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Abstract: The article presents a new scalable iterative method for linear programming called the
“apex method”. The key feature of this method is constructing a path close to optimal on the surface
of the feasible region from a certain starting point to the exact solution of a linear programming
problem. The optimal path refers to a path of the minimum length according to the Euclidean metric.
The apex method is based on the predictor—corrector framework and proceeds in two stages: quest
(predictor) and target (corrector). The quest stage calculates a rough initial approximation of the linear
programming problem. The target stage refines the initial approximation with a given precision.
The main operation used in the apex method is an operation that calculates the pseudoprojection,
which is a generalization of the metric projection to a convex closed set. This operation is used both
in the quest stage and in the target stage. A parallel algorithm using a Fejér mapping to compute the
pseudoprojection is presented. An analytical estimation of the parallelism degree of this algorithm is
obtained. AlsoAdditionally, an algorithm implementing the target stage is given. The convergence of
this algorithm is proven. An experimental study of the scalability of the apex method on a cluster
computing system is described. The results of applying the apex method to solve problems from the
Netlib-LP repository are presented.

Keywords: linear programming; apex method; iterative method; projection-type method; Fejér
mapping; parallel algorithm; cluster computing system; scalability evaluation; Netlib-LP repository

MSC: 90C05; 65K05; 49M20

1. Introduction

This article is an expanded and revised version of the conference paper [1]. The
following motivation encouraged us to delve into this subject. The rapid development
of big big-data storage and processing technologies [2,3] has led to the emergence of
optimization mathematical models in the form of multidimensional linear programming
(LP) problems [4]. Such LP problems arise in industry, economics, logistics, statistics,
quantum physics, and other fields [5–7]. An important class of LP applications are is
non-stationary problems related to optimization in dynamic environments [8]. For a
non-stationary LP problem, the objective function and/or constraints change over the
computational process. Examples of non-stationary problems are the following: decision
support in high-frequency trading [9,10], hydro-gas-dynamics problems [11], optimal
control of technological processes [12–14], transportation [15–17], and scheduling [18,19].

One of the standard approaches to solving non-stationary optimization problems is
to consider each change as the appearance of a new optimization problem that needs to
be solved from scratch [8]. However, this approach is often impractical because solving a

Mathematics 2023, 11, 1654. https://doi.org/10.3390/math11071654 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11071654
https://doi.org/10.3390/math11071654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9997-3918
https://orcid.org/0000-0002-0717-5378
https://doi.org/10.3390/math11071654
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11071654?type=check_update&version=2


Mathematics 2023, 11, 1654 2 of 28

problem from scratch without reusing information from the past can take too much time.
Thus, it is desirable to have an optimization algorithm capable of continuously adapting
the solution to the changing environment, reusing information obtained in the past. This
approach is applicable for real-time processes if the algorithm tracks the trajectory of
the moving optimal point fast enough. In the case of large-scale LP problems, the last
requirement necessitates the development of scalable methods and parallel algorithms
of LP.

One of the most promising approaches to solving complex problems in real time is
the use of neural network models [20]. Artificial neural networks are a powerful universal
tool that is applicableapplies to solving problems in almost all areas. The most popular
neural network model is the feedforward neural network. Training and operation of such
networks can be implemented very efficiently on GPUs [21]. An important property of
a feedforward neural network is that the time to solve a problem is a known constant
that does not depend on the problem parameters. This feature is necessary for real-time
mode. Pioneering work on the use of neural networks to solve LP problems is the article by
Tank and Hopfield [22]. The article describes a two-layer recurrent neural network. The
number of neurons in the first layer is the number of variables of the LP problem. The
number of neurons in the second layer coincides with the number of constraints of the
LP problem. The first and second layers are fully connected. The weights and biases are
uniquely determined by the coefficients and the right-hand sides of the linear inequalities
defining the constraints, and the coefficients of the linear objective function. Thus, this
network does not require training. The state of the neural network is described by the
differential equation ẋ(t) = ∇E(x(t)), where E(x(t)) is an energy function of a special
type. Initially, an arbitrary point of the feasible region is fed to the input of the neural
network. Then, the signal of the second layer is recursively fed to the first layer. Such
processa process leads to convergence to a stable state in which the output remains constant.
This state corresponds to the minimum of the energy function, and the output signal is
a solution to the LP problem. The Tank and Hopfield approach has been expanded and
improved in numerous works (see, for example, [23–27]). The main disadvantage of this
approach is the unpredictable number of work cycles of the neural network. Therefore,
a recurrent network based on an energy function cannot be used to solve large-scale LP
problems in real time.

In the recent paper [28], a n-dimensional mathematical model for visualizing LP
problems was proposed. This model makes it possible to use feedforward neural networks,
including convolutional networks [29], to solve multidimensional LP problems, the feasible
region of which is a bounded nonempty-empty set. However, there are practically no works
in scientific periodicals devoted to the use of convolutional neural networks for solving LP
problems [30]. The reason isThe reason for this is that convolutional neural networks focus
on image processing, but there are no methods for constructing training datasets based on
a visual representation of the multidimensional LP problems.

This article describes a new scalable iterative method for solving multidimensional
LP problems. This method is called the “apex method”. The apex method allows you to
generate training datasets for the development of feedforward neural networks capable
of finding a solution to a multidimensional LP problem based on its visual representation.
The apex method is based on the predictor—corrector framework. At the prediction step, a
point belonging to the feasible region of the LP problem is calculated. The corrector step
calculates a sequence of points converging to the exact solution of the LP problem. The rest
of the paper is organized as follows. Section 2 provides a review of iterative projection-type
methods and algorithms for solving linear feasibility problems and LP problems. Section 3
includes the theoretical basis of the apex method. Section 4 presents a formal description
of the apex method. Section 4.1 considers the implementation of the pseudoprojection
operation in the form of sequential and parallel algorithms and provides an analytical
estimation of the scalability of parallel implementation. Section 4.2 describes the quest stage.
Section 4.3 describes the target stage. Section 5 presents an informationinformation about
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the software implementation of the apex method and describes the results of large-scale
computational experiments on a cluster computing system. Section 6 discusses the issues
related to the main contribution of this article, the advantages and disadvantages of the
proposed approach, possible applications, and some other aspects of using the apex method.
In Section 7, we present our conclusions and comment on possible further studies of the
apex method. The final section Notations contains the main symbols used for describing
the apex method.

2. Related Work

This section provides an overview of works devoted to iterative projection-type meth-
ods used to solve linear feasibility and LP problems. The linear feasibility problem can be
stated as follows. Consider the system of linear inequalities in matrix form

Ax 6 b, (1)

where A ∈ Rm×n, and b ∈ Rn. To avoid triviality, we assume that m > 1. The linear
feasibility problem consists of finding a point x̃ ∈ Rn satisfying matrix inequality system (1).
We assume from now on that such a point exists.

Projection-type methods rely on the following geometric interpretation of the linear
feasibility problem. Let ai ∈ Rn be a vector formed by the elements of the ith row of the
matrix A. Then, the matrix inequality Ax 6 b is represented as a system of inequalities

〈ai, x〉 6 bi, i = 1, . . . , m. (2)

Here and further on, 〈·, ·〉 stands for the dot product of vectors. We assume from now
on that

ai 6= 0 (3)

for all i = 1, . . . , m. For each inequality 〈ai, x〉 6 bi, define the closed half-space

Ĥi = {x ∈ Rn|〈ai, x〉 6 bi}, (4)

and its bounding hyperplane

Hi = {x ∈ Rn|〈ai, x〉 = bi}. (5)

For any point x ∈ Rn, the orthogonal projection π(x) of point x onto the hyperplane Hi
can be calculated by the equation

πi(x) = x− 〈ai, x〉 − bi

‖ai‖2 ai. (6)

Here and below, ‖·‖ denotes the Euclidean norm. Let us define the feasible polytope

M =
m⋂

i=1

Ĥi. (7)

that presents the set of feasible points of system (1). Note thatPlease note that in this case,
the polytope M is a closed convex set. Here, we always assume that M 6= ∅, i.e., the
solution of system (1) exists. In geometric interpretation, the linear feasibility problem
consists of finding a point x̃ ∈ M.

