
API Design Recommendations for Facilitating Conversion of
Single-user Applications into Collaborative Applications

Author

Lin, Kai, Chen, David, Dromey, Geoff, Xia, Steven, Sun, Chengzheng

Published

2008

Conference Title

2007 INTERNATIONAL CONFERENCE ON COLLABORATIVE COMPUTING: NETWORKING,
APPLICATIONS AND WORKSHARING

DOI

https://doi.org/10.1109/COLCOM.2007.4553849

Copyright Statement

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/
republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

Downloaded from

http://hdl.handle.net/10072/17236

Griffith Research Online

https://research-repository.griffith.edu.au

API Design Recommendations for Facilitating
Conversion of Single-user Applications into

Collaborative Applications

Kai Lin, David Chen, Geoff Dromey
School of Information and Communication Technology

Griffith University
Brisbane, QLD 4111, Australia

{K.Lin, D.Chen, G.Dromey}@griffith.edu.au

Steven Xia, Chengzheng Sun
School of Computer Engineering

Nanyang Technological University
Singapore, 639798

{StevenXia, CZSun}@ntu.edu.sg

Abstract—Recent advancements in collaboration technology have
shown that it is possible to convert existing single-user
applications into real-time collaborative applications without
modifying the source codes of the single-user applications. Such
conversion relies on the API (Application Programming Interface)
provided by the single-user applications. Poorly designed APIs
make such conversion difficult, inefficient, or even impossible.
Until now, it is not well understood what features APIs should
provide to facilitate conversion of single-user applications into
collaborative applications. This paper presents recommendations
of the features single-user application APIs should provide to
facilitate conversion. The results are based on what we have
learnt from converting Microsoft Visio, into real-time
collaborative Visio (CoVisio), and our previous experience in
building CoWord and CoPowerPoint.

Keywords-API recommendations; collaborative system design;
operational transformation

I. INTRODUCTION
With the increasing importance of using computers to

support collaborative work, it is natural to expect existing
single-user computer applications to play an important role in
supporting collaboration. Leveraging single-user commercial
systems for real-time multi-user collaboration has been a
popular research topic for many years [3], [13], [15], [30]. So
far, pioneer researchers have successfully enriched Microsoft
Word and PowerPoint with collaborative functions, without
modifying the source codes of MS Word and PowerPoint [30],
[33]. This is achieved through the use of MS
Word/PowerPoint’s API (Application Programming Interface),
to combine Word/PowerPoint with collaboration features.

APIs allow software developers to access and manipulate
objects in a commercial application without knowing the
implementation details of the application, which makes it
possible to extend single-user commercial systems for multi-
user collaborations. However, these APIs were designed
without the knowledge of supporting collaboration. They may
be unable to intercept and replay operations correctly in
collaborative environments. Moreover, they may define data
and operation models that cannot satisfy the requirements of a
collaborative system. Even if methods could be investigated to

bridge these gaps, APIs determine the complexity of these
methods and required developing effort.

The needs and benefits to use existing single-user
applications for collaboration have long been recognized [12],
[15], [33], so that more and more application developers are
considering how to support collaboration by providing suitable
API functions. This benefits not only the collaborative system
developers, but also the software vendors of commercial
single-user systems, as these APIs may extend existing single-
user commercial systems to multi-user collaborative versions.
However, as single-user API designers are often not experts of
collaborative systems, they may be uncertain about the
requirements of multi-user concurrent systems. Hence, it is
important for collaborative system researchers to provide
recommendations for API design.

This paper presents recommendations for single-user
application’s API design based on the lessons learnt from
developing a collaborative Visio system, called CoVisio, which
enables a group of users to view and edit the same Microsoft
Visio documents at the same time from different sites.
Microsoft Visio is one of the most prevalent commercial
single-user graphic editing systems, which can be used to
create a wide variety of business and technical drawings. It is
desirable to furnish single-user Visio system with multi-user
collaborative functions, so that users can work collaboratively
in groups to improve productivity.

CoVisio uses the API provided by Microsoft Visio to
intercept and replay users’ operations, so it requires no access
or change to Visio’s source codes. Visio API provides a rich set
of graphic manipulation functions for software developers to
manipulate Visio graphic objects in a very fine granularity.
Visio API functions are very comprehensive and powerful,
which makes Visio a suitable vehicle for studying API
requirements.

The recommendations presented in this paper are helpful to
both API designers and collaborative system designers. API
designers can apply these recommendations in API designs to
support collaborations. On the other hand, based on these
recommendations, a collaborative system designer knows what
key issues must be of concern when he/she investigates the API

provided by a commercial system to extend the system with
collaborative functions.

The rest of this article is organized as follows. The next
section introduces existing approaches to leverage single-user
applications for multi-user collaboration, transparent adaptation
strategy and the role of single-user application’s API. The third
section briefly introduces CoVisio. In the fourth section, we
present API design recommendations for single-user
applications, including the requirements for API functions to
intercept and replay operations in concurrent environments and
how to efficiently support data models adaptation. The last
section is the conclusion of this paper.

II.BACKGROUND
Collaborative systems are groupware applications to

support people working together in groups, such as electronic
conferencing/meeting, collaborative CAD and CASE [28], [29].
The needs and benefits to use existing single-user applications
for collaboration have long been recognized. Some approaches
have been proposed to leverage single-user applications for
multi-user collaboration. This section introduces these
approaches, especially, transparent adaptation strategy and the
role of single-user application’s API.

A. Leveraging Single-user Applications for Multi-user
Collaboration

A wide range of early collaboration systems provide
generic application-sharing environments in which any existing
single-user application can be transparently shared by multiple
users in real-time collaborative work. Most of these systems
adopt the centralized architecture, such as Microsoft
NetMeeting, and HP Shared X [10]. In these systems, the
shared application is maintained at a single location, known as
server site or central site. Other collaborating sites are known
as client sites. User input events are forwarded to the server site.
Then the server process running at server site will manipulate
the shared data/documents according to the users’ inputs. After
that, the display graphical output is sent from the central shared
application to client sites. The technique used to transmit and
display graphical output from the central shared application is
called display broadcasting [1].

