
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

API Evolution and Compatibility:
A Data Corpus and Tool Evaluation

Kamil Jezeka Jens Dietrichb

a. Department of Computer Science and Engineering
NTIS – New Technologies for the Information Society
Faculty of Applied Sciences, University of West Bohemia
Pilsen, Czech Republic
kjezek@kiv.zcu.cz

b. School of Engineering and Advanced Technology
Massey University
Palmerston North, New Zealand
J.B.Dietrich@massey.ac.nz

Abstract The development of software components with independent re-
lease cycles is nowadays widely supported by multiple languages and frame-
works. A critical feature of any such platform is to safeguard composition
by ensuring backward compatibility of substituted components. In recent
years, some tooling has been developed to help developers and DevOps
engineers to establish whether components are backward compatible by
means of static analysis. We investigate the state of the art in this space
by benchmarking such tools for Java. For this purpose, we have developed
a compact benchmark data set of less than 200KB. Using this dataset, we
study possible API changes of Java libraries, and whether the tools in-
vestigated can detect them. We find that only a small number of tools
suitable to analyse API evolution exist. Those tools are only infrequently
maintained by small communities. All tools investigated have some short-
comings in that they fail to detect certain API incompatibilities.

Keywords API, source, binary, compatibility, tools, byte-code, Java

1 Introduction

The popularity of platforms such as OSGi [35] and Maven [1] has created new chal-
lenges for software developers. In particular, components deployed as libraries (in
Java, jar files) are pulled from repositories and applications are composed without
compiling code against the very libraries used at runtime.

For instance, when the OSGi dynamic wiring mechanism is used, a bundle re-
quiring a service is resolved against another bundle providing such a service, but the

Kamil Jezek, Jens Dietrich. API Evolution and Compatibility:A Data Corpus and Tool Evaluation.
Licensed under Attribution 4.0 International (CC BY 4.0). In Journal of Object Technology, vol. 16,
no. 4, 2017, pages 2:1–23. doi:10.5381/jot.2017.16.3.a2

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2017.16.3.a2
http://dx.doi.org/10.5381/jot.2017.16.3.a2
http://dx.doi.org/10.5381/jot.2017.16.3.a2

2 · Kamil Jezek, Jens Dietrich

bundle is not necessarily the same that was used for compilation. There are two
abstractions that enable this: the use of version ranges in dependency declarations
enables the use of a different version of a service, and the use of the OSGi service
layer (such as OSGi declarative services) enables the use of another implementation
of a service defined by a Java interface.

In Maven, a similar situation can arise due to the automation of transitive de-
pendency resolution. Here, an application is compiled against the very libraries it is
deployed with. However, if those libraries recursively depend on other libraries, it is
still possible that other library versions are used than the ones used at compile time.
Again, the use of version ranges in dependency declarations makes this possible.

The problem is that this bypasses some of the crucial quality assurance steps
built into standard build and deployment processes, such as automated regression
testing. A common argument made to solve (or often, to ignore) this problem is
to reason about compatibility: if the correctness of an application was established
(e.g., by means of regression testing) with respect to one component, correctness with
respect to another component is inferred based on the compatibility between both
components. There are different reasons to make such assumptions. For instance,
one might assume that all libraries providing a standardised service such as a JDBC
connection used to interact with a relational database are compatible. Another case
is that the two components are different versions of the same component, and in
particular that a component is replaced by a later version with improvements (such
as bug fixes or better performance) not breaking compatibility.

The question arises what compatibility means in this context. In general, compat-
ibility is about preserving contracts between collaborating components and ensuring
safe substitution. There is a vast amount of existing work on safe and correct compo-
sition of components, including ProCom [44], Sofa [7], or X-man [28]. The underlying
notion of contract has many facets [3], including classical API compatibility that can
be expressed through the type system of the underlying programming language, but
also including other aspects such as semantics, quality of service and licensing.

Existing tools available to software engineers only cover the API aspect of the
contract. Rama [41] defends this practice and claims that “ideally, the users of a
module need to look no further than its API”. For instance, OSGi’s components expose
packages and services (Java interfaces) and binding is allowed if APIs match. No
deeper semantic analysis is performed. The checks performed by Maven are even
coarser. Maven composes components (JAR files) based on their symbolic versions.
Once a referenced component exists in a repository, composition is allowed.

API-based compatibility checks simplify the issue from the developers point of
view at the price of unsoundness: certain incompatibilities will be missed. This is a
classical trade-off made between complexity and usability. The main rationale is that
API compatibility can be investigated by means of static analysis that can be easily
integrated into standard build and deployment processes. This is particularly benefi-
cial as there are several static analysis tools that have now been widely adapted and
are part of the standard toolbox used by many developers, such as PMD1, Checkstyle2,
and Findbugs3.

