
API Design Challenges for Open Router Platforms on
Proprietary Hardware

Jeffrey C. Mogul, Praveen Yalagandula, Jean Tourrilhes, Rick McGeer,
Sujata Banerjee, Tim Connors, Puneet Sharma

HP Labs, Palo Alto
{Jeff.Mogul,Praveen.Yalagandula,Jean.Tourrilhes,Rick.McGeer,Sujata.Banerjee,Tim.Connors,Puneet.Sharma}@hp.com

ABSTRACT

Most switch vendors have launched “open” platform de-

signs for routers and switches, allowing code from cus-

tomers or third-party vendors to run on their proprietary

hardware. An open platform needs a programming in-

terface, to provide switchlets sufficient access to plat-

form features without exposing too much detail. We dis-

cuss the design of an abstraction layer and API designed

to support portability between vendor platforms, isola-

tion between switchlets and both the platform and other

switchlets, high performance, and programming simplic-

ity. The API would also support resource-management

abstractions; for example, to allow policy-based alloca-

tion of TCAM entries among multiple switchlets.

1 INTRODUCTION

Traditionally, router and switch1 platforms have either

been commodity platforms running open but slow im-

plementations, or proprietary hardware running closed

but fast implementations. Most router vendors currently

follow the closed-but-fast model, which gives them com-

plete control over system quality, but has become a bar-

rier to innovation.

Recently, major router vendors have initiated pro-

grams to provide open router platforms (ORPs), which

allow third parties to develop software extensions for

proprietary hardware. ORPs potentially support faster

deployment of novel networking features; for example,

one could deploy Stanford’s OpenFlow [13] on an ORP.

While the typical vendor’s approach to an ORP is to

provide a Linux environment running on an x86 proces-

sor as part of the platform, the traditional Linux API is

the wrong abstraction. These boxes are interesting pre-

cisely because they have specialized hardware features

that standard Linux does not (should not) support.

We need an ORP API that offers controlled access

to these hardware features. Ideally, this API would ex-

pose all of the functionality and performance of mod-

1We use “router” and “switch” interchangeably in this paper.

ern router hardware, while maintaining the useful prop-

erties of commodity operating systems: software porta-

bility between vendors, isolation between software com-

ponents, easy management, etc. Such an API would also

be the boundary between open-source upper layers, and

lower layers that the router vendors insist on maintaining

as proprietary trade secrets.

Previously, Handley et al. [7, 8] described XORP, an

eXtensible Open Router Platform. XORP provides a

nice abstraction for building relatively high-performance

routers on top of commodity platforms. While XORP

potentially could run on a proprietary-hardware open

router platform (PHORP), we are not aware of such an

implementation. We also believe that XORP’s abstrac-

tions, such as its Forwarding Engine Abstraction (FEA),

expose too little of the power of modern router hardware,

and do not sufficiently address the scarcity of certain

hardware resources.

In this paper we explore the design requirements for an

“Open Router Proprietary-Hardware Abstraction Layer,”

or Orphal. Orphal’s goals include support for portability

of third-party components between different proprietary

platforms; isolation between these components; expos-

ing as much of the hardware’s functionality as possible;

and managing scarce hardware resources.

Casado et al. [4] argue that software-only routers are

not fast enough, network processors are too complex to

program, and hardware-based designs (including com-

modity forwarding chips) have been too inflexible. They

propose a redesign of hardware-level forwarding mech-

anisms to provide a clean, simple, and flexible interface

between hardware and software. We agree with them that

the best path to flexible and efficient routers depends on

co-evolving router hardware, extensible router software,

and a clean interface between them.

Figure 1 shows how Orphal fits into a PHORP archi-

tecture. Orphal sits above the vendor-proprietary hard-

ware and software, and also above the commodity hard-

ware and operating system, although we see no reason to

modify the standard OS APIs. (The figure shows Linux

as the OS, but it could be any reasonable OS, and per-

haps a virtual-machine layer as well.) In practice, Or-

phal would be implemented as a combination of device



x86

Linux

OpenFlow

Ethane

software
Vendor

hardware
Proprietary

Orphal

. . .. . . Click

XORP

Figure 1: Layering in an open router platform

drivers and user-mode libraries.