These systems have many disadvantages. For example,
only one participant can act at one time, which constrains the
system concurrency. Moreover, they typically require higher
network bandwidth to distribute graphical display information,
and they impose strict What You See Is What I See
(WYSIWIS), where the participants see exactly the same view
of the shared application at the same time, which disallows
independent work.

In attempts to deal with problems resulted from the
centralized architecture, some later systems adopt the replicated
architecture in which each collaborating site has an instance of
the shared application. Shared documents are replicated at the
local storage of each collaborating site, so that operations can
be performed at local sites immediately and then propagated to
remote sites. In contrast to the display broadcasting technique
used in centralized systems, these systems adopt the event
broadcasting technique, where the semantics of any local

operation is marshaled into event-messages propagated to
remote sites, so that the operation effects can be replayed and
shown at remote sites.

To support event broadcasting, the semantics of any local
operation must be correctly interpreted. If developers build a
collaborative system from scratch, they define the semantics of
any user operations. This will not be a big problem. However,
for many widely used commercial off-the-shelf single-user
applications whose source codes are not publicly available,
correctly interpreting the semantics of user operations is a
challenge.

One approach has been proposed which derives user-
operations by diffing between document states instead of
translating them from window events [15]. User-operations
result in the state-change of a shared document. This approach
propagates document-state differences caused by the execution
of operations instead of the operations themselves between
different collaborative sites. Document-state-change effects of
concurrent operations are merged then applied to the document
copies replicated at remote sites. This approach has two
advantages, first of all, since it relies on state differences
instead of specific user interfaces and operations that cause the
differences, heterogeneous applications are allowed and there is
no need for the infrastructure to understand every user-
operation.

Moreover, this approach can be applied to text editors
without providing APIs by simulating select/copy/paste events
on the editors and accessing the clipboard. However, this
approach mainly targets at supporting plain text editing
applications. For a graphic editing application, where each
graphic object has a rich set of attributes, detecting and
expressing document-state differences could be complicated.
Moreover, different graphic applications may define different
document formats and different graphic object attributes, which
makes the application of this approach more difficult. Even if
this approach may have the potential to leverage various single-
user applications for collaboration, till now its application is
only in plain text editors.

Another approach adapts the existing single-user API to
meet the data and operational modeling requirements of the
underlying collaboration supporting technique [30], [33]. It
uses APIs provided by single-user applications to intercept and
replay user-operations. Compared with the diffing approach,
this approach interprets the semantics of an operation according
to its direct effects, such as moving/creating/deleting an object,
etc., rather than the document-state differences before and after
the execution of the operation. It relies on the APIs provided by
the single-user applications, but it is a generic solution that will
not be limited by the application domain of a system. Therefore,
CoWord, CoPowerPoint and CoVisio are built based on this
approach.

B. The Transparent Adaptation Approach
The method, adopted to leverage commercial single-user

MS Word/PowerPoint and Visio for multi-user real-time
collaboration, is known as Transparent Adaptation (TA)
approach, which is based on the use of the single-user
applications’ APIs to intercept and replay users’ operations, so

it requires no access or change to the applications’ source codes
(thus being transparent) [30], [33].

A TA based collaborative application is composed of three
components. The first component is a Single-user Application
(SA), i.e., MS Word/PowerPoint or Visio, which provides the
conventional single-user functionalities and interface features.
This component is completely collaboration-unaware. Another
component is Generic Collaboration Engine (GCE), which
provides application-independent collaboration capabilities.
This component is fully collaboration-aware, but completely
unaware of SA. GCE is generic, but SA is not. SAs may define
different data and operation models. Therefore, the third
component, Collaboration Adapter (CA), is implemented to
adapt application-specific SA to generic GCE. CA provides
application dependent collaboration capabilities and is aware of
both the single-user and multi-user collaboration applications.

The interactions between the three components in
processing an editing operation can be illustrated based on the
following simple scenario in a CoVisio application, as shown
in figure 1.

CA

GCE
Constraint

Maintenance
Consistency
Maintenance

CA

GCE
Constraint

Maintenance
Consistency
Maintenance

Internet

Local User

2

1

3 4

5

Figure 1. The interactions between CoVisio components

Suppose a user uses the keyboard and/or mouse to create a
graphic object in a shared Visio document, the following events
shall occur at the local site:

(1) Once the operation is performed on the local
document, the operation semantics is sent to CA by
SA.

(2) CA marshals the operation information into messages
sent to remote sites.

When the messages arrive at a remote site, the following
shall happen:

(3) CA un-marshals the messages and passes the
operation information to GCE.

(4) The operation is processed by GCE for consistency
and constraint maintenance. After that, the processed
operation is sent back to CA.

(5) Suitable SA API functions are invoked by CA to
apply the operation to the shared document replicated
at the site.

C. The Role of Single-user Application’s API
APIs play an important role in TA-based collaborative

applications, as they provide an approach to access and
manipulate objects in single-user applications without knowing
the implementation details of these applications. Two crucial
functions provided by APIs in collaborative applications are
intercepting and replaying operations. For example, once a user
updates the color of object A to red at a site in a CoVisio
application, the operation semantics will be intercepted by
Visio API, and marshaled into a message sent to remote sites.
Once the message arrives at a remote site, it is un-marshaled
and a Visio API function will be invoked to color the replica of
A at the site to red.