Recent empirical studies have clearly demonstrated the need for better tools: many
developers are not aware of the rules that specify when component evolution is com-

1https://github.com/pmd
2http://checkstyle.sourceforge.net/
3http://findbugs.sourceforge.net/

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

API Evolution and Compatibility: A Data Corpus and Tool Evaluation · 3

patible [14], and empirical studies have demonstrated that this causes issues in real-
world systems [16, 40].

The aim of this paper is to review existing tools to check the compatibility of Java
components as a starting point for future development and research. For this purpose,
we have collected several existing tools that can be used to check API compatibility.
The methodology used was to start with the analysis of some tools we were aware
of, then adding tools referenced on the respective web sites, and finally considering
further tools references on developer forums.

Our work addresses the following two research questions:

RQ1 Does any of the tools reliably check API compatibility?

RQ2 Does any of the tools correctly distinguish between source and binary compati-
bility?

This paper makes two contributions. Firstly, we catalogue existing API compat-
ibility checking tools and investigate their capabilities, answering the two research
questions. Secondly, we provide an extensible dataset used for benchmarking such
(existing and future) tools.

The remainder of this paper is organised as follows: Sections 2 and 3 discuss
related work and summarise some fundamental concepts related to compatibility. In
Section 4, we discuss the dataset developed, followed by the evaluation of the various
tools in Section 5. A brief conclusion is provided in Section 6.

2 Related Work

In the technical domain, the term compatibility denotes4 the “ability to be used to-
gether” and “designed to work with another device or system without modification”.
Various definitions of compatibility related to software components exist, both in the
research [8, 2, 48, 5] and the technical [19, 34, 33] literature, mostly dealing with the
issue of correct replacement and interoperability.

2.1 API Evolution

Belguidoum and Dagnat [2] distinguish between vertical and horizontal compatibility.
This can be paraphrased as backward vs client-provider compatibility. Vertical com-
patibility plays a role when vendors want to produce backward compatible libraries,
which allow for smooth system updates. On the other hand, the purpose of hori-
zontal compatibility is to aid safe system composition. Using this terminology, our
work targets vertical compatibility as we propose a data set simulating evolution of
libraries and then use this to assess tools for checking API compatibility. However,
we also study horizontal compatibility in order to build an oracle of compatible and
incompatible changes. In particular, we have developed clients that invoke the API
so that we could then check if an evolved API remains compatible with these clients.
This provided us with the information about compatibility breaking change for every
evolution.

Both concepts should be taken into account in order to successfully produce and
use components that are “units of independent deployment and third-party composi-
tion” [46, 4.1.1,].

4Source: the Merriam-Webster dictionary.

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

4 · Kamil Jezek, Jens Dietrich

Compatibility can be inferred from the verification of contracts between collabo-
rating components. Beugnard et al [3] have pointed out that there are different types
of contracts, including contracts that can be expressed via syntax-oriented APIs, se-
mantics and quality of service. Even component meta data may be part of contracts
that determines compatibility, consider for instance issues around the compatibility
of open sources licenses [31]. While most component systems used in industry focus
on the API aspect of compatibility, non-functional aspects have been investigated and
considered by several authors [9], and led to several (often OSGi-based) implemen-
tations, including, Fractal [6], Sofa [36] and Treaty [15]. Semantic contracts can be
expressed by using pre- and post-conditions in the tradition of Hoare Logic [23] and
design by contract [30].

2.2 API Analysis

Several authors have investigated the evolution of Java APIs by means of static anal-
ysis, in many cases detecting cases of (horizontal and vertical) incompatibilities. This
includes the work of Jezek et al [24, 25], Raemaekers et al [38, 39] and Ebad and
Ahmed [18] on standard Java, and the work of Linares-Vasquez et al [29] on Android.

Rama and Kak [41] defend the focus on API compatibility checks and state that
“In this age of collaborative software development, the importance of usable APIs is
well recognized”. They propose several metrics that help to either design or recognise
“good” APIs. API usability and design is also discussed by Myers and Stylos in [32].
Scheller [43] tries to automatically measure the usability of API in terms of interface
complexity – complexity of methods, constructors, fields, etc. Sawant studied how
APIs are used [42] and developed a meta-model of API usage. He also provided a
parser to collect data from open-source systems and made collected data publicly
available.