The forefathers of the iterative projection-type methods for solving linear feasibility
problems are Kaczmarz and Cimmino. In [31] (English translation in [32]), Kaczmarz
presented a sequential projections method for solving a consistent system of linear equations

〈ai, x〉 = bi, i = 1, . . . , m. (8)
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His method, starting from an arbitrary point x(0,m) ∈ R, calculates the following
sequence of point groups:

x(k,1) = π1

(
x(k−1,m)

)
, x(k,2) = π2

(
x(k,1)

)
, . . . , x(k,m) = πm

(
x(k,m−1)

)
(9)

for k = 1, 2, 3, . . . Here, πi (i = 1, . . . , m) is the orthogonal projection onto the hyperplane
Hi defined by Equation (6). This sequence converges to the solution of system (8). Geo-
metrically, the method can be interpreted as follows. The initial point x(0,m) is projected
orthogonally onto hyperplane H1. The projection is the point x(1,1), which now is thrown
onto H2. The resulting point x(1,2) is then thrown onto H3 and gives the point x(1,3), etc. As
a result, we obtain the last point x(1,m) from the first point group. The second point group
is constructed in the same way, starting from the point x(1,m). The process is repeated for
k = 2, 3, . . .

Cimmino proposed in [33] (English description in [34]) a simultaneous projection
method for the same problem. This method uses the following orthogonal reflection
operation

ρi(x) = x− 2
〈ai, x〉 − bi

‖ai‖2 ai, (10)

which calculates the point ρi(x) symmetric to the point x with respect to the hyperplane Hi.
For the current approximation x(k), the Cimmino method simultaneously calculates reflec-
tions with respect to all hyperplanes Hi (i = 1, . . . , m), and then a convex combination of
these reflections is used to form the next approximation:

x(k+1) =
m

∑
i=1

wiρi

(
x(k)

)
, (11)

where wi > 0 (i = 1, . . . , m),
m
∑

i=1
wi = 1. When wi =

1
m (i = 1, . . . , m), Equation (11) is

transformed into the following equation:

x(k+1) =
1
m

m

∑
i=1

ρi

(
x(k)

)
. (12)

Agmon [35] and Motzkin and Schoenberg [36] generalized the projection method from
equations to inequalities. To solve problem (1), they introduce the relaxed projection

πλ
i (x) = (1− λ)x + λπi(x), (13)

where 0 < λ < 2. It is obvious that π1
i (x) = πi(x). To calculate the next approximation,

the relaxed projection method uses the following equation:

x(k+1) = πλ
l

(
x(k)

)
, (14)

where
l = arg max

i

{∥∥∥x(k) − πi

(
x(k)

)∥∥∥∣∣∣x(k) /∈ Ĥi

}
. (15)

Informally, the next approximation x(k+1) is a relaxed projection of the previous
approximation x(k) with respect to the furthest hyperplane Hl bounding the half-space Ĥl
not containing x(k). Agmon in [35] showed that sequence x(k) converges, as k → ∞, to a
point on the boundary of M.

Censor and Elfving, in [37], generalized the Cimmino method to the case of linear
inequalities. They consider the relaxed projection onto the half-space Ĥi defined as follows:

π̂λ
i (x) = (1− λ)x− λ

max{0, 〈ai, x〉 − bi}
‖ai‖2 ai (16)
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that gives the equation

x(k+1) =
m

∑
i=1

wiπ̂
λ
i

(
x(k)

)
. (17)

Here, 0 < λ < 2, and wi > 0 (i = 1, . . . , m),
m
∑

i=1
wi = 1. In [38], De Pierro proposed an

approach to convergence proof for this method, which differs from the approach of Censor
and Elfving. De Piero’s approach is also acceptable for the case when the underlying system
of linear inequalities is infeasible. In this case, for λ = 1, sequence (17) converges to the
point that is the minimum of the function f (x) = ∑m

i=1 wi‖π̂i(x)− x‖2, i.e., it is a weighted
(with the weights wi) least least-squares solution of system (1).

The Cimmino-like methods allow efficient parallelization, since orthogonal projections
(reflections) can be calculated simultaneously and independently. The article [39] investi-
gates the efficiency of parallelization of the Cimmino-like method on Xeon Phi manycore
processors. In [40], the scalability of the Cimmino method for multiprocessor systems with
distributed memory is evaluated. The applicability of the Cimmino-like method for solving
non-stationary systems of linear inequalities on computing clusters is considered in [41].

As a recent work, we can mention article [42], which extends the Agmon-Motzkin-
Schoenberg relaxation method for the case of semi-infinite inequality systems. The authors
consider the system with an infinite number of inequalities in the finite-dimensional
Euclidean space Rn:

〈ai, x〉 6 bi, i ∈ I, (18)

where I is an arbitrary infinite index set. The main idea of the method is as follows. Let the
hyperplane H(∞)

x = sup{max(〈ai, x〉 − bi, 0)|i ∈ I} be the biggest violation with respect to x.
Let x(0) be an arbitrary initial point. If the current iteration x(k) is not a solution of system (18),
then let x(k+1) be the orthogonal projection of x(k) onto a hyperplane Hi (i ∈ I) near the
biggest violation H(∞)

x(k)
. If system (18) is consistent, then the sequence

{
x(k)|k = 1, 2, . . .

}
generated by the described method converges to the solution of this system.

Solving systems of linear inequalities is closely related to LP problems, so projection-
type methods can be effectively used to solve this class of problems. The equivalence of
the linear feasibility problem and the LP problem is based on the primal-dual LP problem.
Consider the primal LP problem in the matrix form:

x̄ = arg max
x
{〈c, x〉|Ax 6 b, x > 0}, (19)

where c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n, and c 6= 0. Let us construct the dual problem with
respect to problem (19):

ū = arg min
u

{
〈b, u〉|ATu > c, u > 0

}
, (20)

where u ∈ Rm. The following primal-dual equality holds:

〈c, x̄〉 = max
Ax6b,x>0

〈c, x〉 = min
ATu>c,u>0

〈b, u〉 = 〈b, ū〉. (21)

In [43,44], Eremin proposed the following method based on the primal-dual approach.
Let the inequality system

A′x 6 b′ (22)

define the feasible region of primal problem (19). This system is obtained by adding to the
system Ax 6 b the vector inequality −x 6 0. In this case, A′ ∈ R(m+n)×n, and b′ ∈ Rm+n.
Let a′i stand the ith row of the matrix A′. For each inequality

〈
a′i, x

〉
6 b′i , define the closed

half-space
Ĥ′i =

{
x ∈ Rn∣∣〈a′i, x

〉
6 b′i

}
, (23)
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and its bounding hyperplane

H′i =
{

x ∈ Rn∣∣〈a′i, x
〉
= b′i

}
. (24)

Let π′i(x) stand the orthogonal projection of point x onto the hyperplane H′i :

π′i(x) = x−
〈

a′i, x
〉
− b′i∥∥a′i
∥∥2 a′i. (25)

Let us define the projection onto the half-space Ĥ′i :

π̂′i(x) = x−
max

{
0,
〈

a′i, x
〉
− b′i

}∥∥a′i
∥∥2 a′i. (26)

This projection has the following two properties:

x 6∈ Ĥ′i ⇒ π̂′i(x) = π′i(x); (27)

x ∈ Ĥ′i ⇒ π̂′i(x) = x. (28)

Define ϕ1 : Rn → Rn as follows:

ϕ1(x) =
1

m + n

m+n

∑
i=1

π̂′i(x). (29)

In the same way, define the feasible region of dual problem (20) as follows:

D′x > c′, (30)

where D = AT ∈ Rn×m, D′ ∈ R(m+n)×m, and c′ ∈ Rn+m. Denote

η̂′j(u) = u−
max

{
0,
〈

d′j, u
〉
− c′j

}
∥∥∥d′j
∥∥∥2 d′j, (31)

and define ϕ2 : Rm → Rm as follows:

ϕ2(u) =
1

n + m

n+m

∑
j=1

η̂′j(x). (32)

Now, define ϕ3 : Rn+m → Rn+m as follows:

ϕ3([x, u]) = [x, u]− 〈c, x〉 − 〈b, u〉
‖c‖2 + ‖b‖2 [c,−b], (33)

which is corresponding to Equation (21). Here, [· , ·] stands for the concatenation of vectors.
Finally, define ϕ : Rn+m → Rn+m as follows:

ϕ([x, u]) = ϕ3([ϕ1(x), ϕ2(u)]). (34)

If the feasible region of the primal problem is a bounded and nonempty set, then the
sequence [

x(k+1), u(k+1)
]
= ϕ

([
x(k), u(k)

])
(35)

converges to the point [x̄, ū], where x̄ is the solution of primal problem (19), and ū is the
solution of dual problem (20).
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Article [45] proposes a method for solving non-degenerate LP problems based on
calculating the orthogonal projection of some special point, independent of the main part
of data describing the LP problem, onto a problem-dependent cone generated by the
constraint inequalities. Actually, tThis method solves a symmetric positive definite system
of linear equations of a special kind. The author demonstrates a finite algorithm of an
active-set family that is capable of calculating orthogonal projections for problems with up
to thousands of rows and columns. The main drawback of this method is a a significant
increasing increase in the dimension of the primary problem.