On the other hand, not all the APIs provided by single-user
applications can efficiently support collaboration. For instance,
the API provided by a commercial system may define quite
different operation and data models from the ones required by
the GCE component of a collaborative system, which makes
CA component difficult to bridge these gaps. In the worst case,
a badly designed API cannot be applied to intercept and replay
operations correctly in concurrent environments. It is the API
provided by a single-user commercial system that determines
the complexity and workload to transparently leverage the
single-user system for multi-user collaboration.

III. COVISIO
CoVisio is built by extending single-user Microsoft Visio

into a multi-user collaborative application, so that a group of
users can use MS Visio to view and edit the same Visio
documents at the same time from different sites. It is
implemented in the programming language C# based on TA
approach without knowing or modifying Visio source code.
The interface of CoVisio is shown in figure 2.

Figure 2. The CoVisio interface

Compared with CoWord and CoPowerPoint, CoVisio is
new in two aspects. First of all, a type of constraints, formulas,
is defined in Visio to express the attributes of a graphic object
and the relations between different graphic objects. The ability
to describe shapes with formulas opens many possibilities for
making shapes behave in complex and sophisticated ways.
Accordingly, both constraints and consistency are maintained
in CoVisio (Constraint maintenance in concurrent
environments is beyond the scope of this paper). Moreover, the
CA of CoVisio is quite different from the ones used in CoWord
and CoPowerPoint, as it is based on Visio API. Visio API

provides a rich set of graphic manipulation functions for
software developers to manipulate Visio graphic objects in a
very fine granularity. Visio API functions are comprehensive
and powerful, which makes Visio a suitable vehicle for
studying API requirements.

IV. API DESIGN RECOMMENDATIONS FOR SINGLE-USER
APPLICATIONS

APIs enable one application to access and manipulate the
objects in another application without knowing the
implementation details of the latter. They play a very important
role in leveraging single-user commercial applications for
multi-user collaborations, as all the interactions between a
single-user commercial application and other components of a
collaborative system are via API.

From our experience of converting Visio to CoVisio, we
have come to know what aspects of the API provided by Visio
make it simple or difficult to convert to CoVisio. We
summarize our findings into recommendations for API design
in the following subsections.

A. API’s Role in Operation Interception
The two fundamental functions of APIs in collaborative

systems are to intercept local operations and to replay remote
operations. Without knowing the semantics of a user-operation,
a local site cannot send suitable messages to remote sites to
replay the operation there.

There are two types of API can be used to intercept an
operation applied to a specific application, the API provided by
the operating system and the API provided by the application.

To intercept an operation based on the API provided by the
operating system, a program is implemented to intercept any
user keyboard or mouse operation targeting a specific single-
user application. Once such an operation is intercepted, its
semantics is explained according to the keyboard inputs, the
position of the cursor or the states of mouse buttons. Then the
operation is passed to the local application for execution.
Furthermore, its semantics is propagated to remote sites, so that
the operation can be replayed there.

This approach has two advantages. It is a generic method
that can intercept any operation applied to any application.
Moreover, it can intercept operations before they take effects,
which gives a collaborative system a chance to perform some
operations, such as saving the values of some internal variables,
before the execution of a user mouse/keyboard operation.
However, this method has a drawback in that it involves a
complex interpretation process to get the accurate operation
semantics. For example, if a user resizes a shape by a mouse
operation in Visio, he/she may change a lot of graphic
attributes of the shape, such as width, height, geometrical
center and the positions of some vertexes of the shape. It is
hard for the APIs provided by an operating system, rather than
the API provided Visio itself, to tell all these effects. Thus, this
operation-interception method is not suitable for systems that
require fine-granularity object-manipulation, such as graphic
editing systems.

Another method is to interpret the semantics of an operation
applied to an application by the application itself, which is
adopted by CoVisio. User mouse/keyboard operations are
directly inputted to single-user Visio application. To interpret
the effects of user-operations, Collaboration Adapter (CA)
component of CoVisio registers some event handlers in the
single-user Visio application via Visio API. Therefore, when
the events CoVisio interested arise, the single-user Visio
application would automatically inform CA. For example, CA
registers ShapeAdded event handler on each page object, so
that each time a shape is added into a drawing page, CA will
receive the detailed information of where and what a shape is
created. Using this method, operations can be interpreted
according to their effects. For example, no matter users change
the width of an object to w via Visio GUI by mouse/keyboard
operations, or through Visio ShapeSheet window by editing the
formula that constrains the object’s width attribute, the same
event will be sent from Visio to CA.

Moreover, using this method, we can filter unimportant
operations and only concentrate on the operations or operation
effects we are interested (i.e. events triggered by unconcerned
operations will not be handled). For example, a local mouse-
move operation will not be intercepted. However, the local
operations that update graphic attributes of graphic objects
must be replayed at remote sites. As the effect of each
operation applied to an application is explained by the
application itself, this method is more accurate than
interpreting operations based on the API provided by an
operating system.

On the other hand, the above scheme heavily relies on the
APIs provided by the applications, so that these APIs should
satisfy the following requirements:

1) APIs should be able to intercept any operation that should
be replayed at remote sites

If operation semantics is intercepted by event-
generation/handler mechanism, it is obvious that any
interpretable operation should be able to trigger event(s)
defined by the API of a commercial application. However, the
API provided by a commercial application usually only defines
events for some operations that are regarded as important. For
example, the operations that create/delete/update graphic
objects often generate events in a graphic editing application,
but the operations moving the scroll bars to change the views
of a document may not. Accordingly, some operations that
should be replayed at remote sites in a collaborative application
may be unable to be intercepted by a single-user application’s
API. For instance, the operations that move the scroll bars must
be intercepted in a collaborative system, if we want to
implement a radar-view to enable users to know each other
which part of the shared document a user is working on.
However, an operation that moves a scroll bar will not generate
API defined events in many single-user commercial systems. If
an operation will not fire any event defined by the API
provided by a commercial application, we have to intercept it
using a low level API, such as Windows API, which intercepts
operations according to the keyboard inputs, the position of the
cursor or the states of mouse buttons. It is complex and
inaccurate.