2.3 API Changes Categorisation

To analyse API evolution, it is important to understand which changes are contract-
breaking. API-breaking changes for Java have been catalogued by des Rivières [13],
this catalogue has directly influenced the design of the benchmark we have developed
in order to assess and compare tools. The end user survey conducted by Dietrich et
al [14] uses a similar catalogue.

2.4 Mitigation

Cossette and Walker [10] have discussed several available techniques to refactor clients
to adapt to changed APIs. They have also expressed the need for a data corpus to
study API changes: “we need a collection of all points of breaking change between a set
of API versions” and put together a set of five open-source libraries (Struts, Log4j,
jDOM, DBCP and SLF4J) to address this need. While using real-word programs
has some obvious benefits, it remains incomplete as in particularly such a small set
does not exhibit a complete set of possible changes, and is therefore unsuitable to
benchmark tools. For this reason, we decided to create a synthetic dataset that
exhibits a full set of compatibility issues while still being manageable in terms of size
and complexity.

In our previous work we have demonstrated how changes to the Java compiler
can mitigate certain binary compatibility problems that have been observed [26].

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

API Evolution and Compatibility: A Data Corpus and Tool Evaluation · 5

The solution proposed aims to simplify the situation by at least narrowing the gap
between source and binary compatibility in Java. However, this requires some rather
invasive changes to the Java compiler, and is therefore unlikely to be deployed into
standard Java.

There are also proposals to address this problem on the model level, where checks
performed on those models can guarantee compatibility. Such approaches include
ProCom [44] and SaveCCM [22].

2.5 Miscellaneous

Raemaekers et al [37] have investigated the correlation between API breaking changes
with several other properties such us number of modifications. Taneja et al [47] tried
to automatically find changed methods replacements by employing metrics such as
name similarity, method size and closeness of method arguments.

3 Background: About Compatibility

A senior JDK engineer once noticed that “every change is an incompatible change”
(quote from [12]). This means that every modification of a library may influence the
way clients can use, interact, extend, observe or substitute it. Tools like compilers,
linkers and static analysis tools define compatibility as API stability. That means
that if a change in a library does not prevent clients from linking and/or compiling,
the change is expected to be compatible, even if it results in changed behaviour
or performance. For instance, while a change from List to Set is acceptable for
assignment to a field typed as Collection, the change may have an impact on clients
that rely on a particular order of elements in the collection.

The Java Language Specification formally defines acceptable API changes in terms
of binary compatibility [20, ch. 13]: “a set of changes that developers are permitted
to make to a package or to a class or interface type while preserving (not breaking)
compatibility with pre-existing binaries.” The rules are strictly defined with respect
to the static analysis performed during linking, which significantly differs from the
notion of source compatibility, which is checked by the compiler in order to establish
the consistency between a program and a library. For this reason, the specification
explicitly recommends: “tools for the Java programming language should support au-
tomatic recompilation.” In the same chapter, however, it is stated that “it is often
impractical or impossible to automatically recompile the pre-existing binaries that di-
rectly or indirectly depend on a type that is to be changed.”

When a program is built and deployed, a mixed notion of compatibility is used. As
the program is compiled, the source compatibility with the libraries is checked by the
compiler. The binary compatibility is checked instead when the program is invoked.
Since both notions are not entirely consistent [13], situations where a system may
be compiled but cannot run or vice-versa may occur [16]. While binary and source
compatibility are both used to describe types of compatibility that can be checked by
means of static analysis at different times, behavioural compatibility [12] cannot be
checked as easily, and it is therefore often only observed when programs are executed.
Unit testing tools are often used in practice. The obvious limitation of testing is that
(1) it is unsound, i.e. it cannot prove compatibility, only approximate it to some
extent and (2) it is not available for checks in the context of runtime composition.

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

6 · Kamil Jezek, Jens Dietrich

Compatibility also depends on how a library is used, for instance, whether a
library is only used (i.e., its methods being invoked) or whether some of its types are
being subtyped (used for extension in the sense of the object-oriented inheritance).
For instance, a method added to an interface is acceptable for the clients invoking
methods in this interface, but breaks source compatibility for existing subtypes.

4 A Data Corpus to Study API Changes

In order to conduct an evaluation of existing compatibility checkers, we needed a
suitable data set. The data set we developed for this purpose consists of several small
Java programs that all exhibit certain compatibility issues. We had considered the
use of existing data sets, but none was suitable for our purpose. DaCapo [4] is rather
small and does only contain one version for each program. The Qualitas Corpus [49]
is larger and contains multiple versions for each program in its evolution edition, but
the number of interesting evolution changes we wanted the tools to be expose to is
very small relative to the overall size of the corpus. We therefore decided to create
our own synthetic data set. The data set proposed here contains small programs that
model the evolution and usage of consecutive versions of a library.