In article [46], Censor proposes the linear superiorization (LinSup) method as a tool
for solving LP problems. The LinSup method does not guarantee finding to find the
minimum point of the LP problem, but it directs the linear feasibility-seeking algorithm
that it uses toward a point with a decreasing value of the objective function. This process
is not identical with to that employed by LP solvers but it is a possible alternative to the
sSimplex method for problems of huge size. The basic idea of LinSup is to add an extra
term, called perturbation term, to the iterative equation of the projection method. The
perturbation term steers the feasibility-seeking algorithm toward reduced the objective
function values. In the case of LP problem (19), the objective function is f (x) = 〈c, x〉, and
LinSup adds

(
−η c
‖c‖

)
as a perturbation term to iterative Equation (17):

x(k+1) =

(
−η

c
‖c‖

)
+

m

∑
i=1

wiπ̂
λ
i

(
x(k)

)
. (36)

Here, 0 < η < 1 is a perturbation parameter.
Article [47] presents an enthusiastic artificial-free linear programming method based

on a sequence of jumps and the simplex method. It performsis performed in three phases.
Starting with phase 1, it guarantees the existence of a feasible point by relaxing all non-acute
constraints. With this initial starting feasible point, in phase 2, it sequentially jumps to
the improved objective feasible points. The last phase reinstates the rest of the non-acute
constraints and uses the dual simplex method to find the optimal point.

Article [28] proposes a mathematical model for the visual representation of multidi-
mensional LP problems. To visualize a feasible LP problem, an objective hyperplane Hc
is introduced, the normal to which is the gradient of the objective function f (x) = 〈c, x〉.
In the case of seeking the maximum, the objective hyperplane is positioned in such a way
that the value of the objective function at all its points is greater thenthan the value of the
objective function at all points of the convex polytope M, which is the feasible region of
the LP problem. For any point g ∈ Hc, the objective projection γM(g) onto M is defined as
follows:

γM(g) =

{
arg min

x
{‖x− g‖|x ∈ M, πHc(x) = g}, if ∃x ∈ M : πHc(x) = g;

+∞, if ¬∃x ∈ M : πHc(x) = g.
(37)

Here, πHc(x) denotes the orthogonal projection onto Hc. On the objective hyperplane
Hc, a rectangular lattice of points G ∈ Rn ×RK(n−1)

is constructed, where K is the num-
ber of lattice points in one dimension. Each point g ∈ G is mapped to the real number
‖γM(g)− g‖. This mapping generates a matrix of dimension (n− 1), which is an image
of the LP problem. This approach opens up the possibility of using feedforward-forward
artificial neural networks, including convolutional neural networks, to solve multidimen-
sional LP problems. One of the main obstacles to the implementation of this approach is the
problem of generating a training set. The literature review shows that there is no suitable
method capable of constructing such a training set compatible with the described approach.
In the next sections, we present such a method.
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3. Theoretical Background

In this section In this section, we present a theoretical background used to construct
the apex method. Consider the LP problem in the following form:

x̄ = arg max
x∈Rn
{〈c, x〉|Ax 6 b}, (38)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n, m > 1, and c 6= 0. We assume that the constraint x > 0
is also included in the system Ax 6 b in the form of the following inequalities:

−x1 6 0;
· · ·

−xn 6 0.

Let P stand for the set of row indices in matrix A:

P = {1, · · · , m}. (39)

Let ai ∈ Rn be a vector formed by the elements of the ith row of the matrix A, and
ai 6= 0 for all i ∈ P . We denote by Ĥi the closed half-space defined by the inequality
〈ai, x〉 6 bi, and by Hi the hyperplane bounding Ĥi:

Ĥi = {x ∈ Rn|〈ai, x〉 6 bi}; (40)

Hi = {x ∈ Rn|〈ai, x〉 = bi}. (41)

Definition 1. The half-space Ĥ is called neutral-dominant with respect to the vector c, or briefly
c-neutral-dominant, if

∀x ∈ Ĥ, ∀λ ∈ R>0 : x + λc ∈ Ĥ. (42)

The geometric meaning of this definition is that a ray outgoing from a point belonging
to a half-space in the direction of vector c belongs to this half-space.

Definition 2. The half-space Ĥ is called recessive with respect to the vector c, or briefly c-recessive,
if it is not c-neutral-dominant, i.e.,

∀x ∈ Ĥ, ∃λ ∈ R>0 : x + λc /∈ Ĥ. (43)

The following proposition provides the necessary and sufficient condition for the
c-recessivity of the half-space.

Proposition 1. Let a half-space Ĥ be defined by the following equation:

Ĥ = {x ∈ Rn|〈a, x〉 6 β}. (44)

Then, the necessary and sufficient condition for the c-recessivity of the half-space Ĥ is

〈a, c〉 > 0. (45)

Proof. Let us prove the necessity first. Let condition (43) hold. Denote

x′ =
βa
‖a‖2 . (46)

It follows 〈
a, x′

〉
=

〈
a,

βa
‖a‖2

〉
= β
〈a, a〉
‖a‖2 = β, (47)
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i.e., x′ ∈ Ĥ. By virtue of (43), there is λ′ ∈ R>0 such that

x′ + λ′c /∈ Ĥ, (48)

i.e., 〈
a, x′ + λ′c

〉
> β. (49)

Substituting the right-hand side of Equation (46) instead of x′, we obtain〈
a,

βa
‖a‖2 + λ′c

〉
> β. (50)

Since λ′ > 0, it follows
〈a, c〉 > 0. (51)

Thus, the necessity is proved.
Let us prove the sufficiency by contradiction. Assume that (45) holds, and Ĥ is not

c-recessive, i.e.,
∀x ∈ Ĥ, ∀λ ∈ R>0 : x + λc ∈ Ĥ. (52)

Since x′ defined by (46) belongs to Ĥ, it follows

x′ + λc ∈ Ĥ (53)

for all λ ∈ R>0, i.e., 〈
a, x′ + λc

〉
6 β. (54)

Substituting the right-hand side of Equation (46) instead of x′, we obtain〈
a,

βa
‖a‖2 + λc

〉
6 β. (55)

Since λ > 0, it follows
〈a, c〉 6 0. (56)

But However, this contradicts (45).

Denote
ec =

c
‖c‖ , (57)

i.e., ec stands for the unit vector parallel to vector c.

Proposition 2. Let the half-space Ĥi be c-recessive. Then, for any point x′ ∈ Rn, and any number
η > 0, the point

z = x′ +
(

η +
bi − 〈ai, x′〉
〈ai, ec〉

)
ec (58)

does not belong to the half-space Ĥi, i.e.,

〈ai, z〉 > bi. (59)

Proof. The half-space Ĥi is c-recessive, therefore, according to Proposition 1, the following
inequality holds:

〈ai, c〉 > 0. (60)

Taking (58) into account, we have

〈ai, z〉 =
〈

ai, x′ +
(

η +
bi − 〈ai, x′〉
〈ai, ec〉

)
ec

〉
= η〈ai, ec〉+ bi. (61)
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Substituting the right-hand side of Equation (57) instead of ec in (61), we obtain

〈ai, z〉 = η

‖c‖ 〈ai, c〉+ bi. (62)

Since η > 1, by virtue of (60), the inequality η
‖c‖ 〈ai, c〉 > 0 holds. It follows that

〈ai, z〉 > bi, i.e., z /∈ Ĥi.

