis-
ing design points.
Figure 6 presents an outline of our exploration heuris-

tic. We first initialize the memory architecture to contain
a small traditional cache, representing the starting point of
our exploration.
For each design point, the number of alternative customiza-

tions available is large, and fully exploring them is pro-
hibitively expensive. For instance, each access pattern clus-
ter can be mapped to custom memory modules from the
library, or to the traditional cache, each such configuration
generating a different cost/ performance/power tradeoff. In
order to prune the design space, at each exploration step
we first estimate the incremental cost and gain obtained by
the further possible customization alternatives, then choose
the alternative leading to the best cost/gain ratio for further
exploration. Once a customization alternative has been cho-
sen, we consider it the current architecture, and perform full
simulation for the new design point. We then continue the
exploration, by evaluating the further possible customiza-
tion opportunities, starting from this new design point.
We tuned our exploration heuristic to prune out the design

points with poor cost/ performance characteristics, guid-
ing the search towards points on the lower bound of the
cost/performance design space.
For performance estimation purposes we use a time-sampling

technique, which significantly speeds the simulation process.
While this may not be highly accurate compared to full sim-
ulation, the fidelity is sufficient to make good incremental
decisions guiding the search through the design space. To
verify that our heuristic guides the search towards the pareto

curve of the design space, we compare the exploration results
with a full simulation of all the allocation and access pattern
mapping alternatives for a large example. Indeed, as shown
in Section 6, our algorithm finds the best cost/performance
points in the design space, without requiring full simulation
of the design space. For more details on our APEX algo-
rithm, please refer to [6].

6. EXPERIMENTS
We performed a set of experiments on a number of large

multimedia and scientific applications to show the perfor-
mance, cost and power tradeoffs generated by our approach.

6.1 Experimental Setup
We simulated the design alternatives using our simulator

based on the SIMPRESS [11] memory model, and SHADE
[4]. We assumed a processor based on the SUN SPARC 1,
and we compiled the applications using gcc. We estimated
the cost of the memory architectures (we assume the cost in
equivalent basic gates) using figures generated by the Syn-
opsys Design Compiler [19], and an SRAM cost estimation
technique from [2].
We computed the average memory power consumption of

each design point, using cache power figures from CACTI
[17]. For the main memory power consumption there is
a lot of variation between the figures considered by differ-
ent researchers [2, 7, 21], depending on the main memory
type, technology, and bus architecture. The ratio between
the energy consumed by on-chip cache accesses and off-chip
DRAM accesses varies between one and two orders of mag-
nitude [7]. In order to keep our technique independent of
such technology figures, we allow the designer to input the
ratio R as:

R = E main memory access/E cache access
where E cache access is the energy for one cache access,

and E main memory access is the energy to bring in a full
cache line. In our following power computations we assume
a ratio R of 50, relative to the power consumption of an 8k
2-way set associative cache with line size of 16 bytes.
The use of multiple memory modules in parallel to ser-

vice memory access requests from the CPU requires using
multiplexers to route the data from these multiple sources.
These multiplexers may increase the access time of the mem-
ory system, and if this is on the critical path of the clock
cycle, it may lead to the increase of the clock cycle. We use
access times from CACTI [17] to compute the access time
increases, and verify that the clock cycle is not affected.
Different cache configurations can be coupled with the

memory modules explored, probing different areas of the
design space. We present here our technique starting from
an instance of such a cache configuration. A more detailed
study for different cache configurations can be found in [6].