4.1 Methodology

We organised the synthetic programs along three dimensions in order to ensure that
the corpus is as complete as possible. Those dimensions are (1) what is changing, (2)
where the change is applied and (3) how the respective code is changed.

We used ideas from section 13 of the Java Language Specification, the catalogue
by Rivieres [13], work by Dietrich et al. [16] and information found on developer
forums to guide the design of the dataset.

Firstly, we defined eight categories to address the what dimension: access modi-
fiers, data types, exceptions, generics, inheritance, class members, other (non-access)
modifiers and miscellaneous.

Secondly, we searched where those changes can appear in code and defined a set
of seven Java language elements: class, inner class, interface, method, constructor,
field, generic type.

Finally, we investigated how a language element can be changed and defined a few
possible change. Basically, a change can be a removed element, an added element or
a modified element. While the number of possible changes between elements differs,
in most case we encounter four possible changes: one for addition, one for removal
and two modifications: strengthening and weakening.

This results in 224 possible combinations (7 elements × 8 categories × 4 changes).
However, the number of final test-cases differ due to following reasons: some com-
binations are not possible (e.g. interface methods may be only public, so no test
for modified access modification is possible). We detected these situations simply
by trying all combination for passing Java compilation. On the other hand, certain
combinations of an element and a category may contain more changes. This is the
case for methods where two cases must be tested: a data type can be used either as
a parameter or as a return type. Furthermore, the data type may have more then
four modifications (for instance, also including boxing and unboxing for primitive /
wrapper types, detailed later in Section 4.3). Finally, generics are divided into two
more sub-categories containing generic wild-cards and generic parametrised types,

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

API Evolution and Compatibility: A Data Corpus and Tool Evaluation · 7

producing another dimension. Although generics are relatively complex, capturing
possible combinations for evolving API is fairly straightforward. Both wild-card and
parametrised types may be parametrised by other types repeating the same modifi-
cation patter such as addition, removal, etc.

We did not consider annotations as they serve as meta data that do not directly
affect API compatibility and therefore we considered them as out-of-scope. We note
however that annotations can be used to expose program semantics in APIs, for
instance, when they are used to represent method pre- or postconditions [17].

The methodology we used focuses on the complete coverage of API evolution
scenarios that can potentially break clients either during compile or run time. It
contains 251 scenarios of API changes. The corpus is easy to extend due to its
canonical structure, as described in the next section.

4.2 Structure

The corpus is split into three directories: lib-v1, lib-v2 and client. As the names
suggest, the directories contain a first (original base-line) version of a library, a second
(evolved) version of this library and an executable (main) client application which uses
the library. The directories model real-life scenarios. The respective libraries in the
corpus are minimalistic on purpose. A triple consisting of the two versions of a library
and a client program represents one API change and we refer to it as a scenario.

Each library as well as the client have sub-directories representing Java packages.
The package names are constructed as follows:

<category><element><change>

In this representation, category is one of the eight categories, element is one of
the seven applicable language elements and change describes the actual change as it
was described above. For instance, a case named dataTypeClassFieldBoxing means
that the type of a field defined in a class is changed from a primitive type to the
respective wrapper type.

The corpus is provided in the form of source-code with an ant script to build the
binaries. The script output is a set of three JAR files named the same way as the
original source directories.

The whole structure of the corpus looks as follows (<> is shortcut for the <category>
<element> <change> triple described above):

<root>

+- client/src/<>/Main.java

+- lib-v1/src/lib/<>/<>.java

+- lib-v2/src/lib/<>/<>.java

build.xml

compatibility.sh

The design based on a naming convention facilitates extensibility of the corpus
by simply adding new cases to sub-directories (packages) following this convention.
Basically, a user is expected to provide three Java source files to extend the corpus.
One file is stored in the lib-v1 directory to represent a library version, one file is
stored in lib-v2 to represent an update and finally one file represents a client code
in the folder client. All the files should be in the same Java package (subdirectory)
following the naming pattern <category><element><change>. In fact, the naming

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

8 · Kamil Jezek, Jens Dietrich

convention is not enforced, but recommended in order to facilitate work with the
relatively large corpus.

The corpus also contains a simple script compatibility.sh to produce an oracle
for tool evaluation. This script will compile and execute all scenarios, and will report
compilation errors indicating source incompatibility, and linkage errors indicating
binary incompatibility. The script generates a CSV file with three columns: the
name of the scenario as described above, and two columns indicating source and
binary compatibility – using “1” to indicate compatibility and “0” otherwise.

