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Hatching of a Soil Borne Pathogen
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Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom

Plants suffer multiple, simultaneous biotic threats from both above and below ground.

These pests and/or pathogens are commonly studied on an individual basis and the

effects of above-ground pests on below-ground pathogens are poorly defined. Root

exudates from potato plants (Solanum tuberosum L.) were analyzed to characterize

the top-down plant-mediated interactions between a phloem-sucking herbivore (Myzus

persicae) and a sedentary, endoparasitic nematode (Globodera pallida). Increasing

inocula of the aphid, M. persicae, reduced the root mass of potato plants. Exudates

collected from these roots induced significantly lower hatching of second-stage juveniles

from G. pallida eggs over a 28-day period, than those from uninfested control plants.

Inhibition of hatch was significantly positively correlated with size of aphid inoculum.

Diminished hatching was partially recovered after treatment with root exudate from

uninfested potato plants indicating that the effect on hatching is reversible but cannot

be fully recovered. Glucose and fructose content was reduced in root exudates from

aphid-infested potato plants compared to controls and these sugars were found to

induce hatching of G. pallida, but not to the same degree as potato root exudates (PRE).

Supplementing aphid-infested PRE with sugars did not recover the hatching potential

of the treatment, suggesting that additional compounds play an important role in egg

hatch. The first gene upregulated in the closely related potato cyst nematode Globodera

rostochiensis post-exposure to host root exudate, Neprilysin-1, was confirmed to be

upregulated in G. pallida cysts after exposure to PRE and was also upregulated by

the sugar treatments. Significantly reduced upregulation of Gpa-nep-1 was observed in

cysts treated with root exudates from potato plants infested with greater numbers of

aphids. Our data suggest that aphid infestation of potato plants affects the composition

of root exudates, with consequential effects on the hatching and gene expression of

G. pallida eggs. This work shows that an above-ground pest can indirectly impact

the rhizosphere and reveals secondary effects for control of an economically important

below-ground pathogen.
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INTRODUCTION

Plants are a primary source of nutrition for a wide range of
organisms and are often subject to simultaneous attack from
both above and below the ground (Wondafrash et al., 2013; Van
Dam et al., 2018). Pest and/or pathogen attack can change the
plant’s phenotype, subsequently altering the attraction, behavior,
performance, and abundance of other organisms on the same
host (Sun et al., 2016). Interactions between spatially separated
biota can be mediated systemically, as a result of a tight
physiological integration of roots and shoots throughout the
plant (Biere and Goverse, 2016).

Plant-feeding aphids and plant-parasitic nematodes (PPN)
can be linked through host-mediated interactions (Kaplan et al.,
2008; Kutyniok and Müller, 2012; Hoysted et al., 2017). Aphids
use their stylet-like mouthparts to feed on photoassimilates found
in the host’s sap (Pollard, 1973; Blackman and Eastop, 2000).
While feeding, aphids produce a gelling saliva that covers the
stylet with a protective sheath and a watery saliva that is secreted
into plant cells and the phloem (Miles, 1999; Tjallingii, 2006).
Both salivas contain different proteins (Harmel et al., 2008;
Hogenhout and Bos, 2011), which can induce or suppress plant
defense responses (de Vos et al., 2007; Bos et al., 2010). If
aphids are present in high populations, substantial reductions
in yield can be observed (Kolbe, 1970) and the transmission of
viral diseases by aphids can impose additional stresses (Dixon
and Kindlmann, 1998; Foster et al., 2000). Nematodes constitute
one of the most abundant phyla of the rhizosphere and many
are phytophagous, feeding on the roots of plants (Jones et al.,
2013; van Dam and Bouwmeester, 2016; Hewezi and Baum,
2017). Cyst nematodes, such as Globodera pallida, are a group
of highly evolved sedentary endoparasites that are pathogens of
temperate, subtropical, and tropical plant species (Nicol et al.,
2011; Cotton et al., 2014). Second-stage juveniles (J2s) hatch in
the soil in response to host root exudate, penetrate the root,
and migrate intracellularly toward the vascular cylinder where
each individual chooses an initial cell from which to form a
highly metabolically active feeding site, termed a syncytium,
from which the nematode extracts host resources (Lilley et al.,
2005; Jones et al., 2013). At maturity the female is fertilized, her
body swells, and the cuticle hardens to form a protective cyst
that contains hundreds of eggs (Bohlmann, 2015; Moens et al.,
2018).