Define
Ic = {i ∈ P|〈ai, c〉 > 0}, (63)

i.e., Ic is the set of indices for which the half-space Ĥi is c-recessive. We assume from now
on that

Ic 6= ∅. (64)

Corollary 1. Let an arbitrary feasible point x′ of LP problem (38) be given:

∀i ∈ P :
〈

ai, x′
〉
6 bi. (65)

Then, for any positive number η ∈ R>0, the point

z = x′ +
(

η + max
{

bi − 〈ai, x′〉
〈ai, ec〉

∣∣∣∣i ∈ Ic

})
ec (66)

does not belong to any c-recessive half-space Ĥi, i.e.,

∀i ∈ Ic : 〈ai, z〉 > bi. (67)

Proof. From (65), we obtain

∀i ∈ Ic : bi −
〈

ai, x′
〉
> 0. (68)

According to (63) and (57), the following condition holds:

∀i ∈ Ic : 〈ai, ec〉 > 0. (69)

Hence,

max
{

bi − 〈ai, x′〉
〈ai, ec〉

∣∣∣∣i ∈ Ic

}
> 0 (70)

for any i ∈ Ic. Fix any j ∈ Ic, and define

η′ = η + max
{

bi − 〈ai, x′〉
〈ai, ec〉

∣∣∣∣i ∈ Ic

}
−

bj −
〈

aj, x′
〉〈

aj, ec
〉 , (71)

where η > 0. Taking into account (70), it follows that η′ > 0. Using (66) and (71), we obtain

z = x′ +
(

η + max
{

bi − 〈ai, x′〉
〈ai, ec〉

∣∣∣∣i ∈ Ic

})
ec = x′ +

(
η′ +

bj −
〈

aj, x′
〉〈

aj, ec
〉 )

ec. (72)

According to Proposition 2, it follows that
〈

aj, z
〉
> bj, i.e., the point z defined by (66)

does not belong to the half-space Ĥj for any j ∈ Ic.

The following proposition specifies the region containing a solution of LP problem (38).

Proposition 3. Let x̄ be a solution ofto LP problem (38). Then, there is an index i′ ∈ Ic such that

x̄ ∈ Hi′ , (73)

i.e., there is a c-recessive half-space Ĥi′ such that its bounding hyperplane Hi′ includes x̄.
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Proof. Denote by Jc the set of indices for which the half-space Ĥj is c-neutral-dominant:

Jc = P\Ic. (74)

Since x̄ belongs to the feasible region of LP problem (38), then

x̄ ∈
⋂

j∈Jc

Ĥj, (75)

and
x̄ ∈

⋂
i∈Ic

Ĥi. (76)

Define the ray Y as follows:

Y = {x̄ + λc|λ ∈ R>0 }. (77)

By Definition 1, we have
Y ⊂

⋂
j∈Jc

Ĥj, (78)

i.e., the ray Y belongs to the all c-neutral-dominant half-spaces. By virtue of Definition 2,

∀i ∈ Ic, ∃λ ∈ R>0 : x̄ + λc /∈ Ĥi. (79)

Taking into account (76), it means that

∀i ∈ Ic : Y ∩ Hi = yi ∈ Rn, (80)

i.e., the intersection of the ray Y and any hyperplane Hi bounding the c-recessive half-space
Ĥi is a single point yi ∈ Rn. Let

i′ = arg min
i∈Ic
{‖x̄− yi‖|yi = Y ∩ Hi }, (81)

i.e., Hi′ is the nearest hyperplane to the point x̄ for all i ∈ Ic. Denote by ȳ the intersection
of the ray Y and the hyperplane Hi′ :

ȳ = Y ∩ Hi′ . (82)

According to (81),
ȳ ∈

⋂
i∈Ic

Ĥi, (83)

i.e., the point ȳ belongs to the all c-recessive half-spaces. By (78), it follows that

ȳ ∈
⋂

i∈P
Ĥi, (84)

i.e., ȳ belongs to the feasible region of LP problem (38). Let

λ′ = ‖x̄− ȳ‖. (85)

Then, in virtue of (77),

〈c, ȳ〉 =
〈
c, x̄ + λ′ec

〉
= 〈c, x̄〉+ λ′

〈c, c〉
‖c‖ = 〈c, x̄〉+ λ′‖c‖. (86)

Since x̄ is a solution of LP problem (38), the following condition holds:

∀y ∈
⋂

i∈P
Ĥi : 〈c, y〉 6 〈c, x̄〉. (87)
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Comparing this with (84), we obtain that

〈c, ȳ〉 6 〈c, x̄〉. (88)

Taking into account that λ′ > 0 and c 6= 0, by virtue (86) and (88), we obtain λ′ = 0.
By (85), it follows that x̄ = ȳ. By (82), this means that x̄ ∈ Hi′ , where Ĥi′ is a c-recessive
half-space.

Definition 3. Let M 6= ∅ be a convex closed set. A single-valued mapping ϕ : Rn → Rn is called
M-Fejér mapping [43], if

∀x ∈ M : ϕ(x) = x, (89)

and
∀x /∈ M, ∀y ∈ Rn : ‖ϕ(x)− y‖ < ‖x− y‖. (90)

Proposition 4. Let x(0) ∈ Rn. If ϕ(·) is a continuous M-Fejér mapping and{
x(k) = ϕk

(
x(0)

)}∞

k=1

is the iterative process generated by this mapping, then

x(k) → x̃ ∈ M. (91)

Proof. The convergence follows directly from Theorem 6.2 and Corollary 6.3 in [43].

Let πi(x) stand for the orthogonal projection of point x onto hyperplane Hi:

πi(x) = x− 〈ai, x〉 − bi

‖ai‖2 ai. (92)

The next proposition provides a continuous M-Fejér mapping, which will be used in
the apex method.

Proposition 5. Let M 6= ∅ be the convex closed set representing the feasible region of LP problem (38):

M =
m⋂

i=1

Ĥi. (93)

For any point x ∈ Rn, let us define

Jx = {i|〈ai, x〉 > bi; i ∈ P }, (94)

i.e., Jx is the set of indices for which the half-space Ĥi does not contain the point x. Then, the
single-valued mapping ψ : Rn → Rn defined by the equation

ψ(x) =

{
x, if x ∈ M;

1
|Jx | ∑

i∈Jx

πi(x), if x /∈ M. (95)

is a continuous M-Fejér mapping.

Proof. Obviously, the mapping ψ(·) is continuous. Let us prove that condition (90) holds.
Our proof is based on a general scheme presented in [43]. Let y ∈ M, and x /∈ M. It
follows that

Jx 6= ∅. (96)

By virtue of the EquationEquation (94), the following inequalities holds

‖πi(x)− x‖ > 0 (97)
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for all i ∈ Jx. According to Lemma 3.13 in [43], the following inequality holds for all i ∈ Jx:

‖πi(x)− y‖2 6 ‖x− y‖2 − ‖πi(x)− x‖2. (98)

It follows that

‖y− ψ(x)‖2 =

∥∥∥∥∥y− 1
|Jx | ∑

i∈Jx

πi(x)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1
|Jx | ∑

i∈Jx

(y− πi(x))

∥∥∥∥∥
2

6

6 1
|Jx | ∑

i∈Jx

(
‖x− y‖2 − ‖πi(x)− x‖2

)
6 1
|Jx | ∑

i∈Jx

‖y− πi(x)‖2 6

6 1
|Jx | ∑

i∈Jx

(
‖x− y‖2 − ‖πi(x)− x‖2

)
6 ‖x− y‖2 − 1

|Jx | ∑
i∈Jx

‖πi(x)− x‖2.

According to (96) and (97) , the following inequality holds:

1
|Jx | ∑

i∈Jx

‖πi(x)− x‖2 > 0. (99)

Hence,
∀x /∈ M, ∀y ∈ Rn : ‖ψ(x)− y‖ < ‖x− y‖.

Definition 4. Let M 6= ∅ be the feasible region of LP problem (38), ψ(·) be the mapping defined
by Equation (95). The pseudoprojection ρM(x) of the point x onto the feasible polytope M is the
limit point of the sequence [x, ψ(x), ψ2(x), . . . , ψk(x), . . .]:

lim
k→∞

∥∥∥ρM(x)− ψk(x)
∥∥∥ = 0. (100)

The correctness of this definition is ensured by Propositions 4 and 5.

4. Description of Apex Method

In this section, we describe a new scalable iterative method for solving LP problem (38),
called the “apex method”. The apex method is based on the predictor—corrector framework
and proceeds in two stages: quest (predictor) and target (corrector). The quest stage
calculates a rough initial approximation of LP problem (38). The target stage refines the
initial approximation with a given precision. The main operation used in the apex method
is an operation that calculates a pseudoprojection according to Definition 4. This operation
is used both in the quest stage and in the target stage. In the next section, we describe and
investigate a parallel algorithm for calculating a pseudoprojection.

4.1. Algorithm for Calculating Pseudoprojection

In this section, we consider the implementation of the pseudoprojection operation
in the form of sequential and parallel algorithms. The pseudoprojection operation ρM(·)
maps an arbitrary point x ∈ Rn to a point ρM(x) belonging to the feasible polytope M,
which is the feasible region of LP problem (38). The calculation of ρM(x) is organized as
an iterative process using Equation (95). A sequential implementation of this process is
presented by Algorithm 1.