2) APIs should provide access to before and after states
To correctly intercept the semantics of an operation in

concurrent environments, APIs should provide access to the
document states both before and after the execution of an
operation. For example, if a user changes the color of a Visio
shape, A, from white to red, an event defined by Visio API will
be triggered, which contains the information about what
attribute (color) of which shape (A) is updated to what value
(red) by the operation. This is often enough for a single-user
application. However, many consistency maintenance
strategies, such as OT, need to know the states of objects both
before and after the executions of operations for performing
consistency maintenance and achieving Any-undo in
concurrent environments. The previous color (white) of A is not
described in the event, so that internal data-structures have to
be maintained in CoVisio to save the previous color of A and
“old” states of other Visio objects. To solve this problem, API
can raise two events for each operation, one before the
operation taken effect, one after. Each event describes the value
of the attribute targeted by the operation. Alternatively, the API
can provide both old and new values of the updated attribute in
the event triggered by the operation, so that only one event is
needed.

3) APIs should be able to distinguish events generated by
different user-operations

As a user mouse/keyboard operation may generate many
events, an API must be able to distinguish events generated by
different user-operations, which is very important when we
consider undoing user-operations at remote sites. For example,
when a user resizes a shape by a mouse operation in Visio,
he/she may change the shape’s width, height, or both of them.
Suppose two events are fired in sequence reporting the width
and height changes of a shape respectively. API must be able to
inform CA whether these events are fired by one user-operation
or two. Without knowing this information, once the width-
change and height-change messages are propagated to a remote
site, that site does not know whether to treat them as the effects
of one user-operation or two. If they are the effects of one user-
operation but treated as two, once a user presses Ctrl+Z to undo
the operation at the remote site, only partial effects of the
operation will be undone.

Visio API is able to distinguish events triggered by
different operations. Visio API defines two events: EnterScope
and ExitScope. The former will be fired when a user
keyboard/mouse operation is applied to Visio user-interface or
CA invokes Visio API BeginUndoScope method to begin the
execution of a remote operation. The latter will be triggered
when a user keyboard/mouse operation applied to Visio user-
interface ends or when CA invokes Visio API EndUndoScope
method to finish the execution of a remote operation. Therefore,
if operations are handled in sequence at each collaborating site
(this is true in most of replicated collaborative systems,
including CoWord, CoPowerPoint and CoVisio, for
consistency maintenance), all the events generated between a
pair of EnterScope and ExitScope events are triggered by a
single user-operation.

4) APIs should be able to distinguish between events
generated by Do and Undo/Redo operations

An operation may generate many events. On the other hand,
the same event can be generated by different operations. In a
collaborative system, it is very important to distinguish
between a Do-operation and an Undo/Redo-operation, a local
operation and a remote operation. For example, suppose the
color of a Visio object, A, is red initially. User-1 changes the
color of A to black. Then user-2 changes the color of A back to
red again. Once CA obtains the event reporting the effect of
user-2’s operation (i.e. A is colored to red), CA must also be
informed whether it is the effect of a newly executed Do-
operation (i.e. user-2 executes another operation which colors A
to red), or just the result of an Undo-operation (i.e. user-2
undoes user-1’s operation that colors A to black). This makes
difference when anyone of the users undoes an operation. In
the former condition, the color of A will be changed to black
again. However, A will remain in red in the latter case.
Therefore, once an operation is executed, API will not only
inform CA the effect of the operation but also indicate whether
it is a Do or an Undo/Redo operation. CA will propagate this
information to remote sites so that suitable API functions can
be invoked to replay the operation there.

Visio API is able to distinguish between the effects of a Do-
operation and an Undo/Redo-operation. Visio application
object has an IsUndoingOrRedoing property, which determines
whether the current event handler is being called as a result of
an Undo or Redo action in the application.

5) APIs should provide ways to distinguish between events
resulting from user actions and those resulting from other API
manipulations

Once an operation is propagated to a remote site, an API
function will be invoked to replay the operation at the site. As
the execution of the API function may change the attribute of a
graphic object, or create/delete a graphic object, the API
function may also trigger the application-defined events.

Both local operations, executed by the local user, and
remote operations, replayed at a site by invoking API functions,
trigger events, but each collaborating site should only
propagate operations generated locally to remote sites. It is
undesirable to propagate remotely generated operations, as it
may result in cyclic operation propagations. Thus, APIs must
be able to distinguish events generated by local and remote
operations. Without this information, a CA does not know
whether or not to propagate the effect of an operation,
intercepted by Visio API, to remote sites.

Visio API provides functions to identify operations that fire
Visio API defined events. Accordingly, we can use these
functions to distinguish events generated by local users and
events generated by API function invocations, which replays
remote operations in CoVisio applications. To determine
whether events CA received are triggered by remote operations,
CoVisio uses the BeginUndoScope and EndUndoScope
methods to wrap each remote operation. For example, CA will
invoke the following Visio API method to begin the execution
of a remote operation:
scopeID=visioApplication.BeginUndoScope(
“remote”);

VisioApplication is a Visio application object. This method-
invocation starts a transaction with a unique scope ID for an
instance of Microsoft Visio. Accordingly, in event handlers,
CoVisio uses the IsInScope property of the Visio application
object to test whether the scope ID returned by the
BeginUndoScope method is part of the current context. If so,
the event is fired by replaying a remote operation, so that it will
not be marshaled and sent to remote sites, as shown below:
if (visioApplication.get_IsInScope(scopeID))
{ System.Diagnostics.Debug.WriteLine(“Event
generated by a remote operation”); }

B. API’s Role in Replaying Remote Operations
Replaying operations at remote sites is another important

role that APIs play in collaborative systems. In CoVisio,
whatever changes a user makes to the shared Visio document
via Visio user-interface at a site will be replayed on all other
copies of the same document replicated at other collaborating
sites. For example, once a user colors object A to red at a site,
the semantics of the operation will be intercepted and
marshaled into messages sent to remote sites, where the
operation will be replayed to color the other replicas of A to red.