The script performs the following steps:

1. compile the sources in the lib-v1 and lib-v2 directories and build the respec-
tive libraries lib-v1.jar and lib-v2.jar

2. compile the client against lib-v1.jar – this is the baseline and must succeed

3. compile the client against lib-v2.jar to check source compatibility – if this
step fails with a compilation error, a source incompatible change is detected

4. invoke the client originally compiled against lib-v1.jar with lib-v2.jar to
check binary compatibility – if this step fails with a linkage error, a binary
incompatible change is detected

5. based on results from steps 3 and 4 append either 1 or 0 to the CSV file to
indicate (in)compatibility

At the end of these steps a CSV file with information about source and binary
compatibility for each scenario is generated. We use this file as an oracle to benchmark
the tools. The oracle is basically produced by means of dynamic analysis (execution),
and used to assess the tools that perform static analysis.

We make the corpus publicly available as a GitHub project for replication studies,
or for use to benchmark of new tools:

https://github.com/kjezek/api-evolution-data-corpus/

The repository also contains a pre-generated oracle that has been checked manually
for consistency with the Java language specification [20]. This is to address the
situation that the oracle can be generated by an implementation or version of the
Java compiler or runtime not compliant with the specification.

The following sub sections contain a more detailed discussion of the corpus by
category. Table 1 shows the number of scenarios in each category and their typical
impact on compatibility (source/binary). The following sections will discuss changes
in each category in more detail, followed with examples to show a typical change in
a category.

4.3 Data Types

Many incompatibility problems are caused by changes to data types in the context
of method, constructor and field signatures (descriptors), generics, inheritance and
exceptions. We cover changes which occur in most object-oriented languages as well
as changes specific to Java. The basic changes considered are:

• Del – a type is removed

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

API Evolution and Compatibility: A Data Corpus and Tool Evaluation · 9

Category Scenario Incompatibilities
Data Types 49 source and binary
Exception 26 source
Generics 88 source
Inheritance 16 source and binary
Members 28 source and binary
Access Modifiers 18 source and binary
Other Modifiers 30 source and binary
Miscellaneous 4 binary

Table 1 – Corpus overview by category

• Inst – a type is added

• Gen – a type is generalised, for instance, java.lang.Integer is generalised to
java.lang.Number

• Spe – a type is specialised, which is opposite of the previous case

• Mut – a type is mutated, a type is changed to an incompatible one that is
neither a sub- nor a super type

To take some of the Java language-specific features, in particular the distinction
between primitive and reference types, into account, we have added some additional
change types to cover changes of primitive types:

• Narrow – a “specialising” conversion for primitive types, e.g. a change from
long to int.

• Widen – the opposite of narrowing - a “generalising” conversion

Finally, Java allows for two more conversions to simplify work with primitive and
wrapper types:

• Box – a primitive type is converted to its wrapper type, for instance, int to
java.lang.Integer

• Unbox – a wrapper type is converted to its matching primitive type

Changes in this category often result in subtle differences between source and
binary compatibility. In particular, Gen, Spe, Narrow, Widen, Box and Unbox are
conversions performed only by the Java compiler, not the linker. Therefore, these
changes are always binary incompatible, but can be source compatible depending on
usage. Gen is a usually source compatible conversion for a method parameter type
5, while Spe is source compatible for a method return type due to Java’s support for
co-variant return types.

Changes in the categories Del and Mut are generally neither source nor binary
compatible.

Examples of possible changes in method parameters are:

5There are some exceptions to this rule that occur if the compiler cannot resolve ambiguity
between overloaded methods [20, sect. 15.12]

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

10 · Kamil Jezek, Jens Dietrich

method parameter types: source compatible, binary incompatible

Gen: void method1(Integer param1) -> void method1(Number param1)

Box: void method1(int param1) -> void method1(Integer param1)

Unbox: void method1(Integer param1) -> void method1(int param1)

Widden: void method1(int param1) -> void method1(double param1)

method parameter types: source and binary incompatible

Spe: void method1(Number param1) -> void method1(Integer param1)

Mut: void method1(Integer param1 -> void method1(String param1)

Narrow: void method1(double param1) -> void method1(int param1)

method return types: source compatible, binary incompatible

Narrow: double method1() -> int method1()

Box: int method1() -> Integer method1()

Unbox: Integer method1() -> int method1()

method return types, source and binary incompatble

Widen: int method1() -> double method1(double param1)

Mut: Integer method1() -> String method1(double param1)

4.4 Exceptions

Java distinguishes between checked and unchecked exceptions. Checked exceptions
must be handled by client code, either by propagating them further or managing them
using a try-catch construct. Unchecked exceptions are propagated automatically,
but can be optionally caught as well.