One or more switchlet modules run above Orphal. In

the figure, we show two: a Click [10]+XORP stack, and

an OpenFlow [13]+Ethane [3] stack, but these are just

examples. This is not an “active networks” approach; we

expect switchlets to be installed by the router’s owner.

This position paper describes some of the design

challenges for Orphal. We first describe a high-level

overview of a plausible design. Then, for concreteness,

we focus on issues related to one particular kind of spe-

cialized hardware: Ternary Content Addressable Memo-

ries (TCAMs) used for line-rate lookups. This is moti-

vated by our experience porting OpenFlow (see sec. 4).

2 ORPHAL API DESIGN OVERVIEW

Orphal’s goals include resource management; controlled

sharing; isolation; hardware reprogrammability; perfor-

mance; portability; and manageability. Orphal differs

from the API of a general-purpose OS mostly because

Orphal must expose interesting, router-specific hardware

without sacrificing run-time efficiency.

Resource management A high-performance router is

inherently a real-time environment, with potentially

scarce resources both in the commodity computation

platform, and in the proprietary hardware. Routers are

often required to enforce QoS requirements, which can-

not be maintained if the router itself mis-manages its re-

sources. Orphal needs to support resource management,

including allocation of resources among switchlets, con-

sistent with the overall QoS policy and performance con-

straints of the system.

Which resources need to be managed? We can as-

sume that the commodity OS will manage commodity-

hardware resources (CPU, RAM, stable storage), while

Orphal will manage router-specific resources such as

TCAM entries, hash-table entries, buffer space, pro-

grammable ASICs, etc. We also want to manage power-

related resources (powering down idle line cards, per-

port rate scaling, etc.) using Orphal. One challenge

is to define Orphal’s resource management so that it is

portable across a range of router hardware with various

interesting kinds of resources; we believe that this can

be done using vendor-specific switchlets that Orphal in-

vokes via upcalls (see section 2.1).

Controlled sharing Orphal must provide controlled

sharing of abstract resources such as forwarding-table

entries, as well as the real resources (such as hash-table

and TCAM entries) used to implement these abstrac-

tions.

For example, if two switchlets want to control the ac-

tions for packets for a given destination – e.g., a firewall

switchlet and a QoS switchlet – how should Orphal de-

cide which switchlets get that control? If two switch-

lets want to process the same packet, which one gets it

first? We believe that prior work on kernel packet fil-

ters [15, 20] provides some useful models; for example,

Orphal could assign precedence (priority) levels to each

switchlet, and let each switchlet declare whether lower-

precedence switchlets should see the packets it handles.

Isolation One goal of an ORP is to allow composition

of switchlets from different third-party component ven-

dors. While we need not assume that switchlets might

be malicious, the potential remains for unexpected “fea-

ture interactions.” (This is a problem even when all com-

ponents come from the same vendor.) Two switchlets

running on top of Orphal should not accidentally inter-

fere with each other, either directly or indirectly. Thus,

the system must prevent switchlets from interfering with

each other’s code and private state. Isolation is usually

accomplished either with a process-like abstraction, or

using a virtual machine abstraction. This choice is likely

to be made by the router vendor, and Orphal should sup-

port either model, as transparently as possible.

Hardware reprogrammability We expect some

router platforms to provide programmable hardware

(not just configurable hardware, such as TCAM tables).

For example, an ASIC in the packet-processing fast

path could support programmability for deep-packet

inspection (DPI) operations [9]; NetFPGA [16] is

another example. Given these programmable features,

should Orphal provide an API allowing switchlets to,

for example, push arbitrary microcode into an ASIC,

or would it be safer to simply provide access to a

platform-defined library of such functions?