To intercept the semantics of an operation in an application,
we may rely on the API provided by the operating system, if
the operation cannot be intercepted by the API provided by the
application. However, to replay a remote operation that
manipulates an object in a commercial application, we usually
can only rely on the application’s API.

To replay remote operations at a site, APIs should provide
functions to software developers so that whatever users can do
on the user interface of an application the software developers
can do by program. Obviously, if Visio API cannot provide the
function to change the color of a shape, once a user changes the
color of a shape in Visio GUI, the user-operation cannot be
replayed at remote sites by API function invocation.

Moreover, APIs should be able to replay operations with
multiple effects. For example, when a user resizes a shape by
mouse operation in Visio, he/she may change both width and
height of the shape. Once the effects of the user-operation are
propagated to a remote site, Visio API functions will be
invoked to change both the width and height of the shape
replicated at the remote site. Here, it is very important to
associate these effects with a single user-operation. Otherwise,
when a user undoes the operation at the remote site, only partial
effect of the original operation will be undone.

Visio API supports replaying operations with multiple
effects. As introduced previously, Visio API provides
BeginUndoScope and EndUndoScope methods to wrap multi-
effect operations. Method BeginUndoScope starts a transaction
and EndUndoScope ends a transaction. By replaying all the
effects of a remote operation in the between of a pair of
BeginUndoScope and EndUndoScope method-invocations,
CoVisio ensures a multi-effect operation be replayed and
undone/redone atomically at remote sites.

Two kinds of operations may be replayed at remote sites in
a collaborative application, Do-operations and Undo/Redo-
operations. Undo/Redo schemes are quite different between

single-user and collaborative applications. Almost all
commercial single-user systems only support undoing/redoing
operations in sequence. For example, if the execution of
operation O2 follows O1, O1 cannot be undone before O2 is
undone. On the other hand, most of collaborative systems
support undoing/redoing operations in arbitrary order. For
instance, suppose only operation O1 has been executed
(completed at all the collaborating sites) in a collaborative
system when two users concurrently execute operations at two
sites. One is from site-1 to undo O1, the other from site-2 to
execute operation O2. When the operation undoing O1 arrives at
site-2, O2 has been executed there (i.e. O1 is followed by O2 at
site-2). If operations can only be undone in sequence, the
operation undoing O1 cannot be executed at site-2. To enable
both Do and Undo/Redo operations be replayed at remote sites,
a collaborative system should be able to undo/redo operations
in any order at any collaborating site.

As nowadays APIs provided by single-user commercial
systems only support sequential Undo/Redo, developers may
encounter problems when they implement Undo/Redo
functions in a collaborative system based on the Undo/Redo
API provided by a single-user commercial system. For example,
in the above scenario, when the operation undoing O1 arrives at
site-2, it cannot be replayed by invoking any API Undo
function, as O2 has not been undone at site-2. One solution is to
undo O2 first then O1. However, we cannot restore the effect of
O2 after undo O1 by invoking API Redo function. To redo O2,
we have to redo O1 first, as both Undo and Redo should be
performed in sequence. Another solution is to do a new
operation which has the same effect as undoing O1 at site-2.
For example, suppose that O1 is to change the color of an
object from red to white. Rather than undoing O1 at site-2, we
can invoke API function to execute a new operation that
updates the color of the same object to red (i.e. reversing the
effect of O1). This solution also has serious problems. Only two
operations, O1 and O2, are executed and O1 is undone. If one
user presses Ctrl+Z to undo the other operation, the document
should return to its initial state. However, as an Undo is
achieved at a remote site by doing a new operation, pressing
Ctrl+Z will not bring the document back to its initial state at the
remote site.

Visio Undo manager maintains Undo and Redo stacks.
When a user executes an operation, the operation is put on the
top of the Undo stack automatically by Visio Undo manager.
When a user clicks Undo in Visio menu, the Visio Undo
manager removes the most recently added operation from the
Undo stack, and puts it on the top of Redo stack. Then the
effect of the operation is undone automatically. When a user
clicks Redo in Visio menu, the reversed procedure is
preformed, an operation being moved from Redo stack to Undo
stack. As Visio Undo/Redo API only allows developers to
manipulate the operations on the top of Undo and Redo stacks,
instead of moving any operations between Undo and Redo
stacks, Visio API does not support undoing/redoing operations
in arbitrary order. Accordingly, CoVisio has to abolish Visio’s
Undo/Redo mechanism and implement its own Undo/Redo
scheme

To undo/redo operations in arbitrary order, API provided by
operating system is adopted in CoVisio, so that any user

undo/redo operation is intercepted before being applied to the
application. Then, Operational Transformation (OT) Any-undo
scheme is used to generate an operation whose execution on
the current document state will achieve the correct undo/redo
effect. After that, Visio API functions will be invoked to
execute the operation. In a word, with TA approach, it is the
CA and GCE’s responsibility to support undo/redo operations
in arbitrary order. It does not rely on the SA’s undo/redo API
function. Please refer to [27] to find the detailed information
for undoing/redoing operations in arbitrary order in
collaborative systems.

C. Supporting Data Models Adaptation
It is common that the data and operation models defined by

a commercial system cannot match the models required by a
Generic Collaboration Engine (GCE). Accordingly,
Collaboration Adapter (CA) is implemented to bridge these
gaps. It is obvious that the more dissimilar the models the more
complex the CA component.