Although aphids and cyst nematodes can share the same
host, their attack on the plant is spatially separated: nematodes
infect the roots of a suitable host, whereas aphids colonize
above-ground biomass (Emden, 1969). The majority of studies
on plant-mediated interactions between shoot herbivores and
root-parasitic nematodes predominantly focuses on nematode-
induced effects on herbivores rather than herbivore-induced
effects on nematodes (Van Dam et al., 2005, 2018; Kaplan et al.,
2008; Hofmann et al., 2010; Hong et al., 2010; Hol et al., 2013;
Wondafrash et al., 2013; Hoysted et al., 2017). Although not
as numerous, there have been examples of leaf feeding insects
influencing the performance of PPN, however, feeding strategy
of the above-ground pest played a role in the outcome of
these interactions. Leaf-chewing herbivores (e.g., caterpillars)

increased the abundance of PPN; however, sap-feeding insects
(e.g., aphids) had a negative impact on the number of PPN
present on tobacco (Kaplan et al., 2009). The specialist aphid,
Brevicoryne brassicae had a negative effect on the abundance
of the beet-cyst nematode Heterodera schachtii on Arabidopsis
thaliana, with impaired development of H. schachtii possibly
attributed to a significant reduction in individual glucosinolates
in the roots (Kutyniok and Müller, 2012). Although top-down
plant-mediated interactions between aphids and nematodes have
been reported, these studies have focused on the indirect effects
that above-ground pests can have on nematodes only after the
nematode has parasitized its host. To our knowledge, no studies
have elucidated the effects of aphids on the composition of plant
root exudates and how these exudates may affect PPN.

Plants secrete a large array of compounds into the rhizosphere
to facilitate interactions with their biotic environment (van Dam
and Bouwmeester, 2016). The presence of certain compounds,
termed hatching factors (Devine et al., 1996), in plant root
exudates have been reported to stimulate the hatch of cyst
nematode eggs from within their protective cysts (Perry, 1997).
Hatching factors appear to alter the permeability of the eggshell
membrane, causing trehalose to leak from the egg and water to
move inward, resulting in rehydration of the J2 and contributing
to the eclosion of the nematode (Perry and Beane, 1989). The
hatching of some cyst nematodes displays a degree of host
specificity, possibly mediated through differences in the structure
of certain hatching factors, such as glycinoeclepin A in soybean
(Glycines max) (Masamune et al., 1982) and solanoeclepin A
in tomato and potato (Solanum lycopersicum and S. tuberosum,
respectively) (Schenk et al., 1999). However, hatching of cyst
nematodes (Heterodera and Globodera spp.) is probably much
more complex than a simple reliance on a specific compound,
as other chemicals such as picloronic acid, sodium thiocyanate,
alpha-solanine, and alpha-chaconine (Byrne et al., 2001) can
also stimulate hatch. In addition, spontaneous hatch for both
Heterodera and Globodera spp. can occur in the absence of a
suitable host crop (Been et al., 1995; Turner and Rowe, 2006). The
compounds required for nematode hatch and the mechanisms
behind eclosion remain poorly characterized. Additionally, the
majority of genes involved in the hatching response has not been
uncovered, however, a G. rostochiensis neprilysin gene (Gro-nep-
1) was identified as the first transcript to be upregulated in eggs
treated with host root exudate (Duceppe et al., 2017).

The compounds that are exuded by plant roots have been
shown to change following attack by above-ground pests and/or
pathogens (Rudrappa et al., 2008; Lakshmanan et al., 2012; Neal
et al., 2012). Here, we investigated plant-mediated interactions
between the generalist aphid Myzus persicae and the potato cyst
nematode Globodera pallida by analyzing root exudates emitted
from the potato crop (Solanum tuberosum cv. Désirée). Only a
few studies have demonstrated the top-down effects of aphids
on nematodes (Kutyniok and Müller, 2012, 2013), however,
these focused on secondary metabolite changes in the plant
caused by the above-ground herbivory. Using a combination of
physiological, biochemical, and molecular techniques, we test
the hypothesis that systemic changes in root exudates of the
potato caused by the presence of M. persicae indirectly affect
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the hatching of G. pallida eggs. We describe the composition of
sugars contained within these exudates following aphid feeding
and investigate the expression response of Gpa-nep-1, to study its
link to hatching activity.