The handling of exceptions in client code is checked only by the compiler, not
the linker. As a consequence, changes to exceptions in method signatures only affect
source but not binary compatibility.

When a library method is updated by adding a new checked exception, the orig-
inal client code cannot be compiled and must be refactored to accommodate proper
exception handling. On the other hand, if the same library is used in conjunction
with an already compiled client, it will successfully link. It is worth noting here that
this can be misleading. For instance, while changing a library so that a method de-
clares and throws a checked exception does not compromise linking, it is likely to
have a profound effect on behavioural compatibility: a client is likely to fail when the
exception is actually thrown.

The corpus combines examples where exceptions in method signatures are added,
removed, specialised, generalised or mutated, with variants for both checked and
unchecked exceptions.

There is no binary incompatible example related to exceptions. Examples of source
incompatible, but binary compatible changes include:

Checked exceptions: Source incompatible, binary compatible

Add: void method1() -> void method1() throws IOException

Gen: void method1() throws FileNotFoundException

-> void method1() throws IOException

Mut: void method1() throws SQLException

-> void method1() throws IOException

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

API Evolution and Compatibility: A Data Corpus and Tool Evaluation · 11

Unchecked exceptions: source and binary compatible

Add: void method1() -> void method1() throws NullPointerException

Gen: void method1() throws NullPointerException

-> void method1() throws RuntimeException

Mut: void method1() throws NullPointerException

-> void method1() throws IllegalArgumentException

4.5 Generics

Generics were added to Java relatively late in version 1.5 with strong consideration for
compatibility with previous Java version. In order to achieve this, language designers
opted for a design based on erasures. With erasure, type parameters are erased during
the compilation from the call site. This means that during linking, only raw types
without generics are checked. This is achieved by using descriptors (a non-generic
version of the full generic signature) to describe method references at the call sites.

While client code is checked by the compiler for correct usage of generic types,
binary code that uses generics may be combined with the code not using generics
due to erasures. The impact on compatibility is evident. Changes that are binary
compatible are not necessarily source compatible.

For instance, if a list is declared as java.util.List<String> only instances
of String may be added to the list, and this is enforced by the compiler. How-
ever, when the definition is changed to java.util.List<Number> and only the bi-
naries of the respective library are replaced, the program will successfully link. This
is another case where (binary) compatibility is deceptive and issues are “shifted”
into behavioural (in)compatibility – the program is likely to fail at runtime with a
ClassCastException as the compiler introduces checkast instructions that fail when
the client program attempts to add strings to the list.

Examples in this category are:

Parameterized types: Source incompatible but binary compatible

Mut: void method1(List<String> param1) -> void method1(List<Integer> param1)

Gen: void method1(List<Integer> param1) -> void method1(List<Number> param1)

Spe: void method1(List<Number> param1) -> void method1(List<Integer> param1)

Wildcards: Source incompatible but binary compatible

Mut: void method1(List<? extends String> param1)

-> void method1(List<? extends Integer> param1)

Spe: void method1(List<? extends Number> param1)

-> void method1(List<? extends Integer> param1)

Wildcards: Source and binary compatible

Gen: void method1(List<? extends Integer> param1)

-> void method1(List<? extends Number> param1)

4.6 Inheritance

Some authors actively discourage implementations/extensions of types from APIs
provided by libraries. For instance, Grand [21, p. 55] advises that:“if a class is
declared as a subclass, there is risk that these classes not under your control will change

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

12 · Kamil Jezek, Jens Dietrich

in an incompatible way”. Some changes to super types such as removed methods
clearly break compatibility, but some breaking changes are less evident, such as the
addition of an method to an interface or increasing the visibility of a method. For
instance, changing the visibility of a method from private to public may seem
harmless, but the new public method may overlap with the same method in some
subtype. When the subtype method enforced stricter access, compilation fails as
access cannot be weakened in overridden methods.

Some of those changes are covered by other categories (method, modifier, types etc.
changes). This category contributes with several more examples with class/interface
definitions modified in a subtypes. Several examples where methods are moved up
and down the hierarchy tree are included as well. Examples in this category include:

Access modifiers: source incompatible

Super class: protected void method() -> public void method()

Sub class: protected void method()

Method introduced in interface: source incompatible

Interface: X -> void method()

Sub class: X

Method removed: source incompatible when annotated with @Override

Interface: void method() -> X

Sub class: @Override public void method()

4.7 Members

Members are elements defined in a Java class including fields, methods and construc-
tors. This category contains examples of removed or added members that have some
impact on compatibility: removing members usually results in incompatibilities, but
even adding members may be incompatible in the context of inheritance as discussed
above.