Performance Orphal must deal with many

performance-related issues, such as support for multi-

core parallelism in switchlet execution; prioritizing CPU

sharing among switchlets; rate-limiting features of the

platform; etc. We have neither the experience nor the

space to discuss these further.

Portability Orphal must expose the platform’s hard-

ware details enough to support high performance, but

without exposing too much detail: that would compro-

mise portability, and perhaps isolation. This is a difficult

challenge, especially since we lack enough experience to



know what really matters. We describe, in sec. 4, our ini-

tial experiences trying to map OpenFlow’s 10-tuple flow-

description model onto a TCAM that supports 5-tuples.

Manageability Routers must already address many

management issues, such as port and routing-protocol

configuration. The introduction of open router architec-

tures creates a new problem: given a multitude of sepa-

rately developed switchlets, how does the router admin-

istrator create and preserve a stable configuration?

XORP, for example, provides a “router manager pro-

cess” (rtmgr) [19] to handle some of these issues. Sup-

port for proprietary hardware probably complicates this

task, because the introduction of a new switchlet can cre-

ate new resource conflicts (e.g., not enough TCAM en-

tries) and new feature interactions (competing uses for a

given TCAM entry).

We believe the router manager will have to check that

the system can support the switchlet’s minimal require-

ments (e.g., that there are enough available TCAM en-

tries for the switchlet to function) and to provide rollback

to a previous configuration if a new one causes trouble.

The manager will also have to monitor each switch-

let’s dynamic resource consumption, including special-

ized hardware resources, so that the router administrator

can make informed decisions.

We also expect administrators will want to upgrade a

switchlet to a new version without rebooting the entire

router. This may require Orphal support, especially to

cleanly undo the hardware-related effects of an old (or

failed) switchlet. For example, when a switchlet fails or

is removed, its updates to the TCAM should be reversed.

2.1 What is a switchlet?

A switchlet is simply amodule that runs on top of Orphal,

with its own address space and thread(s) of control.2 Or-

phal will support several switchlet categories, including:

• per-packet switchlets: These are invoked, simi-

larly to Click elements [10], to handle specific pack-

ets. Since high-performance router designs try to

avoid handling most packets in software, per-packet

switchlets are mostly useful for exceptional packets.

• per-flow switchlets: Some router functions, espe-

cially for monitoring and sometimes for firewalling,

are invoked once or a few times per flow. This

is less likely to cause performance problems, al-

though given mean flow lengths in the ballpark of

12 UDP packets to 50 TCP packets [2], such switch-

lets might still be reserved for exceptions.

• control-plane functions: These functions, such

as routing protocols, management protocols, etc.,

2Others have defined “switchlet” in different ways [1, 5, 17], but we

can’t think of a better term.

typically are not directly related to the packet-

forwarding fast path, and so are often handled in

software. XORP provides a useful framework for

these functions.

• optimizer/helper modules: We expect that the pro-

cess of matching higher-level abstractions needed

by switchlets to the lower-level hardware abstrac-

tions will require the use of optimization algo-

rithms. Orphal invokes these via upcalls to opti-

mizer switchlets. This form of policy-mechanism

separation allows third parties to develop improved

versions of these modules.

Optimizer modules can also be used, for example, to

provide a backing store for space-limited hardware

resources. For example, Orphal could manage the

hardware TCAM as a cache for a larger table man-

aged by an optimizer module, in much the same way

that an OS kernel manages a hardware Translation

Buffer as a cache for its page tables.

Additional “helper” switchlets can be used to pro-

vide policy-mechanism separation for functions

such as detecting inter-switchlet conflicts in TCAM

entries.

Orphal needs to balance switchlet portability against

aggressive use of hardware functions that might not be

present on all platforms. Thus, a switchlet can provide

an optional software implementation for a function, to

be used if Orphal cannot provide the necessary hardware

support (either because it isn’t there, or because it is over-

subscribed).