MATERIALS AND METHODS

Maintenance of Plants, Aphids, and
Nematodes
Tuber cuttings of potato (Solanum tuberosum L. cv. Désirée) with
one chit present were planted in 18 cm pots containing a mix of
sand and loam topsoil (50:50). Growth took place in a glasshouse
at 20–22◦C under 16-h/8-h light/dark cycles for a total period
of 3 weeks. Plants were watered every second day. Nymphs of
the peach-potato aphid (Myzus persicae Sulzer) were obtained
from the James Hutton Institute, Invergowrie, Dundee, Scotland.
About 10 aphids, which were asexual clones of a wild population
originally isolated in Scotland, and subsequently maintained on
S. tuberosum in containment (Kasprowicz et al., 2008) were
transported on leaves of S. tuberosum to Leeds in March 2017.
Aphid colonies were maintained on potato plants, grown as
described above, inside a mesh cage in a containment glasshouse.
Cysts of G. pallida were extracted from soil of pure stock cultures
using the Fenwick’s (1940) method and stored dry at 4◦C.

Preparation of Potato Root Exudates
The 11-day-old potato plants grown from chitted tubers in 50:50
sand/loam mix were infested with either 5, 50, 100, or 200
apterous (wingless) aphids 10 days prior to root harvest. No
aphids were released on non-infested control plants. Each set
(four plants per set) of aphid-infested plants and non-infested
control plants was maintained inside a separate mesh cage to
ensure there was no contamination across experiments. Roots of
3-week-old potato plants were excised intact from the bottom of
the plant stem and washed to remove excess soil. Excised roots
were soaked (80 g per liter tap water) in darkness for 24 h at
4◦C. The resulting potato root exudate (PRE) was filter sterilized
(0.22µm) and stored at 4◦C. PRE used in the hatching assays was
combined from whole root systems obtained from four separate
potato plants for each treatment or control.

Sugar Quantification in Root Exudates
Exudates were prepared from four individual root systems to
provide four biological replicates per aphid treatment or control.
The concentrations of glucose and fructose in the root exudates
were quantified colorimetrically at 340 nm using Glucose
(HK) and Fructose assay kits, respectively (Sigma–Aldrich,
United States) according to the manufacturer’s instructions
provided with the kit. Each of the four biological replicate
exudates from the five different treatments was assayed in
technical triplicate to provide a mean concentration per replicate
that was used for subsequent statistical analysis. Water was a
negative control in each assay. Standards provided with the kits
were used to construct calibration curves, to convert absorbance
readings into µg/ml of glucose and fructose.

Hatching Assays
For each of the three experiments batches of five cysts (G. pallida;
10 replicates per treatment) were placed in wells of 12-well
polypropylene plates. One milliliter of PRE from aphid infested
plants, control potato plants or sugar solutions was added to each
well ensuring the cysts were covered. All three cyst experiments
were incubated at 20◦C for the duration of the experiment.
In the first experiment, PRE from aphid-infested plants was
replaced with fresh PRE, and the number of hatched J2s was
counted, every 4 days. After 18 days, the same cysts were
washed and re-incubated in non-infested control PRE. In a
second separate experiment, cysts which had been incubated in
aphid-infested PRE were, after 18 days, washed and re-incubated
in sugar replacement solutions. Sugar replacement solutions
were prepared by adding glucose or fructose to each aphid-
infested PRE to bring the concentrations equivalent to those
found in non-infested control PRE (16.4 µg/ml glucose and
35.0 µg/ml fructose). Counting of hatched J2s for both the first
and second experiment continued until day 28 when emergence
of J2s had significantly declined in all treatments. In a third
experiment,G. pallida cysts were treated with solutions of glucose
(16.4 µg/ml), or fructose (35.0 µg/ml) or a combination of the
two sugars at those concentrations for 28 days to assess the
effect of sugars on G. pallida hatching. Cysts incubated in water
provided a negative control and PRE was used as a positive
control. At the end of each hatching experiment, cysts were
opened and the numbers of unhatched J2s were counted, in order
to express the data as a percentage of total potential hatch.