Let us give brief comments on this implementation. The main iterative process of
constructing a sequence of Fejér’s approximations is are represented by the repeat/until
loop implemented in Ssteps 4–20. The Ssteps 5–10 calculate the set J of indices of half-
spaces Ĥi violated by the point x(k) presenting the current approximation. In Ssteps 14–18,
the next approximation x(k+1) is calculated by Equation (95). The process terminates
when the distance between adjacent approximations becomes less than ε, where ε is a
small positive parameter. Computational experiments show that, in the case of large
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LP problems, the calculation of a pseudoprojection is a process with high computational
complexity [48]. Therefore, we developed a parallel implementation of Algorithm 1,
presented by Algorithm 2.

Algorithm 1 Calculating the pseudoprojection ρM(x).

Require: Ĥi = {x ∈ Rn|〈ai, x〉 6 bi}, M =
⋂m

i=1 Ĥi, M 6= ∅
1: function ρM(x)
2: k := 0
3: x(0) := x
4: repeat
5: J := ∅
6: for i = 1 . . . m do
7: if

〈
ai, x(k)

〉
> bi then

8: J := J ∪ {i}
9: end if

10: end for
11: if J = ∅ then
12: return x(k)

13: end if
14: S := 0
15: for all i ∈ J do
16: S := S +

(〈
ai, x(k)

〉
− bi

)
ai/‖ai‖2

17: end for
18: x(k+1) := x(k) − S/|J |
19: k := k + 1
20: until

∥∥∥x(k) − x(k−1)
∥∥∥ < ε

21: return x(k)

22: end function

Algorithm 2 Parallel calculation of a pseudoprojection.

Master lth Worker (l = 0, . . . , L− 1)

1: input n, x(0)

2:
3: k := 0
4: repeat
5: Bcast x(k)

6:
7:
8: Gather Lreduce
9: (u, σ) := Reduce(⊕,Lreduce)

10: x(k+1) := u/σ
11: k := k + 1
12: exit :=

∥∥∥x(k) − x(k−1)
∥∥∥ < ε

13: Bcast exit
14: until exit
15: output x(k)

16: stop

1: input n, m, A, b, c
2: L := NumberOfWorkers
3: Lmap(l) := [lm/L, . . . , ((l + 1)m/L)− 1]
4: repeat
5: RecvFromMaster x(k)

6: Lreduce(l) := Map(Fx(k) ,Lmap(l))

7: (ul , σl) := Reduce(⊕,Lreduce(l))

8: SendToMaster (ul , σl)
9:

10:
11:
12:
13: RecvFromMaster exit
14: until exit
15:
16: stop
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Algorithm 2 is based on the BSF parallel computation model [49] designed for a cluster
computing system. The BSF model uses the master/worker paradigm and requires the rep-
resentation of the algorithm in the form of operations on lists using higher-order functions
Map and Reduce. In Algorithm 2, we use the list Lmap = [1, . . . , m] of ordinal numbers of
constraints of LP problem (38) as the second parameter of the higher-order function Map.
As the first parameter of the higher-order function Map, we use the parameterized function

Fx : P → Rn ×Z>0

defined as follows:
Fx(i) = (ui, σi);

ui =

{
πi(x), if 〈ai, x〉 > bi;
0, if 〈ai, x〉 6 bi;

σi =

{
1, if 〈ai, x〉 > bi;
0, if 〈ai, x〉 6 bi.

(101)

Thus, the higher-order function Map
(
Fx,Lmap

)
transforms the list Lmap of constraint

numbers into a list of pairs (ui, σi). Here, ui is the orthogonal projection of the point x onto
the hyperplane Hi in the case x /∈ Ĥi, and the zero vector otherwise; σi is the indicator that
x violates the half-space Ĥi (i = 1, . . . , m):

Map
(
Fx,Lmap

)
= [Fx(1), . . . , Fx(m)] = [(u1, σ1), . . . , (um, σm)]. (102)

Denote Lreduce = [(u1, σ1), . . . , (um, σm)]. Define a binary associative operation

⊕ : Rn ×Z>0 → Rn ×Z>0,

which is the first parameter of the higher-order function Reduce, as follows:(
u′, σ′

)
⊕
(
u′′, σ′′

)
=
(
u′ + u′′, σ′ + σ′′

)
. (103)

The higher-order function Reduce(⊕,Lreduce) folds the list Lreduce into the single pair
by sequentially applying the operation ⊕ to all elements of the list:

Reduce(⊕,Lreduce) = (u1, σ1)⊕ . . .⊕ (um, σm) = (u, σ), (104)

where

u =
m

∑
i=1

ui; (105)

σ =
m

∑
i=1

σi. (106)

In Algorithm 2, a parallel execution of work is organized according to the mas-
ter/worker scheme. The parallel algorithm includes L + 1 processes: one master process
and L worker processes. The master manages the computations, distributes the work
among the workers, gathers the results back from them, and summarizes all the results
to obtain the final result. For the sake of simplicity, it is assumed that the number of
constraints m of LP problem (38) is a multiple of the number of workers L. In Step 1, the
master reads the space dimension n and the starting point x(0). Step 3 of the master assigns
zero to the iteration counter k. Steps 4–14 implement the main repeat/until loop calculating
the pseudoprojection. In Step 5, the master broadcasts the current approximation x(k) to
all workers. Step 9 of the master gathers partial results from all workers. In Step 9, the
master folds the partial results into the pair (u, σ), which is used to calculate the next
approximation x(k+1) in Step 10. Step 11 of the master increases the iteration counter k by 1.
In Step 12, the master calculates the criterion for stopping the iterative process and assigns
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the result to the Boolean variable exit. In Step 13, the master broadcasts the value of the
Boolean variable exit to all workers. In Step 14, the repeat/until loop ends if the Boolean
variable exit takes the value true. Step 15 of the master outputs the last approximation x(k)

as a result of the pseudoprojection. Step 16 terminates the master process.
All workers execute the same program codes, but with different data. In Step 1, the lth

worker reads problem data. In Steps 2 and 3, the lth worker defines its own sublist Lmap(l)
for processing. For convenience, we number the constraints starting from zero. The sublists
of different workers do not overlap, and their concatenation represents the entire list to
be processed:

Lmap = Lmap(0) ++ . . . ++ Lmap(L−1). (107)

The repeat/until loop of the lth worker corresponds to the repeat/until loop of the
master (Ssteps 4–14). In Step 5, the lth worker receives the current approximation x(k) from
the master. Step 6 of the lth worker executes the higher-order function Map, which applies
the parameterized function Fx(k) defined by (101) to all elements of the sublist Lmap(l),
resulting in the sublist Lreduce(l). Step 7 of the lth worker executes the higher-order function
Reduce, which applies the operation ⊕ defined by (103) to all elements of the list Lreduce(l),
resulting in the pair (ul , σl). In Step 8, the lth worker sends its resulting pair (ul , σl) to the
master. In Step 13, the lth worker receives a value of the Boolean variable exit from the
master. If exit = true, then the worker process is terminated. Otherwise, the repeat/until
loop continues its work. The exchange operators Bcast, Gather, RecvFromMaster, and
SendToMaster provide synchronization of the master and workers processes.

Let us estimate the scalability boundary of the described pseudoprojection parallel
algorithm, using the cost metrics of BSF model [49]. Here, the scalability boundary refers
to the number of worker processes at which the maximum speedup is achieved. The cost
metric of the BSF model includes the following parameters.

m: length of the list Lmap;
D: latency (time taken by the master to send a one one-byte message to a single worker);
tc: time taken by the master to send the current approximation x(k) to a single worker

and receive the pair (ul , σl) from it (including latency);
tMap: time taken by a single worker to process the higher-order function Map for the entire

list Lmap;
ta: time taken by computing the binary operation ⊕.

According to Equation (14) from [49], the scalability boundary Lmax of a parallel
algorithm can be estimated as follows:

Lmax =
1
2

√(
tc

ta ln 2

)2
+

tMap

ta
+ 4m− tc

ta ln 2
. (108)

Let us calculate the time parameters in Equation (108). To do this, we introduce the
following notation for one iteration of the repeat/until loop implemented in Steps 4–14 of
Algorithm 2:

cc: quantity of numbers sent from the master to the lth worker and back within one
iteration;

cF: quantity of arithmetic and comparison operations required to compute the function
Fx defined by Equation (101);

c⊕: quantity of arithmetic and comparison operations required to compute the binary
operation ⊕ .