For example, consider a Click module, such as the

existing NetFlow package, that is most naturally imple-

mented in hardware if the hardware is available. The

module author could supply both a hardware-based (e.g.,

NetFPGA) version and a (less efficient) software-based

version, and Orphal could transparently instantiate the

most efficient version possible. (This leaves open the

question of whether Orphal could feasibly change be-

tween versions dynamically; state synchronization and

QoS maintenance might make this difficult.)

2.2 Example of Switchlets

We describe our initial experience implementing Open-

Flow, and how it might be structured as switchlet, in sec.

4. Beyond that, we lack space to give detailed examples

of possible switchlets, but here is a partial list:

• Specialized firewall switchlets could be triggered

by DPI hardware to check unusual flows against se-

curity policies.

• Specialized monitoring switchlets could report on

suspicious patterns of flow creations.

• NAT switchlets might require access to pro-

grammable packet-header rewriting hardware.



• Dynamic VLAN switchlets could implement setup

protocols used to establish VLAN membership.

3 API DESIGN ISSUES

The goal of Orphal is to provide a clean interface

between router-specific programmable hardware, and

switchlets running on general-purpose CPUs within the

router platform. Routers often have a number of inter-

esting hardware features, such as programmable DPI en-

gines, TCAMs for route lookups, and other route-lookup

hardware such as hash tables and programmable header

extractors. Future routers might have additional spe-

cialized hardware, such as programmable packet-header

rewriters.

In this paper we limit our detailed discussion to

TCAMs, since they are widely used for high-speed for-

warding, present some interesting challenges, and are the

focus of our current implementation work (see sec. 4).

3.1 TCAM API and Resource Management

Most high-performance router hardware includes

Ternary Content Addressable Memories (TCAMs).

One can think of a CAM as a table whose rows each

include a tag field to match against; the CAM returns the

matching row (if any). In a TCAM, tag-field entries are

composed not just of binary 1s and 0s, but also “X” or

“don’t care” values. TCAMs thus allow more compact

representations of lookup tables whose tag values can

include wildcards. Routers use TCAMs for functions

such as IP address lookups and firewall lookups, where

these wildcards are common.

While TCAMs are often the preferred solution for

lookup functions, various TCAM parameters are con-

strained by expense (TCAM structures take a lot of

die area) and power consumption (a TCAM lookup

requires all rows to be active, and TCAMs consume

ca. 15W/chip [21].) Thus, TCAMs present some chal-

lenges for an open router platform, and we explore these

as an example of a larger set of challenges that the API

must meet:

• Limited tag-field size: TCAM tag widths are typ-

ically limited, often to ca. 144 bits (enough for

an IP/TCP 5-tuple) [14]. A single TCAM entry

might therefore be insufficient to support a firewall-

entry match in a single lookup, since (especially

with IPv6), too many packet-header bits must be

checked. This can force the hardware to support

multiple lookups per packet. The API must allow

switchlets to express such multi-lookup rules.

• Limited number of rows: TCAMs are typically

limited to a few thousand rows. Thus, the platform

must treat TCAM rows as a scarce resource, to be

allocated among potentially competing switchlets,

and the API must allow switchlets to express re-

source requirements.

• Multiple “owners” for one row: Two different

switchlets might want packets that match the same

TCAM row (e.g., “all TCP packets to port 80”); the

API needs to manage these conflicts. (See sec. 3.4.)

• Multiple matching rows: Because TCAMs sup-

port wildcards, two different rows might match the

same packet. But TCAM-based designs always re-

turn the lowest-index entry that matches the packet.

Two switchlets might create distinct TCAM entries

that either overlap, or where one covers the other;

what should the system do in this case? The API

needs to manage these conflicts, too. (See sec. 3.4.)

• TCAM optimization: Given an abstract set of

matching rules, one can generate an optimized set of

TCAM entries that provide the most compact (and

hence most space- and energy-efficient) representa-

tion [12, 14].

• TCAM update (insertion) costs: TCAM-based

designs generally must trade off efficient lookups

against insertion costs, which can be as high as

O(n) in the number of rows [6]. The API might
need to manage this tradeoff; it might also need

to synchronize between updates and lookups (or

else lookups could yield bad results during up-

dates) [18].