Analysis of Gpa-nep-1 Gene Expression
Groups of 10 G. pallida cysts (four reps per treatment) were
treated with either root exudates from control or aphid-infested
plants, sugar solutions, or water for 8 days. Total RNA was
prepared using the E.Z.N.A R©. Plant RNA Kit (Omega Biotek,
United States) including a DNase treatment. First-strand cDNA
was synthesized from 500 ng RNA using iScript cDNA Synthesis
Kit (BioRad, United States) following the manufacturer’s
instructions. Quantitative reverse transcriptase (qRT)-PCR
was carried out on the resulting cDNA using SsoAdvancedTM

Universal SYBR R© Green Supermix (BioRad) and a CFX Connect
instrument (BioRad, United States). Expression of G. pallida
neprilysin-1 (GPLIN_000276000) was studied and normalized to
the housekeeping gene Elongation Factor 1-α (Nicot et al., 2005).
Primers Gpnep1F (5′-TCACGGCATCAGACAACATT-3′),
Gpnep1R (5′-CCGTGTCACTTAGCCGATTT-3′), GpEF1aF
(5′-AATGACCCGGCAAAGGAGA-3′), and GPEF1aR (5′-
GTAGCCGGCTGAGATCTGTC-3′) were used for analysis of
G. pallida neprilysin-1 and Elongation Factor 1-α, respectively.
Control reactions contained water instead of template. Each
primer pair had an amplification efficiency of 97–101% and
r2 correlation coefficients for standard curves ranged between
0.94 and 0.99. Primer pair efficiencies were calculated using the
BioRad CFX Manager 3.1 software. Gene expression analysis
was performed on four biological replicates for all treatments
and each reaction was carried out in triplicate. CT values were
determined using the BioRad CFX Manager 3.1 software.
Relative expression between treatments was determined using

Frontiers in Plant Science | www.frontiersin.org 3 September 2018 | Volume 9 | Article 1278

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Hoysted et al. Aphid Infestation Affects Nematode Hatch

the 2−11CT method as described in Livak and Schmittgen
(2001).

Data Analysis
One-way ANOVA and Student-Newman-Keuls (SNK) post hoc
tests were used to determine the significance of differences in
potato root weight, final percentage hatch, sugar content of
root exudates and gene expression data. All data were checked
for normality using the Shapiro–Wilks test prior to statistical
analysis. Pearson’s correlation was used to measure the strength
and direction of the relationship between inhibition of nematode
hatch and size of aphid inoculum. SPSS v24 (IBM Corporation
Armonk, New York, NY, United States) was used for all statistical
analysis.

RESULTS

Increased Inoculum of Myzus persicae

Reduces Below-Ground Tissue in Potato
Plants
There was a significant reduction in both the fresh and dry root
weights of potato plants that had been infested with at least 50
Myzus persicae individuals for 10 days compared to the roots of
non-infested potato plants (Figures 1A,B; P ≤ 0.05). Increasing
inocula of aphids resulted in greater reductions in both fresh and
dry weights of roots (Figures 1A,B; P < 0.05), with a significant
dose-dependent correlation (Pearson’s coefficient of r = −0.727,
P < 0.01).

FIGURE 1 | Effect of Myzus persicae inoculum on the fresh (A) and dry (B)

weight of potato roots (Solanum tuberosum cv. Désirée) 10 dpi. Values are

means ± SEM from at least four replicates with different letters indicating

significant differences between treatments (P < 0.01).

Root Exudate From Aphid-Infested
Potato Plants Induces Diminished
Hatching of Globodera pallida
In this study, we investigated the possible indirect effect that
aphids may have on cyst nematodes via root exudate. Hatching of
G. pallida was significantly reduced when cysts were incubated in
PRE from potato plants infested with > 5 M. persicae compared
to exudates from non-infested control plants (Figures 2A,B;
P < 0.05). There was a significant positive correlation between
the aphid inoculum level and the reduction of G. pallida hatching
over 28 days (Figures 2A,B; Pearson’s correlation r = −0.792,
P < 0.01). Diminished hatching was partially recovered on day 20
after treatment with root exudate from uninfected potato plants,
resulting in a second peak of hatching (Figure 2A). This indicates
that the effect on hatching is reversible, however, hatching was not
fully recovered to PRE control treatment levels (Figure 2B).