One general difference between the data models defined by
a single-user commercial system and a GCE is the way to
address objects. In an object-oriented single-user application,
such as Microsoft Visio, all the objects are addressed and
accessed according to their object-references. Moreover, an
object is often associated with a unique ID/name. The reference
of an object can be obtained according to a unique object
ID/name. Both object IDs/names and references have effects at
most in the scope of a single-user application, so that they
cannot address the copies of an object replicated at remote sites.
On the other hand, a collaborative system should be able to
address editable objects in the scope of a multi-user application,
which may span several collaborating sites.

1) Supporting Global Object ID (GOID)
One well-known method adopted in collaborative systems

to address objects globally is to associate the same Global
Object ID (GOID) with all the replicas of the same object. For
example, in a collaborative graphic editing system, when a new
graphic object (not a replica of an existing object) is created, it
is assigned with a GOID, which is the combination of the ID of
the site the object generated from and the ID of the operation
that creates that object. Then the message describing the object-
generation operation will be propagated to remote sites. The
GOID of the newly generated object is contained in the
message. Once the message arrives at a remote site, the
operation is replayed there, so that a replica of the object will
be created at the remote site. Moreover, the same GOID will be
used to address the replica of the object at the remote site as
well. Therefore, all the replicas of the same object have the
same GOID, which will not be affected by the creation and
deletion of any other objects.

There are two advantages of the GOID scheme. First of all,
as this method associates all the replicas of the same object
with the same GOID, the GOID of an object at a site can be
used directly to address the replicas of the object at remote sites.
Moreover, it does not require editable objects be organized in
any specific data structure. However, this method is not
suitable for text editing systems, where characters are often
identified according to their positions in a linear address space,

as associating each copy of each character in a shared text
document with a GOID is not efficient.

It is desirable that the object-accessing method provided by
an API can directly match the requirement of a collaborative
system, so that less work is needed to adapt Single-user
Application (SA) to Generic Collaboration Engine (GCE) of a
collaborative system. GOID is a well-known method adopted
in collaborative systems, so that it is desirable that APIs
provided by single-user commercial systems can provide
methods to support GOID.

Visio API provides functions that can be extended to
support GOID in concurrent environments. In addition to ID,
each Visio object is also associated with a Unique ID (UID)
(Visio requires that the UID of an object must be unique within
the scope of a document, while the ID of a shape is unique only
within the scope of a drawing page). Moreover, Visio also
provides API functions for users to set UID of an object or to
access an object according to its UID (A Visio object ID is
read-only which is assigned by Visio automatically). If we
associate the same value with the UIDs of all the replicas of the
same object in a CoVisio application, an UID can be regarded
as a GOID.

2) Supporting eXtended OT Data Model (XOTDM)
To facilitate consistency maintenance in collaborative

systems, many strategies have defined their own sophisticated
object-addressing schemes. It is desirable that APIs provided
by commercial systems can also support some widely applied
strategies.

Operational Transformation (OT) is an innovative and well-
known consistency maintenance strategy that can be adopted in
both collaborative text and graphic editing systems. The basic
idea of OT is to transform (or adjust) the parameters of
operations according to the effects of previously executed
concurrent operations so that the transformed operations can
achieve the correct effects and maintain document consistency
[27], [28].

To apply OT in a wide variety of commercial applications,
CoWord/CoPowerPoint proposed an eXtended OT Data Model
(XOTDM), where editable objects are grouped into tree-
structured hierarchical domains and the objects in the same
domain are organized in a linear address space [30]. OT is
implemented in CoVisio for consistency maintenance.
Accordingly, CoVisio organizes Visio objects in different
domains based on Visio object model. For example, each Visio
application, document, or page can be regarded as a domain. A
Visio application contains many documents, a document
containing many drawing pages, and a page contains many
shapes. CoVisio addresses objects in the same domain
according to their positions in a linear address space. For
instance, objects in the same drawing page are addressed
according to their positions in the same Z-axis. Accordingly, a
vector is used to identify a CoVisio object. For example, a
vector, vp = [(“application”, 1), (“document”, 2), (“page”, 3)],
refers to the graphic object which has a Z-order value “3” in the
2nd “page” of “document” “1” of a Visio “application”.

XOTDM is a generic data model that can be applied to both
collaborative text and graphic editing applications. However,

not all applications provide API functions supporting XOTDM.
For example, in CoPowerPoint, graphic objects in the same
drawing area are identified according to their Z-order values.
Fortunately, Microsoft PowerPoint provides API for users to
access objects according to their positions in the Z-order stack.
Therefore, OT’s object-addressing scheme can be directly
supported by PowerPoint API. On the other hand, Visio API
only provides functions to access objects using object-
references, so that a Visio shape cannot be addressed according
to its Z-order value in a drawing page. As Visio does not
provide functions to access an object according to its position
in a linear address space, XOTDM cannot be supported directly
by Visio API.

Dnn

……

D22

D11

LinkObject
Ref

Documen
t No.

Document Table

Dnn

……

D22

D11

LinkObject
Ref

Documen
t No.

Document Table

Pnn

……

P22

P11

LinkObject
Ref

Page No.

Page Table

Pnn

……

P22

P11

LinkObject
Ref

Page No.

Page Table

Snn

……

S22

S11

LinkObject
Ref

Z-order
Value

Shape Table

Snn

……

S22

S11

LinkObject
Ref

Z-order
Value

Shape Table

Pnn

……

P22

P11

LinkObject
Ref

Page No.

Page Table

Pnn

……

P22

P11

LinkObject
Ref

Page No.