6.2 Results
Figure 7 presents the memory design space exploration

of the access pattern customizations for the compress ap-
plication. The compress benchmark exhibits a large variety
of access patterns providing many customization opportu-
nities. The x axis represents the cost (in number of basic

1The choice of SPARC was based on the availability of
SHADE and a profiling engine; however our approach is
clearly applicable to any other (embedded) processor as well

29

gates), and the y axis represents the overall miss ratio (the
miss ratio of the custom memory modules represents the
number of accesses where the data is not ready when it is
needed by the CPU, divided by the total number of accesses
to that module).
The design points marked with a circle represent the mem-

ory architectures chosen during the exploration as promising
alternatives, and fully simulated for accurate results. The
design points marked only with an X represent the explo-
ration attempts evaluated through fast time-sampling sim-
ulation, from which the best cost/gain tradeoff is chosen at
each exploration step. For each such design we perform full
simulation to determine accurate cost/performance/power
figures.
The design point labeled 1 represents the initial memory

architecture, containing an 8k 2-way associative cache. Our
exploration algorithm evaluates the first set of customiza-
tion alternatives, by trying to choose the best access pat-
tern cluster to map to a custom memory module. The best
performance gain for the incremental cost is generated by
customizing the access pattern cluster containing a refer-
ence to the hashing table htab, which uses as an index in
the array the access pattern reading the codetab array (the
access pattern is htab[codetab[i]]). This new architecture
is selected as the next design point in the exploration, la-
beled 2. After fully simulating the new memory architec-
ture, we continue the exploration by evaluating the further
possible customization opportunities, and selecting the best
cost/performance ratio. In this way, we explore the memory
architectures with most promising cost/performance trade-
offs, towards the lower bound of the design space.

Figure 7: Miss ratio versus cost trade-off in Memory
Design Space Exploration for Compress (SPEC95)

The miss ratio of the compress application varies between
13.42% for the initial cache-only architecture (for a cost of
319,634 gates), and 8.10% for a memory architecture where
3 access pattern clusters have been mapped to custom mem-
ory modules (for a cost of 334,864 gates). Based on a cost
constraint (or alternatively on a performance requirement),
the designer can choose the memory architecture which best
matches the goals of the system.
In order to validate our space walking heuristic, and con-

firm that the chosen design points follow the pareto-curve-
like trajectory in the design space, we compared the de-
sign points generated by our approach to the full simula-
tion of the design space considering all the memory mod-
ule allocations and access pattern cluster mappings for the

compress example benchmark. Figure 8 shows the design
space in terms of the estimated memory design cost (in
number of basic gates), and the overall miss rate of the ap-
plication. The design points marked with an X represent
the points explored by our heuristic. The points marked
by a black dot, represent a full simulation of all alloca-
tion and mapping alternatives. The points on the lower
bound of the design space are the most promising, exhibiting
the best cost/performance tradeoffs. Our algorithm guides
the search towards these design points, pruning the non-
interesting points in the design space. Our exploration heuris-
tic successfully finds the most promising designs, without
fully simulating the whole design space: each fully simu-
lated design on the lower bound (marked by a black dot)
is covered by an explored design (marked by an X) 2. This
provides the designer the opportunity to choose the best
cost/performance trade-off, without the expense of investi-
gating the whole space.

Figure 8: Exploration heuristic compared to simu-
lation of all access pattern cluster mapping combi-
nations for Compress

Table 1 presents the performance, cost and power results
for a set of large, real-life benchmarks from the multimedia
and scientific domains. The first column shows the applica-
tion, and the second column represents the memory architec-
tures explored for each such benchmark. The third column
represents the cost of the memory architecture (in number of
basic gates), the fourth column represents the miss ratio for
each such design point, the fifth column shows the average
memory latency (in cycles), and the last column presents the
average memory power consumption, normalized to the ini-
tial cache-only architecture (represented by the first design
point for each benchmark).
In Table 1 we present only the memory architectures with

best cost/performance characteristics, chosen during the ex-
ploration. The miss ratio shown in the fourth column repre-
sents the number of memory accesses when the data is not
yet available in the cache or the custom memory modules
when required by the CPU. The average memory latency
shown in fifth column represents the average number of cy-
cles the CPU has to wait for an access to the memory system.
Due to the increased hit ratio, and to the fact that the cus-
tom memory modules require less latency to access the small
FIFO containing the data than the latency required by the

2Not all exploration points (X) are covered by a full simula-
tion point (black dot), since some of the exploration points
represent estimations only