3.2 A typical TCAM-based hardware design

Figure 2 sketches part of an idealized TCAM-based hard-

ware design, to make some of these design challenges

concrete. Each line card would have an instance, possi-

bly serving several ports.

An incoming packet is first processed by a pseudo-

header generator, adding to the real packet header such

fields as a VLAN tag, the ID of the port where the

packet arrived, etc. Assuming that the TCAM is not

wide enough to do a full lookup in one step, the header

extractor manages a multi-stage lookup; it recognizes

certain high-level patterns (e.g., “IPv4 packet” or “IPv6

packet”), extracts the header fields used in each stage

(e.g., first the layer-2 headers, then the layer 3+4 head-

ers), passes these to the TCAM, and decides whether to

do the next lookup stage.

Many routers use one or more hash tables in addition

to the TCAM. Hash tables provide a cheaper mechanism

for doing exact-match lookups, such as “what’s the next

hop for this flow?”, while TCAMs are appropriate for

more complex lookups – especially those including wild-

cards – typical of QoS and firewall (access control list)

functions. For firewall functions, the line card might also

include a port-range classifier, since arbitrary ranges of

port numbers (e.g., “1023–65535”) could consume too

many TCAM entries. Liu [11] described a range classi-



Input port

Input port

Input port

header

Generator

Pseudo−

Sequencer/combiner

Header

Extractor

L3 fields

L3 addrs

L2 fields

L2 addrs

L4 fields

L4 ports

Expanded

headers

Metadata

Metadata

Metadata

Packet

Packet

Packet

Packet

action

P
o

rt−
ran

g
e

TCAM

Hash table

classifier

Figure 2: Idealized TCAM-based lookup path

fier that uses a modest-sized RAM-based lookup table.

Additional sequencer/combiner logic coordinates the

multiple lookup stages and combines partial results to

generate a final result, indicating the action to take with

the packet, such as the next-hop address and the output

switch port.

The TCAM, of course, is a programmable resource,

but potentially so are the other functional blocks

(pseudo-header generator, header extractor, port-range

classifier, hash table, sequencer/combiner).

Unlike a more abstract API such as XORP, Orphal ex-

poses all of these distinct programmable resources, since

they have differing characteristics that could be exploited

by sophisticated switchlets.

3.3 What should the TCAM API expose?

There are many ways to organize TCAMs and the asso-

ciated hardware, and if switchlets are to be portable be-

tween hardware platforms, the API must either hide this

variation, or expose it in a useful way. Given the chal-

lenges listed in section 3.1 (and there are others), perhaps

it is implausible to create an API that provides any gen-

erality across models and vendors. However, we suspect

that by choosing the right level of abstraction for expos-

ing the TCAM hardware, Orphal can meet its goals.

For example, XORP exposes a high-level “forward-

ing engine abstraction” (FEA), but Orphal must expose

a lower-level abstraction if the switchlets are to exploit

specialized hardware features. There are things that can-

not be expressed explicitly at the FEA level – for exam-

ple, that certain rules should be stored in the hash table

instead of the TCAM.

There is a useful API abstraction intermediate between

a raw-hardware “TCAM row” and a high-level “forward-

ing table entry.” Although a TCAM optimizer mod-

ule will need access to the raw row-level version (“put

these bits here”), most switchlets will use a paravirtu-

alized view of the TCAM (PV-TCAM), which will en-

able Orphal to provide the controlled sharing, isolation,

and resource management properties described in section

2. PV-TCAM rows look almost like real TCAM rows,

but with some additional meta-information, and without

a fixed mapping to actual hardware rows.

The TCAM-user API will need to provide certain

functions, including (among many others):

• tcamAddRow(tag, action, ordering): Used to add

a rowwith a given tag value and action, and an intra-

switchlet value to control how rules are ordered.