Page Table

Snn

……

S22

S11

LinkObject
Ref

Z-order
Value

Shape Table

Snn

……

S22

S11

LinkObject
Ref

Z-order
Value

Shape Table

Figure 3. Layered tables for CoVisio object-IDs and Visio object-references

mapping

To solve this problem, CoVisio maintains a set of layered
tables to map between CoVisio shapes’ hierarchical IDs (vector)
and Visio object references, as shown in figure 3. Tables in
different levels map between Visio object-references and
CoVisio object-IDs in different domains: The first level tables
are to map document-numbers and document-references, the
second level tables to map page-numbers and page-references,
the last level tables to map shapes’ Z-order-values and shape-
references. All of these tables have the same structure. Each
table entry contains three fields: the position of an object in a
linear space, the object’s reference, and the link to the table
mapping references and IDs of all the objects in the domain
represented by the object. For example, in a CoVisio
application, OT component uses vector, vp = [(“application”,
1), (“document”, 2), (“page”, 3)] to identify the graphic object
which has a Z-order value “3” in the 2nd “page” of “document”
“1” of a Visio “application”. Once this hierarchical CoVisio
object ID is passed to CA, CA uses “1” to index into
document-table of the application. Following the link field of
the document-table entry, CA can find the page-table that maps
between CoVisio page-numbers and Visio page-references of
all the pages in document “1”. Then CA uses “2” to index into
the page-table, and from the link field of the entry it can find
the shape-table that maps between the CoVisio shapes’ Z-order
values and Visio object-references of all the Visio shapes in the
drawing page “2” of document “1”. Accordingly, CA uses “3”
to index into the shape-table. From the object-reference field of

the entry, it can obtain the Visio object-reference of the shape
that has a Z-order value “3” in that drawing page. This object-
reference will be passed to Visio API functions to access that
Visio object.

Maintaining the layered tables, CA component of CoVisio
is able to map between Visio object references and OT’s
XOTDM object IDs. However, this method consumes extra
storage space and CPU time. So why was the GOID scheme is
not adopted in CoVisio? If GOID is adopted, OT, which
requires XOTDM, cannot be applied. Devising and
implementing a new consistency maintenance strategy could be
much more complicated than maintaining some internal data-
structures to bridge the gaps between OT and Visio data
models. Moreover, there are other advantages of applying OT
in collaborative graph editing systems, which can be found in
[30]. Obviously, if the API provided by a commercial
application organizes objects based on XOTDM, which is a
generic data model and is able to address objects in both text
and graphic editing systems, leveraging the commercial system
for multi-user collaboration can be more efficient.

V. CONCLUSION
With the increasing importance of using computers to

support collaborative work, it is desirable to leverage
commercial single-user systems for multi-user collaboration.
APIs enable software developers to access and manipulate
objects in a commercial application without knowing the
implementation details of the application, which makes it
possible for collaborative system developers to extend single-
user commercial systems for multi-user collaboration. However,
APIs provided by most of commercial systems are based on
single-user applications. They may be unable to intercept and
replay operations correctly in collaborative environments.
Moreover, they may define application-specific data and
operation models that cannot satisfy the requirements of a
collaboration system. It is the API provided by a single-user
commercial system that determines the complexity and
workload to transparently leverage the single-user system for
multi-user collaboration.

In this paper, we provided API design recommendations for
single-user applications. We present issues that must be
addressed by API designers to support intercepting and
replaying operations in collaborative systems in detail.
Moreover, we discussed the issues of efficient support for data
models adaptation. These recommendations are obtained from
our lessons learnt from developing CoVisio system. They are
helpful to both API designers and collaborative system
designers. API designers can apply these recommendations in
API designs to support collaboration. On the other hand, based
on these recommendations, a collaborative system designer
knows whether a single-user commercial system can be
transparently extended for collaboration according to its API
functions.

Our API design recommendations are not limited to
leverage single-user commercial systems for multi-user
collaboration. Even system developers building collaborative
systems from scratch, it would be a good approach to separate
the single-user/editor part from collaborative/network parts.

Therefore, the API design recommendations can be used as a
guideline for defining the interactions between the single-user
part and collaborative parts of a concurrent system.

There are other API design-issues that should be addressed
to provide better collaboration support, such as concurrency
control and event propagation, etc. These issues are API
implementation related, which are currently being investigated
and will be reported in our future publications.

Over the last fifteen years, real-time collaborative systems
have moved from being prototypes in laboratories to becoming
usable commercial systems and also freeware. With the
investigation of API design issues, we hope to make real-time
collaboration even much easier to build and use.

REFERENCES
[1] J. Begole, M. Rosson, and C. Shaffer, “Flexible collaboration

transparency: supporting worker independence in replicated application
sharing systems”. ACM Transactions on Computer-Human Interaction,
Vol.6, No. 2, pp. 95–132. Jun. 1999.

[2] J. Begole, R.B. Smith, C.A. Struble, and C.A. Shaffer, “Resource
sharing for replicated synchronous groupware”, IEEE/ACM
Transactions on Networking. Vol. 9, No. 6, pp. 833-843, Dec. 2001.

[3] J.D. Campbell, “Multi-user collaborative visual program development”,
In Proceedings of the IEEE Symposia on Human Centric Computing
Languages and Environments, Arlington, VA, pp. 122-130, 2002.

[4] J. D. Campbell, “Interaction in collaborative computer supported
diagram development”, Computers in Human Behavior Vol. 20, No.2,
pp.289-310, 2004.

[5] J.D. Campbell, “Coordination for multi-person visual program
development”, Journal of Visual Languages and Computing, Vol. 17,
pp.46-77, 2005.

[6] P. Dourish, “Developing a reflective model of collaborative systems”,
ACM Transactions on Computer-Human Interaction, Vol. 2, No.1, Mar.
1995.

[7] P. Dourish, “Consistency guarantees: exploiting application semantics
for consistency management in a collaborative tookit”, In Proceedings of
the ACM Conference on Computer Supported Cooperative Work, ACM,
New York, pp.268-277, 1996.

[8] Ellis, C. A. and Gibbs, S. J. Concurrency control in groupware systems,
In Proceeding of ACM SIGMOD Conference on Management of Data,
(1989), 399-407.