30

large cache tag, data array and cache control, the average
memory latency varies significantly during the exploration.
By customizing the memory architecture based on the ac-

cess patterns in the application, the memory system perfor-
mance is significantly improved. For instance, for the com-
press benchmark, the miss ratio is decreased from 13.4% to
8.10%, representing a 39% miss ratio reduction for a rela-
tively small cost increase. However, this comes at the cost
of an increased memory power consumption by a factor be-
tween 1.1 and 1.4 mainly due to the increased main mem-
ory bandwidth generated by the custom memory modules
implementing the access pattern clusters in the application.
However, by exploring a varied set of design points, the de-
signer can tradeoff the cost, power and performance of the
system, to best meet the design goals.

Benchmark Design Cost Miss ratio Mem Latency Mem. Power
Point (gates) (%) (cycles) (normalized)

Compress 1 319634 13.4200 28.56 1
2 323521 10.5400 22.58 1.18
3 330657 8.4500 18.42 1.36
4 334864 8.1000 17.40 1.41
5 339071 8.1000 17.35 1.41

li 1 319634 6.9800 15.82 1
2 323841 4.6700 11.21 1.23
3 332302 4.6200 11.01 1.24
4 340763 4.6200 10.96 1.24

vocoder 1 40295 1.4600 4.90 1
2 44502 1.3600 4.45 1.01
3 48709 1.2600 4.16 1.02
4 53765 1.2600 4.09 1.03
5 80201 0.8100 3.61 0.68
6 84408 0.7600 3.26 0.70
7 88615 0.7400 3.13 0.70
8 93671 0.7400 3.07 0.70

Table 1: Exploration results for our Access Pattern
based Memory Customization algorithm.

Vocoder is a multmedia benchmark exhibiting mainly stream-
like regular access patterns, which behave well with small
cache sizes. Since the initial cache of 1k has a small cost
of 40,295 gates, there was enough space to double the cache
size. The design points 1 through 4 represent the memory ar-
chitectures containing the 1k cache, while the design points
5 through 8 represent the memory architectures containing
the 2k cache. As expected, the performance increases signif-
icantly when increasing the cost of the memory architecture.
However, a surprising result is that the power consumption
of the memory system decreases when using the larger cache:
even though the power consumed by the larger cache ac-
cesses increases, the main memory bandwidth decrease due
to a lower miss ratio results in a significantly lower main
memory power, which translates into a lower memory sys-
tem power. Clearly, this type of results are difficult to deter-
mine by analysis alone, and require a systematic exploration
approach to allow the designer to best trade off the different
goals of the system.
The wide range of cost, performance, and power tradeoffs

obtained are due to the aggressive use of the memory ac-
cess pattern information, and customization of the memory
architecture beyond the traditional cache architecture.

7. SUMMARY
We presented an approach where by analyzing the ac-

cess patterns in the application we gain valuable insight on
the access and storage needs of the input application, and
customize the memory architecture to better match these
requirements, generating significant performance improve-
ments for varied memory cost and power.

Traditionally, designers have attempted to alleviate the
memory bottleneck by exploring different cache configura-
tions, with limited use of more special purpose memory mod-
ules such as stream buffers [9]. However, while real-life ap-
plications contain a large number of memory references to a
diverse set of data structures, a significant percentage of all
memory accesses in the application are generated from a few
instructions, which often exhibit well-known, predictable ac-
cess patterns. This presents a tremendous opportunity to
customize the memory architecture to match the needs of
the predominant access patterns in the application, and sig-
nificantly improve the memory system behavior. We pre-
sented here such an approach called APEX that extracts,
analyzes and clusters the most active access patterns in the
application, and customizes the memory architecture to ex-
plore a wide range of cost, performance and power designs.
We generate significant performance improvements for in-
cremental costs, and explore a design space beyond the one
traditionally considered, allowing the designer to efficiently
target the system goals. By intelligently exploring the de-
sign space, we guide the search towards the memory archi-
tectures with the best cost/performance characteristics, and
avoid the expensive full simulation of the design space.
We presented a set of experiments on large multimedia

and scientific examples, where we explored a wide range of
cost, performance and power tradeoffs, by customizing the
memory architecture to fit the needs of the access patterns in
the applications. Our exploration heuristic found the most
promising cost/gain designs compared to the full simulation
of the design space considering all the memory module al-
locations and access pattern cluster mappings, without the
time penalty of investigating the full design space.
In this work we assumed a simple connectivity model be-

tween the memory modules and the CPU. In our future work
we plan to explore the connectivity space, by using specific
on-chip and off-chip busses and connections from a bus IP
library.