Returns either an opaque handle for the row, or a

failure indication.

• tcamDeleteRow(handle): does the obvious thing.

• tcamGetRow(handle): returns the corresponding

TCAM entry, including statistics.

• tcamRegisterInterest(handle, callbackFunc-

tion): specifies a switchlet function to be called

with each packet that matches the row; the default

is no callback. This is the way that switchlets can

receive packets and/or discover flows.

• tcamConflictCallback(handle, callbackFunc-

tion): If another, higher-priority switchlet creates a

TCAM row that conflicts with the one associated

with the handle, this callback informs the current

switchlet that the row has been reassigned to the

other switchlet’s purposes. Section 3.4 discusses

conflicts in more detail.

The TCAM-optimizer API will need to provide certain

functions, including (among many others):

• Loading a set of TCAM rows: The optimizer’s

output needs to be loaded into the TCAM; possi-

bly this will require some synchronization so that

packets are not processed when the TCAM is in an

inconsistent state.

• Obtaining the abstract state of the TCAM

database: The optimizer’s input from Orphal will

consist primarily of the union of the TCAM-user

requests, plus some policy settings provided by a

management layer.

• TCAM usage statistics: Typically, TCAMs sup-

port hit counters for each row.

3.4 TCAM row conflicts

Multiple switchlets might try to create conflicting TCAM

rows. Orphal’s approach is to detect these conflicts and

resolve them using an inter-switchlet priority ranking.

(This seems like the simplest approach, but we are ex-

ploring others.) When a low-ranking switchlet tries to



create a new row that conflicts, Orphal simply rejects the

attempt. However, a high-ranking switchlet can create a

row that conflicts with an existing lower-ranking row, in

which case Orphal removes the low-ranking row, inserts

the new one, and informs (via tcamConflictCallback)

the low-ranking switchlet that it has lost the row. Orphal

lets the switchlets figure out what to do in that case.

It is not easy to define what a “conflict” is, and

conflict-checking is an expensive (NP-complete) pro-

cess [12], so checking should not be embedded in Or-

phal per se. Instead, Orphal supports plug-in conflict-

checking implementations using “helper” switchlets.

4 OUR EXPERIENCE WITH OPENFLOW

OpenFlow [13] is a centrally-managed flow-based net-

work where switches are simple forwarding engines that

classify packets into flows and act on them according to

a policy supplied by a central controller. We are port-

ing OpenFlow to a commercial switch, the HP ProCurve

model 5406zl, and here report some of the challenges.

OpenFlow could run entirely in the switch’s software,

but that would not support line-rate forwarding, so we

need to use the TCAM hardware. The controller ex-

pects a flexible flow classifier, so the tricky part is to

match OpenFlow’s flow descriptions (a 10-tuple of phys-

ical ingress port and VLAN IDs; Ethernet source, desti-

nation and type; and the standard IP/TCP 5-tuple) with

what the hardware supports. The challenges include:

• Limited number of TCAM rows: means not all

flows can be classified in hardware. So, we insert a

final wild card entry in the TCAM to divert packets

from other flows to the software stack. We try to

minimize such slow-path packets by keeping busy

flows in the TCAM.

• Limited tag-field size: TCAM widths (e.g., 144

bits) are typically chosen to support lookup on the

IP/TCP 5-tuple (32+32+16+16+8 = 104 bits).
OpenFlow’s 10-tuple, which includes 48-bit MAC

addresses, is too big for such TCAMs. However,

our switch supports multiple TCAM lookups/packet

at line rates, so we support the OpenFlow tuple with

a multi-stage lookup.

When a packet arrives for an unknown flow, the Open-

Flow forwards it to the central controller, which updates

that switch (and perhaps others) with new flow-specific

forwarding rules. Using Orphal, we could implement

OpenFlow as a switchlet that forwards no-match pack-

ets to the controller, and installs controller-supplied re-

sponses into the forwarding table. The controller deals in

10-tuples; we intend to use a helper switchlet to convert

these into patterns that the switch’s TCAM can handle.