[9] C.A. Ellis, S.J. Gibbs, and G.L. Rein, “Groupware: some issues and
experiences”, CACM, Vol.34, No.1, pp.39-58, Jan. 1991.

[10] D. Garfinkel, B. Welti, and T. Yip, “HP SharedX: A tool for real-time
collaboration”. HP Journal 45(2), pp. 23–36, Apr. 1994.

[11] S. Greenberg, and D. Marwood, “Real time groupware as a distributed
system: concurrency control and its effect on the interface”, In
Proceeding of ACM Conference on Computer Supported Cooperative
Work, pp. 207-217, Nov. 1994.

[12] M.J. Knister, and A. Prakash, “DistEdit: A distributed toolkit for
supporting multiple group editors”, In Proceedings of ACM Conference
on Computer-Supported Cooperative Work, pp.343-355, 1990.

[13] D. Li, and R. Li, “Transparent sharing and interoperation of
heterogeneous single-user applications”, In Proceedings of the ACM
Conference on Computer-Supported Cooperative Work, pp.246-255,
2002.

[14] D. Li, and R. Li, “Preserving operation effects relation in group editors”,
In Proceedings of the ACM Conference on Computer-Supported
Cooperative Work, pp.457-466, 2004.

[15] D. Li, and J. Lu, “Performance & architecture: A lightweight approach
to transparent sharing of familiar single-user editors”, In Proceedings of

the ACM Conference on Computer-Supported Cooperative Work,
pp.139-148, 2006.

[16] D. Li, and J. Patrao, “Demonstrational customization of a shared
whiteboard to support user-defined semantic relationships among
objects”, In Proceedings of the ACM GROUP’01 Conference, Boulder,
Colorado, USA, pp.97-106, 2001.

[17] K. Lin, D. Chen, C. Sun, and R.G. Dromey, “Maintaining constraints in
collaborative graphic systems: the CoGSE approach”, In Proceedings of
the 9th European Conference on Computer- Supported Cooperative
Work (ECSCW05), 2005.

[18] K. Lin, D. Chen, C. Sun, and R.G. Dromey, “Maintaining multi-way
dataflow constraints in collaborative systems”, In Proceedings of the
IEEE 2005 International Conference in Collaborative Computing:
Networking, Applications and Worksharing, San Jose, CA, USA, Dec.
2005.

[19] K. Lin, D. Chen, C. Sun, and R.G. Dromey, “Multi-way dataflow
constraint propagation in real-time collaborative systems”, In
Proceedings of the IEEE 2006 International Conference in
Collaborative Computing: Networking, Applications and Worksharing,
Atlanta, Georgia, USA, Nov. 2006.

[20] A. MacLean, K. Carter, L. Lovstrand, and T. Moran, “User-tailorable
systems: Pressing the issues with buttons”, In Proceedings of ACM
CHI’90 Conference, 1990.

[21] E. Monfroy, and C. Castro, “Basic components for constraint solver co-
operations”, In Proceedings of SAC, 2003.

[22] B.A. Myers, “Graphical techniques in a spreadsheet for specifying user
interfaces”, In Proceedings of ACM CHI'91 Conference on Human
Factors in Computing Systems, User Interface Management Systems,
pp.243-249, 1991.

[23] C. Palmer, and G. Cormak, “Operation transforms for a distributed
shared spreadsheet”, In Proceeding of the ACM Conference on
Computer-Supported Cooperative Work, pp.69-78, 1998.

[24] K. Rodham, and D. Olsen, “Smart telepointers: maintaining telepointer
consistency in the presence of user interface customization”, ACM
Transactions on Graphics, Vol. 13, No. 3, pp.300-370, Jul. 1994.

[25] M. Roseman, and S. Greenberg, “Building real-time groupware with
groupkit, a groupware tookit”, ACM Transactions on Computer-Human
Interaction, Vol. 3, No.1, pp.66-106, Mar. 1996.

[26] S. Sarin, and I. Greif, “Computer-based real-time conferencing systems”,
IEEE Computer, Vol. 18, No. 10, pp.33-45, Oct. 1982.

[27] C. Sun, “Undo as concurrent inverse in group editors”, ACM
Transactions on Computer-human Interaction, Vol. 9, No.4, pp.309-361,
Dec. 2002.

[28] C. Sun, and D. Chen, “Consistency maintenance in real-time
collaborative graphics editing systems”, ACM Transactions on
Computer-Human Interaction, Vol. 9, No.1, pp.1-41, Mar. 2002.

[29] C. Sun, X. Jia, Y. Zhang,Y. Yang, and D. Chen, “Achieving
convergence, causality-preservation, and intention-preservation in real-
time cooperative editing systems”, ACM Transactions on Computer-
human Interaction, Vol. 5, No.1, pp.68-108, Mar. 1998.

[30] C. Sun, Q. Xia, D. Sun, D. Chen, H. Shen, and W. Cai, “Transparent
adaptation of single-user applications for multi-user real-time
collaboration”, ACM Transactions on Computer-Human Interaction
(TOCHI), Vol. 13, No.4, pp.531-582, Dec, 2006.

[31] D. Sun, Q. Xia, C. Sun, and D. Chen, “Operational transformation for
collaborative word processing”, In Proceeding of the ACM Conference
on CSCW, Chicago, USA, Nov. 2004.

[32] N. Wilde, and C. Lewis, “Spreadsheet-based interactive graphics: from
prototype to tool”, In Proceedings of ACM CHI'90 Conference on
Human Factors in Computing Systems, Application Areas, pp.153-159,
1990.

[33] Q. Xia, D. Sun, C. Sun, D. Chen, and H. Shen, “Leveraging single-user
applications for multi-user collaboration: the CoWord approach”, In
Proceeding of the ACM Conference on CSCW, Chicago, USA, pp.162-
171, Nov. 2004.