Added abstract/interface methods with Java 1.8 default methods are modelled
in the category as well.

4.8 Access Modifiers

Access modifiers may be either weakened or strengthened and may be applied to
a constructor, a method, a field, a class and an interface. These combinations are
reflected in the corpus.

A change making an element more accessible is usually compatible while restricting
access is incompatible. This behaviour is consistent for source and binary compatibil-
ity. A special case is the increase of visibility in the context of inheritance as already
discussed.

Example:

Access decreased: Source and binary incompatible

public void method() -> protected void method()

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

API Evolution and Compatibility: A Data Corpus and Tool Evaluation · 13

4.9 Other Modifiers

Other (non-access) modifiers have different impacts on compatibility. The modifiers
volatile, transient, native or strictfp signal special behaviour of the respective
members, final or abstract are used in conjunction with inheritance, and static

deals with access context. Sometimes one modifier is used for multiple purposes, e.g.
constants are implemented as final fields, while final is also used to denote classes
that cannot be sub-classed, and methods that cannot be overridden.

There is no pattern how these modifiers impact compatibility. For instance, an
added modifier transient does not break compatibility while adding native does.
This is because native requires a special treatment by the JVM while transient is
only meta-information. The modifiers final and abstract have the obvious effect
that adding or removing them breaks the compatibility of inheriting classes.

An interesting case is the static modifier. The language permits the access to
static fields and the invocation of static methods from non-static contexts, although
most compilers emit a warning. However, changes (making a non-static method or
field static or visa versa) are binary incompatible as different byte-code instructions
are used for static and non-static access or invocation.

Examples in this category include:

Static added: source compatible but binary incompatibe

Method: void method() - > static void method()

Field: int field -> static int field

Inheritance: source and binary incompatible

Super class: void method() -> final void method()

Sub class: @Override void method()

Inheritance: source and binary incompatible

Super class: void method() -> abstract void method()

Sub Class: X (not inherited)

Native: source compatible, binary incompatible

void method() -> native void method()

Transient: source and binary compatible

void method() -> transient void method()

4.10 Miscellaneous

Java contains several specific features that are grouped in this category. It contains
scenarios resulting from the implicit inheritance from Object by any classes, and the
fact that any Java array implicitly implements Cloneable and Serializable.

Another example in this category is a change from a class to interface or vice-
versa [27, Section 4]. This is interesting because there is no difference between the
invocation of class and interface methods in source-code. However, different byte-
code instructions are used, leading to binary compatibility problems that require
recompilation of client code.

Examples in this category are:

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

14 · Kamil Jezek, Jens Dietrich

Tool Clirr Japicmp japiChecker JAPICC Revapi Sigtest JapitoolsJour JaCC
Basic info

Author Lars
Kühne

Martin
Mois

William
Bernardet

Andrey
Pono-
marenko

Lukas
Krejci

Oracle Stuart
Bal-
lard

Vlad
Skarzhevskyy

UWB

License LGPL A2.0 A2.0 LGPL A2.0 GPLv2 GPL LGPL ask
Version 0.6.0 0.7.2 0.2.1 1.5 0.4.2 3.1 0.9.7 2.0.3 1.0.9
Release 9/05 3/16 10/15 4/16 3/16 4/16 11/07 12/08

Output
TXT yes yes yes yes yes yes yes yes
XML yes yes
HTML yes yes yes

Integration
CLI yes yes yes yes yes yes yes yes
Maven yes yes yes yes yes yes yes
Ant yes yes yes yes
libray yes yes

Table 2 – Tested Tools (GPL//LGPL = GNU GPL/LGPL, A2.0 = Apache 2.0)

Interface to/from class: source compatible but binary incompatible

class Foo <-> interface Foo

Array type: source compatible but binary incompatible

Gen: void method(String[] param1) -> void method(Serializable param1)

Gen: void method(String[] param1) -> void method(Object param1)

Spe: Serializable method() -> String[] method()

Spe: Object method() -> String[] method()

5 Tool Evaluation

We have evaluated several tools that are available to developers in order to check the
compatibility of API changes. The tools included are listed in Table 2 together with
information about the authors, current versions, licensing and platform integration.
All tools are basically static analysis tools that try to assess the compatibility of
different versions of a program by creating models from (byte) code, and analysing
those models.