In Step 5, the master sends to the lth worker one vector of dimension n. Then, in
Step 8, the master receives a pair consisting of a vector of dimension n and a single number
from the lth worker. In addition, in Step 13, the master sends a single Boolean value to the
lth worker. Hence,

cc = 2n + 1. (109)
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Taking into account Equations (92) and (101), and assuming that ‖ai‖2 is calculated in
advance, we obtain

cF = 3n + 2. (110)

According to (103), the following equations holds for c⊕:

c⊕ = 2n + 1. (111)

Let us denote by τop the execution time of one arithmetic or comparison operation,
and by τtr the time of sending a single real number from one process to another (excluding
latency). Then, using (109)–(111), we obtain

tc = ccτtr + 3D = (2n + 1)τtr + 3D; (112)

tMap = cFmτop = (3n + 2)mτop; (113)

ta = c⊕τop = (2n + 1)τop. (114)

Recall that the parameterparameter D denotes the latency. Substituting the right-hand
sides of these equations into (108), we have

Lmax =
1
2

√(
(2n + 1)τtr + 3D
(2n + 1)τop ln 2

)2

+

(
n + 1

2n + 1
+ 5
)

m− (2n + 1)τtr + 3D
(2n + 1)τop ln 2

,

where n is the space dimension, m is the number of constraints. For large values of n and
m, this is equivalent to

Lmax ≈ O(
√

m). (115)

This estimation suggests that Algorithm 2 is limited-scalable, and the scalability
depends on the number of constraints m.

4.2. Quest Stage

The quest stage of the apex method plays the role of a predictor and includes the
following steps.

1. Calculate a feasible point x̃ ∈ M.
2. Calculate the apex point z.
3. Calculate the point u(0) that is the pseudoprojection of the apex point z onto the

feasible polytope M.

The feasible point x̃, in Step 1, can be calculated by the following equation:

x̃ =

{
0, if 0 ∈ M;
ρM(0), if 0 /∈ M,

(116)

where ρM(·) is the operation of pseudoprojection onto the feasible polytope M (see
Definition 4).

Step 2 calculates the apex point z by the following equation:

z = x̃ +

(
η + max

{
bi − 〈ai, x′〉
〈ai, ec〉

∣∣∣∣i ∈ Ic

})
ec, (117)

where Ic defined by Equation (63) is the set of indices for which the half-space Ĥi is c-
recessive, and η ∈ R>0 is a positive parameter. Corollary 1 guarantees that the point z
chosen according to Equation (117) does not belong to any c-recessive half-space Ĥi. This
choice is based on the intuition that the pseudoprojection from such a point will not be
very far from the exact solution of the LP problem. The interpretation of this intuition
comes from Proposition 3, which states that the solution of the LP problem (38) lies on some
hyperplane Hi bounding the c-recessive half-space Ĥi. The parameter η can significantly
affect the proximity of the point ρM(z) to the exact solution. The optimal value of η can be
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obtained by seeking the maximum of the objective function using the successive dichotomy
method.

Step 3 calculates the initial approximation u(0) for the target stage by the following
equation:

u(0) = ρM(z). (118)

Numerous computational experiments show that the process of calculating the pseu-
doprojection by Definition 4 starting from an exterior point always converges to a point
on the boundary of the feasible polytope M. However, at the moment, we do not have a
rigorous proof of this fact.

4.3. Target Stage

The target stage of the apex method plays the role of a corrector and calculates a
sequence of points {

u(0), u(1), . . . , u(k), . . .
}

(119)

that has the following properties for all k ∈ {0, 1, 2, . . .}:

u(k) ∈ ΓM; (120)

〈
c, u(k)

〉
<
〈

c, u(k+1)
〉

; (121)

lim
k→∞

∥∥∥u(k) − x̄
∥∥∥ = 0. (122)

Here, ΓM stands for the set of boundary points of the feasible polytope M. Condi-
tion (120) means that all points of sequence (119) lie on the boundary of the polytope
M. Condition (121) states that the value of the objective function at each next point
of sequence (119) is greater than at the previous one. According to condition (122), se-
quence (119) converges to the exact solution of LP problem (38). An implementation of the
Target stage is presented in Algorithm 3.

Let us give brief comments on the steps of Algorithm 3. Step 1 reads the initial approx-
imation u(0) constructed at the quest stage. Step 2 assigns zero to the iteration counter k.
Step 3 adds the vector δec to u(k) and assigns the result to v. Here, ec is a unit vector
parallel to c, δ is a positive parameter. The parameter δ must be small enough to ensure
that

{
x ∈ Rn

∣∣∣x = (1− λ)w− λu(k), 0 6 λ 6 1
}
⊂ ΓM. Recall that ΓM denotes the set of

boundary points of the feasible polytope M. Step 4 calculates the pseudoprojection ρM(v)
and assigns the result to w. Steps 5–19 implement the main loop. This loop is processed
while the following condition holds:〈

c, w− u(k)
〉
> ε f . (123)

Here, ε f is a small positive parameter. Step 6 introduces the point u moving along
the surface of the polytope M from the point u(k) to the next approximation u(k+1). Step 7
calculates the vector d, which defines the direction of movement of the point u. The loop in
Ssteps 8–14 moves the point u along the surface of the polytope M in this direction as far as
possible. To achieve this, the vector d is successively divided in half each time the next step
moves u beyond the boundary of the polytope M. The movement stops when the length of
the vector d becomes less than εd. Here, εd is a small positive parameter. Step 15 sets the
next approximation u(k+1) using the value of u. Step 16 increases the iteration counter k
by 1. Steps 17 and 18 calculate new points v and w for the next iteration of the main loop.
Step 20 outputs u(k) as the final approximation of the exact solution x̄ of LP problem (38).
Schematically, the work of Algorithm 3 is shown in Figure 1.
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Algorithm 3 Target stage.

Require: Ĥi = {x ∈ Rn|〈ai, x〉 6 bi}, M =
⋂m

i=1 Ĥi, M 6= ∅
1: input u(0)

2: k := 0
3: v := u(k) + δec
4: w := ρM(v)
5: while

〈
c, w− u(k)

〉
> ε f do

6: u := u(k)

7: d := w− u(k)

8: while ‖d‖ > εd do
9: if (u + d) ∈ M then

10: u := u + d
11: else
12: d := d/2
13: end if
14: end while
15: u(k+1) := u
16: k := k + 1
17: v := u(k) + δec
18: w := ρM(v)
19: end while
20: output u(k)

21: stop

( )

( )

Figure 1. Iteration execution scheme of the target stage.

The following proposition guarantees the convergence of Algorithm 3.

Proposition 6. Let the feasible polytope M of LP problem (38) be a closed bounded set, and
M 6= ∅. Then, the sequence

{
u(k)

}
generated by Algorithm 3 terminates in finite number of

iterations K > 0, and〈
c, u(0)

〉
<
〈

c, u(1)
〉
<
〈

c, u(2)
〉
< . . . <

〈
c, u(K)

〉
. (124)

Proof. The case when K = 0 is trivial. Let K > 0 or K = ∞. First, we show that for any
k < K the following inequality holds:〈

c, u(k)
〉
<
〈

c, u(k+1)
〉

. (125)
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Indeed, inequality (123) implies〈
c, u(k)

〉
< 〈c, w〉. (126)

According to Step 7 in Algorithm 3, it follows that

d 6= 0. (127)

Without loss of generality, we can assume that
∥∥∥w− u(k)

∥∥∥ > εd. Then, according to
Steps 8–15, we obtain

u(k+1) = u(k) + µd, (128)

where µ > 0. Taking into account inequality (123) and Step 7 of Algorithm 3, it follows〈
c, u(k+1)

〉
=
〈

c, u(k) + µd
〉
=
〈

c, u(k) + µ
(

w− u(k)
)〉

=

=
〈

c, u(k)
〉
+ µ

〈
c, w− u(k)

〉
>
〈

c, u(k)
〉

.

Now, we show that K < ∞. Assume the opposite, i.e., Algorithm 3 generates the
infinite sequence of points. In this case, we obtain the monotonically increasing numeri-
cal sequence 〈

c, u(0)
〉
<
〈

c, u(1)
〉
<
〈

c, u(2)
〉
< . . . (129)

Since the feasible polytope M is bounded, sequence (129) is bounded from above.
According to the monotone convergence theorem, a monotonically increasing numerical
sequence bounded from above converges to its supremum. This means that there exists
K′ ∈ N such that

∀k > K′ :
〈

c, u(k+1)
〉
−
〈

c, u(k)
〉
< εd. (130)

It follows
∀k > K′ : 〈c, w〉 −

〈
c, u(k)

〉
< εd (131)

that is equivalent to
∀k > K′ :

〈
c, w− u(k)

〉
< εd. (132)

Thus, we obtain a contradiction with the stopping criterion (123) used in Step 5 of
Algorithm 3.