Increasing Inoculum of M. persicae

Results in a Decreased Glucose and
Fructose Content in Potato Root
Exudates
Sugars are present in the honeydew of M. persicae implicating
aphids in the translocation of sugars around the host plant
(Hussain et al., 1974), therefore, we analyzed the amounts of

FIGURE 2 | Daily (A) and cumulative (B) Globodera pallida percentage egg

hatch from cysts treated with root exudate from non-infested control and

Myzus persicae infested potato plants (days 0–20). Initial inoculums of 5, 50,

100, and 200 aphids were applied to the leaves of potato plants for 10 days

before collection of exudate. All cysts were treated with root exudate from

non-infested potato plants (control) at day 20–28 (indicated by gray box).

Values are means ± SEM from 10 replicates with five cysts per replicate.
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glucose and fructose present in the control and treatment PREs.
The concentrations of both glucose (Figure 3A) and fructose
(Figure 3B) were significantly reduced in PRE of potato plants
10 dpi with M. persicae at any level of inoculum (P < 0.05).
An increasing number of aphids resulted in a significant dose-
dependent reduction of glucose and fructose in the root exudates
(Pearson’s correlation r = −0.772, P < 0.001 and r = −0.843,
P < 0.001, glucose and fructose, respectively).

Glucose and Fructose Induce Hatching
of G. pallida
In order to test if glucose and fructose directly stimulate
hatching we incubated cysts in glucose and fructose solutions
with concentrations equivalent to those detected in non-infested
PRE. Treatment of G. pallida cysts with glucose and/or fructose
induced egg hatch although peak hatching in sugar solutions
occurred later than when cysts were treated with control PRE
(Figure 4A). Total percentage egg hatch from cysts treated with
sugars was greater than that from cysts treated with water but
not as great as cysts treated with control PRE (Figure 4B;
P < 0.01). Treatment with glucose and fructose combined
resulted in significantly greater hatch than either single sugar but
still significantly less than control PRE (Figure 4; P < 0.01).

Supplementing Root Exudate From
Aphid Infected Potato Plants With
Glucose and Fructose Does Not Rescue
G. pallida Hatch
In order to test whether the reduced hatching rate in aphid-
infested PRE was due to a reduction in fructose and glucose,

FIGURE 3 | Glucose (A) and fructose (B) content in root exudates from

control and Myzus persicae infested potato plants. Values are means ± SEM

at least four replicates with different letters denoting significance (P < 0.05

one-way ANOVA and SNK).

FIGURE 4 | Daily (A) and cumulative (B) Globodera pallida percentage egg

hatch from cysts treated with water, potato root exudate (PRE), 16.4 µg/ml

glucose (Glu), and/or 35.0 µg/ml fructose (Fru). These concentrations reflect

the concentrations detected in PRE. Values are means ± SEM from 10

replicates with five cysts per replicate.

we supplemented those exudates with sufficient sugars to restore
the concentrations found in non-infested PRE and used this as
the replacement exudate at day 20. However, the reduced hatch
rates were not rescued by supplementation of exudates with
glucose and fructose, nor was total hatch significantly different
(Figures 5A,B).

Induced Expression of Gpa-nep-1 Varies
in Response to Hatching Stimulants
A Globodera neprilysin gene has been detected as the first
transcript to be upregulated in eggs treated with host root
exudate (Duceppe et al., 2017), therefore we tested the expression
of Gpa-nep-1 in G. pallida eggs that had been incubated in
non-infested control and aphid-infested PRE. There was a
significant increase in the expression of Gpa-nep-1 in unhatched
G. pallida eggs 8 days post incubation in root exudates from
non-infested control plants relative to eggs incubated in water
(Figure 6A). Root exudates from aphid-infested potato plants
significantly increased the expression of Gpa-nep-1 in eggs
but to a lower degree than non-infested control treatments
(P < 0.05). There was also a significant increase in the
expression of Gpa-nep-1 in G. pallida eggs 8 days post
incubation in glucose and/or fructose solutions relative to eggs
in water (P < 0.01) (Figure 6B). Upregulation of Gpa-nep-1
in response to the sugars was not as large as in eggs treated
with PRE.
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FIGURE 5 | Daily (A) and cumulative (B) Globodera pallida percentage egg

hatch from cysts treated with root exudate from control and M. persicae

infested potato plants (days 0–20). Initial inoculums of 5, 50, 100, and 200

aphids were applied to the leaves of potato plants for 10 days before

collection of exudate. Root exudate from infested plants was supplemented

with glucose and fructose for treatments on days 20–28 (gray box) to equate

to concentrations found in root exudate from non-infested potato plants (16.4

and 35.0 µg/ml, respectively). Values are means ± SEM from 10 replicates

with five cysts per replicate.