8. ACKNOWLEDGMENTS
We would like to acknowledge and thank Ashok Halambi,

Prabhat Mishra, Srikanth Srinivasan, Partha Biswas, Aviral
Shrivastava, Radu Cornea and Nick Savoiu for their contri-
butions to the EXPRESS/ EXPRESSION project.

9. REFERENCES
[1] S. Bakshi and D. Gajski. A memory selection algorithm for

high-performance pipelines. In EURO-DAC, 1995.
[2] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa,

L. Nachtergaele, and A. Vandecappelle. Custom Memory
Management Methodology. Kluwer, 1998.

[3] Tzi cker Chiueh. Sunder: A programmable hardware
prefetch architecture for numerical loops. In Conference on
High Performance Networking and Computing, 1994.

[4] R. Cmelik and D. Keppel. Shade: A fast instruction set
simulator for execution profiling. Technical report, SUN
MICROSYSTEMS, 1993.

[5] P. Grun, N. Dutt, and A. Nicolau. Access pattern based
local memory customization for low power embedded
systems. In DATE, 2001.

[6] P. Grun, N. Dutt, and A. Nicolau. Exploring memory
architecture through access pattern analysis and clustering.
Technical report, University of California, Irvine, 2001.

[7] P. Hicks, M. Walnock, and R.M. Owens. Analysis of power
consumption in memory hierarchies. In ISPLED, 1997.

31

[8] J. Hummel, L Hendren, and A Nicolau. A language for
conveying the aliasing properties of dynamic, pointer-based
data structures. In Proceedings of the 8th International
Parallel Processing Symposium, 1994.

[9] N. Jouppi. Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch
buffers. In ISCA, 1990.

[10] C. Kulkarni. Cache optimization for Multimedia
Applications. PhD thesis, IMEC, 2001.

[11] P. Mishra, P. Grun, N. Dutt, and A. Nicolau.
Processor-memory co-explotation driven by a
memory-aware architecture description language. In
International Conference on VLSI Design, Bangalore,
India, 2001.

[12] S. Palacharla and R. Kessler. Evaluating stream buffers as
a secondary cache replacement. In ISCA, 1994.

[13] P. Panda, N. Dutt, and N. Nicolau. Memory Issues in
Embedded Systems-on-Chip. Kluwer, 1999.

[14] I. Parsons, R. Unrau, J. Schaeffer, and D. Szafron. Pi/ot:
Parallel i/o templates. In Parallel Computing, Vol. 23, No.
4-5, pp. 543-570, May 1997.

[15] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed prefeching and caching. In SIGOPS,
1995.

[16] S. Przybylski. Sorting out the new DRAMs. In Hot Chips
Tutorial, Stanford, CA, 1997.

[17] G. Reinman and N. Jouppi. An integrated cache timing
and power model. In Summer Internship Report,
COMPAQ Western Research Lab, Palo-Alto, 1999.

[18] A. Roth, A. Moshovos, and G. Sohi. Dependence based
prefetching for linked data structures. In ASPLOS, 1998.

[19] Synopsys Design Compiler. www.synopsys.com.
[20] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji.

Adapting cache line size to application behavior. In ICS,
1999.

[21] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim,
and W. Ye. Energy-driven integrated hardware-software
optimizations using simplepower. In ISCA, 2000.

[22] S. Wuytack, F. Catthoor, G. de Jong, B. Lin, and H. De
Man. Flow graph balancing for minimizing the required
memory bandwith. In ISSS, La Jolla, CA, 1996.

32