The notion of pseudoprojection is a generalization of the notion of metric projection,
which can be defined as follows [43].

Definition 5. Let Q be a closed convex set in Rn, and Q 6= ∅. The metric projection PQ(x) of the
point x ∈ Rn onto the set Q is defined by the equation

PQ(x) = arg min{‖x− q‖|q ∈ Q}. (133)

For the metric projection, the following proposition is similar to Proposition 6 for the
pseudoprojection holds.

Proposition 7. The sequence
{

u(k)
}

generated by Algorithm 3 with the metric projection PM(·)
instead of the pseudoprojection ρM(·) terminates in finite number of iterations K > 0, and〈

c, u(0)
〉
<
〈

c, u(1)
〉
<
〈

c, u(2)
〉
< . . . <

〈
c, u(K)

〉
. (134)

Proof. The proof follows the same scheme as the proof of Proposition 6.
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The following proposition states that Algorithm 3 with metric projection converges to
the exact solution of the LP problem.

Proposition 8. Let the pseudoprojection ρM(·) be replaced by the metric projection PM(·) in
Algorithm 3. Then, Algorithm 3 converges to the exact solution x̄ of LP problem (38).

Proof. Let ū stand for the terminal point of the sequence
{

u(k)
}

generated by Algorithm 3
with the metric projection PM(·). This point exists according to Proposition 7. Assume the
opposite, i.e., ū 6= x̄. This is equivalent to

〈c, ū〉 < 〈c, x̄〉. (135)

Let Sδ(v) designate the open n-ball of radius δ and center v, where

v = ū + δec. (136)

According to (135), it follows that

Sδ(v) ∩M 6= ∅. (137)

Let
w = arg min{‖x− v‖|x ∈ Sδ(v) ∩M}. (138)

This is equivalent to
w = PM(v). (139)

It is easy to see that the following inequality holds:

〈c, w〉 > 〈c, ū〉. (140)

Condition (136), (139), and (140) say that ū is not the terminal point of the sequence{
u(k)

}
generated by Algorithm 3. Thus, we obtain a contradiction, and the proposition

is proved.

The convergence of Algorithm 3 with pseudoprojection to the exact solution is based
on the intuition that ρM(v)→ PM(v) with δ→ 0. However, a rigorous proof of this fact is
beyond the scope of this article.

5. Implementation and Computational Experiments

We implemented a parallel version of the apex method in C++ using the
BSF-skeleton [50], which is based on the BSF parallel computation model [49]. The
BSF-skeleton encapsulates all aspects related to the parallelization of a program using
the MPI library. The source code of this implementation is freely available at https:
//github.com/leonid-sokolinsky/Apex-method (accessed on 1 March 2023). Using this
program, we investigated the scalability of the apex method. The computational experi-
ments were conducted on the “Tornado SUSU” computing cluster [51], whose specifications
are shown in Table 1.

As test problems, we used random synthetic LP problems generated by the program
FRaGenLP [52]. A verification of solutions obtained by the apex method was performed
using the program VaLiPro [53]. We conducted a series of computational experiments in
which we investigated the dependence of speedup and parallel efficiency on the number of
worker nodes used. The results are presented in Figure 2.

https://github.com/leonid-sokolinsky/Apex-method
https://github.com/leonid-sokolinsky/Apex-method
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Table 1. Specifications of the “Tornado SUSU” computing cluster.

Parameter Value

Number of processor nodes 480
Processor Intel Xeon X5680 (6 cores, 3.33 GHz)
Processors per node 2
Memory per node 24 GB DDR3
Interconnect InfiniBand QDR (40 Gbit/s)
Operating system Linux CentOS
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Figure 2. Speedup and efficiency dependency for various dimensions on the number of worker nodes.

Here, the speedup α is defined as the ratio of the time T(1) required by the parallel
algorithm using one master node and one worker node to solve a problem to the time T(L)
required by the parallel algorithm using one master node and L worker nodes to solve the
same problem:

α =
T(1)
T(L)

. (141)

The parallel efficiency ε is calculated as the ratio of the speedup α to the number L of
worker nodes:

ε =
α

L
. (142)

The computations were performed with the following dimensions: 5000, 7500, and
10,000. The number of inequalities was 10,002, 15,002, and 20,002, respectively. The
experiments showed that the scalability boundary of the parallel apex algorithm depends
significantly on the size of the LP problem. For n = 5000, the scalability boundary was
approximately 55 worker nodes. For the problem of dimension n = 7500, this boundary
increased to 80 nodes, and for the problem of dimension n = 10,000, it was close to 100 nodes.
Further increasing the problem size caused the compiler error: “insufficient memory”. It
should be noted that the computations were performed in the double double-precision
floating-point format occupying 64 bits in computer memory. An attempt to use the single-
precision floating-point format occupying 32 bits failed because the apex algorithm stopped
to convergeconverging. Parallel efficiency also significantly depends on the size of the
LP problem. For n = 5000, the efficiency dropped below 50% at 70 worker nodes. For
n = 7500 and n = 10,000, the 50% drop of the efficiency occurred at 110 and 130 worker
nodes, respectively.

The experiments have also shown that the parameter η used in Equation (117) to
calculate the apex point z at the quest stage has a negligible effect on the total time of
solving the problem when this parameter has large values (more then than 100,000). If the
apex point is not far enough away from the polytope, then its pseudoprojection-projection
can be an interior point of some polytope face. If the apex point is taken far enough
away from the polytope (the value η = 20,000 · n was used in the experiments), then the
pseudoprojection-projection always fell into one of the polytope vertices. AlsoAdditionally,
we would like to note that, in the case of synthetic LP problems generated by the program
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FRaGenLP, all computed points in the sequence
{

u(k)
}

were vertices of the polytope. The
computational experiment showed that more than 99% of the time spent for solving the LP
problem by the apex method was taken up by the calculation of pseudoprojections (Step 18
of Algorithm 3). At that, theThe calculation of one approximation u(k) for a problem of
dimension n = 10,000 on 100 worker nodes took 44 min.

We also tested the apex method on a subset of LP problems from the Netlib-LP
repository [54] available at https://netlib.org/lp/data (accessed on 1 March 2023). The
Netlib suite of linear optimization problems includes many real real-world applications
like such as stochastic forestry problems, oil refinery problems, flap settings of aircraft,
pilot models, audit staff scheduling, truss structure problems, airline schedule planning,
industrial production, and allocation models, image restoration problems, and multisector
economic planning problems. It contains problems ranging in size from 32 variables
and 27 constraints up to 15,695 variables and 16,675 constraints [55]. The exact solutions
(optimal values of objective functions) of all problems were obtained from paper [56]. The
results are presented in Table 2.

Table 2. Applying the apex method to the Netlib-LP problems.

No Problem Quest Stage Target Stage

Name Exact Solution Rough Solution Error Refined Solution Error

1 adlittle 2.25494963× 105 3.67140280× 105 6.28× 10−1 2.2571324× 105 9.68× 10−4

2 afiro −4.64753142× 102 −4.55961488× 102 1.89× 10−2 −4.6475310× 102 8.61× 10−9

3 blend −3.08121498× 101 −3.60232513× 100 8.83× 10−1 −3.0811018× 101 3.19× 10−5

4 fit1d −9.14637809× 103 −3.49931014× 103 6.17× 10−1 −9.1463386× 103 8.77× 10−7

5 kb2 −1.74990012× 103 −1.39603193× 103 2.02× 10−1 −1.6879152× 103 3.54× 10−2

6 recipe −2.66616000× 102 −2.66107349× 102 1.91× 10−3 −2.6660404× 102 2.23× 10−5

7 sc50a −6.45750770× 101 −5.58016335× 101 1.36× 10−1 −6.4568167× 101 1.06× 10−4

8 sc50b −7.00000000× 101 −6.92167246× 101 1.12× 10−2 −6.9990792× 101 1.32× 10−4

9 sc105 −5.22020612× 101 −4.28785710× 101 1.79× 10−1 −5.1837995× 101 6.97× 10−3

10 share2b −4.15732240× 102 −4.28792528× 102 3.14× 10−2 −4.1572001× 102 2.40× 10−5

These experiments showed that the relative error of the rough solution calculated at
the quest stage was less than or equal to 0.2, excluding the adlittle, blend, and fit1d problems.
The relative error of the refined solution calculated at the target stage was less than 10−3,
excluding the kb2 and sc105, for which the error was 0.035 and 0.007, respectively. The
runtime varied from a few seconds for afiro to tens of hours for blend. One of the main
parameters affecting the convergence rate of the apex method was the parameter ε used in
Step 12 of the parallel Algorithm 2 calculating the pseudoprojection. All runs are available
on https://github.com/leonid-sokolinsky/Apex-method/tree/master/Runs (accessed on
1 March 2023).