DISCUSSION

In this work, we demonstrate how the physiological response
of the potato plant to attack by an above-ground herbivore,
Myzus persicae can indirectly influence hatching of the soil-
borne PPN, Globodera pallida through systemic changes in root
exudates.

Below-Ground Plant Responses to Aphid
Infestation
The top-down effect of shoot herbivory on below-ground
biomass is relatively undescribed compared to the more direct
effects of root herbivores (Masters et al., 1993; Bardgett et al.,
1998; Wu et al., 1999; Soler et al., 2005; Van Dam et al.,
2005; Gratwick, 2012; McKenzie et al., 2016). We found that
the root mass of potato plants was reduced in the presence
of increasing inocula of Myzus persicae (Figure 1). Above-
ground foliar herbivory may affect the roots, and therefore soil
biotic communities by altering root carbon allocation and/or
patterns of root exudation (Bardgett et al., 1998). Annuals,
such as potato, do not store a high proportion of primary
productivity in the root system and are therefore more likely
to divert the products to the shoot to maintain foliar growth

upon herbivory, thereby decreasing biomass of the root system
(Mooney, 1972).

Aphids feed from plant phloem tissue via their stylets (Dixon
and Kindlmann, 1998) by removing water, ions, sucrose, and free
amino acids, which are major sources of carbon and nitrogen
and vital for plant growth (Girousse et al., 2005). Aphids have
been implicated in the translocation of sugars through their
host plant (Hussain et al., 1974). Translocation of substances
can occur from root to shoot and vice versa. A proteinaceous
salivary sheath is released from the aphid stylet during feeding
and can move long distances throughout the plant, causing
deleterious effects (Madhusudhan and Miles, 1998; Miles, 1999;
Burd, 2002). Pea aphid (Acyrthosiphon pisum) feeding on alfalfa
stems strongly reduces carbon flux and initiates translocation of
amino acids from roots, leaves, and sink tissues (Girousse et al.,
2005). This translocation of assimilates from the roots has an
effect of decreasing the root C:N ratio, thereby suggesting that
plants allocate most productivity into regrowth of foliar tissues
rather than root (Seastedt et al., 1988).

Plant-Parasitic Nematode Responses to
Root Exudation
The shift in root assimilates can modulate root exudation and
can affect soil pathogens, such as rhizobacteria (Bardgett et al.,
1998; Kim et al., 2016). Root exudates have traditionally been
grouped into low- (amino acids, sugars, phenolics) and high
(mucilage and proteins) molecular weight compounds. However,
the complexity and chemical composition of root exudates from
diverse plant species is unknown (Walker et al., 2003). Our
results show that root exudates from aphid-colonized plants
negatively affected nematode egg hatch, the initial stage of the
life cycle, compared to exudates from non-infested control plants.
Wounding of plants has been reported to elicit a defense response
in roots (Savatin et al., 2014), however, all root exudates used
in this study were prepared in the same way therefore the
differences we observed between exudates reflect only the aphid
infestations of the plants. Inhibition of hatch was positively
correlated with size of aphid inoculum. This did not merely
reflect the lower root mass of the aphid infested plants, which was
taken into account during preparation of the exudate, suggesting
that the composition of PRE may be indirectly changed as a
result of the aphid feeding, in a dose-dependent manner. Aphid
infestation has previously been reported to result in reduced
infestation of Arabidopsis roots by pre-hatched J2s (Kutyniok
and Müller, 2012). Compounds exuded by plant roots are
known to stimulate the hatch of various cyst nematodes as
well as affect stylet thrusting, attraction and transcription in
other endoparasitic nematodes such as Meloidogyne incognita
(Perry and Beane, 1989; Devine et al., 1996; Teillet et al.,
2013).