This helper could also be used by other switchlets, such

as firewalls.

5 SUMMARY

Open router platforms offer tremendous flexibility, but

exploiting the rich variety of router hardware creates

complexity. Our goal for Orphal is to tame that com-

plexity; we hope to demonstrate working systems in the

near future.

REFERENCES

[1] D. S. Alexander and J. M. Smith. The Architecture of ALIEN. In

Proc. Intl. Working Conf. on Active Networks, pages 1–12, 1999.

[2] M. Arlitt. Personal communication, 2008.

[3] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and

S. Shenker. Ethane: taking control of the enterprise. In Proc.

SIGCOMM, pages 1–12, Aug. 2007.

[4] M. Casado, T. Koponen, D. Moon, and S. Shenker. Rethinking

Packet Forwarding Hardware. In Proc. HotNets, Oct. 2008.

[5] N. da Fonseca, A. Castro, Jr., and A. Rios. A procedure for re-

source allocation in switchlet networks. In Proc. GLOBECOM,

volume 2, pages 1885–1888, Nov. 2002.

[6] B. Gamache, Z. Pfeffer, and S. P. Khatri. A fast ternary CAM

design for IP networking applications. In Proc. ICCCN, pages

434–439, Oct. 2003.

[7] M. Handley, O. Hodson, and E. Kohler. XORP: an open platform

for network research. SIGCOMM CCR, 33(1):53–57, 2003.

[8] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov.

Designing extensible IP router software. In Proc. NSDI, pages

189–202, Boston, MA, 2005.

[9] HP ProCurve. ProVisionT M ASIC: Built for the future. http:

//www.hp.com/rnd/itmgrnews/built_for_future.htm.

[10] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.

The Click Modular Router. TOCS, 18(3):263–297, 2000.

[11] H. Liu. Efficient Mapping of Range Classifier into Ternary-CAM.

In Proc. Hot Interconnects, pages 95–100, Aug. 2002.

[12] R. McGeer and P. Yalagandula. Minimizing Rulesets for TCAM

Implementation. Tech. Rep. HPL-2008-106, HP Labs, 2008.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-

terson, J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling

innovation in campus networks. SIGCOMM CCR, 38(2):69–74,

2008.

[14] C. R. Meiners, A. X. Liu, and E. Torng. Algorithmic Approaches

to Redesigning TCAM-Based Systems. In Proc. SIGMETRICS,

June 2008.

[15] J. Mogul, R. Rashid, and M. Accetta. The packet filter: an ef-

ficient mechanism for user-level network code. In Proc. SOSP,

pages 39–51, 1987.

[16] J. Naous, G. Gibb, S. Bolouki, and N. McKeown. A Program-

ming Model for Reusable Hardware in NetFPGA. In Proc.

PRESTO, Aug. 2008.

[17] J. E. van der Merwe and I. M. Leslie. Switchlets and Dynamic

Virtual ATM Networks. In Proc. 5th IFIP/IEEE Intl. Symp. on

Integrated Network Management, pages 355–368, 1997.

[18] Z. Wang, H. Che, and S. K. Das. CoPTUA: Consistent Policy Ta-

ble Update Algorithm for TCAM without Locking. IEEE Trans.

Comput., 53(12):1602–1614, 2004.

[19] XORP Project. XORP Router Manager Process (rtrmgr) Version

1.4. http://www.xorp.org/releases/1.4/docs/rtrmgr/

rtrmgr.pdf, 2007.

[20] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss. Efficient

packet demultiplexing for multiple endpoints and large messages.

In Proc. USENIX Winter Tech. Conf., pages 153–165, 1994.

[21] F. Zane, G. Narlikar, and A. Basu. Coolcams: power-efficient

TCAMs for forwarding engines. In Proc. INFOCOM, volume 1,

pages 42–52, 2003.

For additional related work, please see an expanded version at http://www.

hpl.hp.com/techreports/2008/HPL-2008-108.html