6. Discussion

In this section of the article, we will discuss some issues related to the scientific
contribution and applicability of the apex method in practice and give answers to the
following questions.

1. What is the scientific contribution of this article?
2. What is the practical significance of the apex method?
3. What is our confidence that the apex method always converges to the exact solution

of the LP problem?
4. How can we speed up the convergence of the Algorithm 1 calculating a pseudoprojec-

tion on the feasible polytope M?

The main scientific contribution of this article is that it presents the apex method that
allows, for the first time, as far as we know, to construct a path close to optimal on the

https://netlib.org/lp/data
https://github.com/leonid-sokolinsky/Apex-method/tree/master/Runs
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surface of a feasible polytope from a certain starting point to the exact solution of the LP
problem. Here, the optimal path refers to a path of the minimum length according to the
Euclidean metric. By intuition, moving in the direction of the greatest increase in the value
of the objective function will give us the shortest path to the point of maximum of the
objective function on the surface of the feasible polytope. We intend to present a formal
proof of this fact in a futurefuture work.

The practical significance of the apex method is based on the issue of applying
feedforward-forward neural networks, including convolutional neural networks, to solve
LP problems. In recenta recent paper [28], a method of visual representation of n-dimensional
LP problems was proposed. This method constructs an image of the feasible polytope M
in the form of a matrix I of dimension (n− 1) using the rasterization technique. A vector
antiparallel to the gradient vector of the objective function is used as the view ray. Each
pixel value in I is proportional to the value of the objective function at the corresponding
point on the surface of a feasible polytope M. Such an image makes it possible to use a
feedforward neural network to construct the optimal path on the surface of the feasible
polytope to the solution of the LP problem. Actually, tThe feedforward neural network can
directly calculate the vector d in Algorithm 3, making the calculation of pseudoprojection
redundant. The advantage of this approach is that the feedforward-forward neural network
works in real time, which is important for robotics. We are not aware of other methods that
solvessolve LP problems in real time. However, applying a feedforward neural network
to solve LP problems involves the task of preparing a training dataset. The apex method
provides the possibility to construct such a training dataset.

Proposition 6 states that Algorithm 3 converges to some point on the surface of the
feasible polytope M in a finite number of steps, but leaves open the question of whether the
terminal point will be a solution to the LP problem. According to Proposition 8, the answer
to this question is positive if, in Algorithm 3, the pseudoprojection is replaced by the metric
projection. However, there are no methods for constructing the metric projection for an
arbitrarily bounded convex polytope. Therefore, we are forced to use the pseudoprojection.
Numerous experiments show that the apex method converges to the solution of the LP
problem, but this fact requires a formal proof. We plan to make such a proof in our
future work.

The main drawback of the apex method is the slow rate of convergence to the solution
of the LP problem. The LP problem, which takes several seconds to find the optimal
solution by standard linear programming solvers, may take several hours to solve by
the apex method. Computational experiments demonstrated that more than 99% of the
time spent for solving the LP problem by the apex method was taken by the calculation
of pseudoprojections. Therefore, the issue of speeding up the process of calculating the
pseudoprojection is urgent. In the apex method, the pseudoprojection is calculated by
Algorithm 1, which belongs to the class of projection-type methods discussed in detail in
Section 2. In the case of closed bounded polytope M 6= ∅, the projection-type methods
have a low linear rate of convergence:∥∥∥x(k+1) − ρM

(
x(0)

)∥∥∥ 6 Cqk, (143)

where 0 < C < ∞ is some constant, and q ∈ (0, 1) is a parameter that depends on the angles
between the half-spaces corresponding to the faces of the polytope M [57]. This means
that the distance between adjacent approximations decreases at each iteration by a constant
factor of less than 1. For small angles, the convergence rate can decrease todecrease to
values close to zero. This fundamental limitation of the projection-type methods cannot
be overcome. However, we can reduce the number of half-spaces used to compute the
pseudoprojection. According to Proposition 3, the solution of LP problem (38) belongs to
some c-recessive half-space. Hence, in Algorithm 1 calculating the pseudoprojection, we
can take into account only the c-recessive hyperplanes. On average, this reduces the number
of half-spaces by two times. Another way to reduce the pseudoprojection calculation time is
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to parallelize Algorithm 1, as was done in Algorithm 2. However, the degree of parallelism
in this case, in this case, will be limited by the theoretical estimation (115).

7. Conclusions and Future Work

In this paper, we proposed a new scalable iterative method for linear programming
called the “apex method”. The key feature of this method is constructing a path close
to optimal on the surface of the feasible region from a certain starting point to the exact
solution of the linear programming problem. The optimal path refers to a path of the
minimum length according to the Euclidean metric. The main practical contribution of the
apex method is that it opens the possibility of using feedforward neural networks to solve
multidimensional LP problems.

The paper presents a theoretical basis used to construct the apex method. The half-
spaces generated by the constraints of the LP problem are considered. These half-spaces
form the feasible polytope M, which is a closed bounded set. These half-spaces are divided
into two groups with respect to the gradient c of the linear objective function: c-neutral-
dominant and c-recessive. The necessary and sufficient condition for the c-recessivity is
obtained. It is proved that the solution of to the LP problem lies on the boundary of a c-
recessive half-space. The equation defining the apex point not belonging to any c-recessive
half-space is derived. The apex point is used to calculate the initial approximation on the
surface of the feasible polytope M. The apex method constructs a path close to optimal on
the surface of the feasible polytope M from this initial approximation to the solution of
the LP problem. To do this, it uses a parallel algorithm constructing the pseudoprojection,
which is a generalization of the notion of metric projection. For this parallel algorithm,
an analytical estimation of the scalability bound is obtained. This estimation says that
the scalability boundary of the parallel algorithm, of calculating the pseudoprojection on
a cluster computing system, does not exceed O

(√
m
)

processor nodes, where m is the
number of constraints of the linear programming problem. The algorithm constructing a
path close to optimal on the surface of the feasible polytope, from the initial approximation
to the exact solution of the linear programming problem, is described. The convergence of
this algorithm is proven.

The parallel version of the apex method is implemented in C++ using the BSF-skeleton
based on the BSF parallel computation model. Large-scale computational experiments were
conducted to investigate the scalability of the apex method on a cluster computing system.
These experiments show that, for a synthetic scalable linear programming problem with
a dimension of 10,000 and a constraint number of 20,002, the scalability boundary of the
apex methods is close to 100 processor nodes. At the same time, these experiments showed
that more than 99% of the time spent for solving the LP problem by the apex method was
taken by the calculation of pseudoprojections.

In addition, the apex method was used to solve 10 problems from the Netlib-LP
repository. These experiments showed that the relative error varied from 3.5× 10−3 to
8.6 × 10−9. The runtime ranged from a few seconds for to tens of hours. The main
parameter affecting the convergence rate of the apex method was the precision of calculating
the pseudoprojection.

Our future research directions on this subject are as followingfollows. We plan to
develop a new method for calculating the pseudoprojection onto the feasible polytope of
the LP problem. The basic idea is to reduce the number of half-spaces used in one iteration.
At the same time, the number of these half-spaces should remain large enough to enable
the efficient parallelization. The new method should outperform Algorithm 2 in terms of
convergence rate. We will also need to prove that the new method converges to a point
that lies on the boundary of the feasible region. In addition, we plan to investigate the
usefulness of utilizusing the linear superiorization technique [46] in the apex method.
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Notations

Rn real Euclidean space
‖·‖ Euclidean norm
〈·, ·〉 dot product of two vectors
[· , ·] concatenation of two vectors
f (x) linear objective function
c gradient of objective function f (x)
ec unit vector parallel to vector c
x̄ solution of LP problem
M feasible polytope
ΓM set of boundary points of feasible polytope M
ai ith row of matrix A
Ĥi half-space defined by inequality 〈ai, x〉 6 bi
Hi hyperplane defined by equation 〈ai, x〉 = bi
P set of row indices in matrix A
Ic set of indices for which the half-space Ĥi is c-recessive
πi(·) orthogonal projection onto hyperplane Hi
ρM(·) pseudoprojection onto feasible polytope M
PM(·) metric projection onto feasible polytope M
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