Effect of Aphid-Infestation on Potato
Root Exudate Composition
Simple sugars are known to attract some nematode species and
induce their stylet activity but this is not the case for G. pallida,
possibly due to its selective host nature (Kamilova et al., 2006;
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FIGURE 6 | Expression of a neprilysin gene (Gpa-nep-1) by RT-qPCR in five Globodera pallida cysts treated or 8 days with water or (A) root exudate from potato

plants inoculated with 0, 5, 50, 100, or 200 Myzus persicae. (B) 16.4 µg/ml glucose (Glu) and/or 35.0 µg/ml fructose (Fru). These concentrations reflect the

concentrations detected in non-infested potato root exudate. Expression was normalized to Elongation Factor 1-α and presented relative to expression in cysts

treated with water. Values are means ± SEM from four replicates with five cysts per replicate. Letters denote significant differences between treatments (P < 0.05).

Warnock et al., 2016). Root exudates from aphid-infested
plants had a reduced concentration of glucose and fructose,
but an active role of sugars in stimulating nematode hatch
has not been previously described. Our study found that both
glucose and fructose, at concentrations present in our PREs,
were sufficient to induce hatching of G. pallida. The effect
of sugars on hatching also correlated with an increase in
Gpa-nep-1 transcript within the eggs. In a previous study, a
role in hatching has been proposed for this gene as it is
the first Globodera transcript to be upregulated post-treatment
with root exudates from host plants (Duceppe et al., 2017).
This study reinforces that proposed link as it correlates the
hatching ability of the exudate with expression levels of the
gene.

The hatching stimulation of glucose and fructose and their
effects on Gpa-nep-1 expression infer hatching of Globodera
in exudates from non-host plants, as previously observed for
G. ellingtonae (Zasada et al., 2013). The variance of egg hatch
between host root exudates suggests varying concentrations of
hatching stimuli or hatching inhibitors. Confirming either of
these factors could direct a new pathway for manipulation of
exudates to protect plants from nematode attack, not only for
Globodera spp., but also for other PPN.

Effect of Aphid-Infestation on the
Hatching of a Soil Borne Pathogen
Diminished hatching of G. pallida was partially recovered after
treatment with root exudates from uninfested potato plants,
indicating that the effect is reversible but cannot be fully
recovered. The addition of sugars to exudates from aphid-
infested plants did not increase their hatch stimulation. This
suggests that as well as altering the sugar composition of
exudant, aphid feeding may reduce the concentration of hatching
stimuli and/or induce exudation of a factor/factors that can

inhibit hatching. Exudates from control plants may reverse
the effects of this compound, although not completely in
some eggs, while sugars do not. Aphid feeding is known
to induce systemic translocation and increased production
of defense compounds, such as polyacetylenes (Wu et al.,
1999), which can initiate defense pathways, such as the
phytoalexin response (Flores et al., 1988) and play a role in
resistance to nematodes (Veech, 1982). Additionally, genetic
variation between individuals within a cyst could rationalize
the portion of eggs that do not react to the hatching
stimulant and are more susceptible to the inhibitory compound.
Genetic variation is known to occur between individuals of
G. pallida within a population (Eves-van den Akker et al.,
2014) and could regulate the timeframe in which individual
eggs hatch post-treatment with root exudate and in response
to sugars. It would be of interest to determine variable loci,
possibly Gpa-nep-1, in eggs with differential hatch under each
treatment.

CONCLUSION

Our data reveal the systemic effects of aphid colonization on
potato plants and how the compositional shift of root exudate
can negatively impact the hatch and gene transcription of
the potato cyst nematode G. pallida. We have determined for
the first time that the sugars fructose and glucose, present
in root exudate, can induce hatching of a cyst nematode
and we suggest the presence of an unidentified compound
that may inhibit the hatching stimulus. This insight will
assist efforts to establish what determines host status of a
plant and underpin the production of plants that do not
exude hatch-inducing compounds. Although G. pallida infects
the host plant soon after roots emerge, while M. persicae
colonize the plant once there is sufficient biomass above-ground
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(Emden, 1969), knowledge gained from the current study
will be useful to inform management strategy for PPN,
such as the beet and soybean cyst nematodes that can
complete more than one generation in a cropping season
(Alston and Schmitt, 1988).
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