5.1 Methodology

The selection of tools for the benchmark is driven by a single use case. The user inputs
two files – a version of a library and its update – and the tool produces a report
listing API compatibility-breaking changes. Any tool supporting this use case fits
into this study. To find suitable tools we manually searched the Internet. We started
with a few tools we knew about and searched for keywords such as “alternatives”,
“replacement” etc. Some of the tools we found also refer to alternatives on their web-
pages. Finally, we searched developer forums, most noticeably stackoverflow.com.

Journal of Object Technology, vol. 16, no. 4, 2017

stackoverflow.com
http://dx.doi.org/10.5381/jot.2017.16.3.a2

API Evolution and Compatibility: A Data Corpus and Tool Evaluation · 15

The overall finding revealed that the number of existing tools is small and for this
reason we included all of them.

The tools found were then evaluated using following approach: we first used the
Java compiler and linker to create an oracle of incompatibility issues as described
above in Section 4.

We then used the tools to be evaluated and captured the tool output in text files.
Some tools also report compatibilities, we filtered this information out in order to
avoid false positives. We used regular expressions for this purpose, tools flag positive
output with text patterns that are easy to recognise, for instance ! (japicmp), 100%
Compatible (japitool), NON BREAKING (revapi) or INFO (clirr).

Finally, we compared the tool output with the oracle in order to establish which
incompatibility issues were correctly reported by the tool.

5.2 Extendibility

The whole process is automated and may be invoked by a bash script ./benchmark.sh.
This script prepares the meta-data, invokes the tools, filters and formats the out-
puts and analyses results. The actual invocation of tools is delegated to script
tools/run.sh, which executes all tools one-by-one.

For instance, run.sh contains following lines to invoke the japicmp tool:

REPORTS=".reports"

java -jar japicmp/japicmp-0.7.2.jar \

-o ../lib-v1.jar \

-n ../lib-v2.jar \

-a private > "$REPORTS"/japicmp.txt

grep -v ’=== UNCHANGED’ \

"$REPORTS"/japicmp.txt > japicmp.txt.tmp

mv japicmp.txt.tmp "$REPORTS"/japicmp.txt

Additional tools can be easily added to the benchmark by adding code to invoke
the respective tool to this script. This script must ensure that the output of the
respective tool is captured, formatted and stored in tools/.reports.

The structure of the corpus including the tools benchmark looks as follows:

<root>

+- client/src/<>/Main.java

+- lib-v1/src/lib/<>/<>.java

+- lib-v2/src/lib/<>/<>.java

+- tools/.reports

+- tools/<tool>

+- tools/run.sh

build.xml

compatibility.sh

benchmark.sh

5.3 Results

The result of the experiment conducted indicate that the tools differ widely in their
ability to detect compatibility-breaking changes. A result summary is provided in Ta-

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

16 · Kamil Jezek, Jens Dietrich

ble 3, in this table we report the percentages of successfully detected API compatibility-
breaking changes, classified by category.

While the results show clearly that the tool with weakest performance is clirr

and the best-performing tool is sigtest, detailed analysis reveals that clirr may still
be a better choice than some of the better performing tools in certain circumstances.

Active development of Clirr stopped in 2005, and it is therefore not surprising
that it does not recognize issues caused by the use of generics. Its focus is to check
binary compatibility as defined in the Java Language Specification, and therefore
it misses issues related to source compatibility, example is the Exceptions category.
However, it works well in other categories and may be still useful for detecting only
binary incompatible changes.

The situation is similar for japicmp. The results obtained are rather poor, however
this is caused by a lack of support for generics and a few bugs in detecting modifiers.
In all other categories, the tool performs well.

Another tool that generally performs well is japitool. Active development ceased
in 2006, but the tool is still available as part of certain Linux distributions, including
Debian.

Newer tools like japicc and revapi have a better overall score, but both have
several issues scattered amongst several categories. They may be less reliable in
production as they can miss some important source and binary compatibility issues.
Nonetheless, both tools are still actively developed and may be therefore improved in
the future.

Sigtest wins the benchmark as it is able to detect almost all problems. It fails to
detect only two issues: (1) the removal of the strictfp modifier and (2) the addition
of the native modifier, both causing incompatibility. We do not expect that those
changes are very common in real-world programs.

Table 4 provides a more detailed analysis of results classified by whether the
issue is source or binary incompatible. The first row shows changes that are source
incompatible but binary compatible. The second row lists changes that are binary
incompatible, but may be either source compatible or incompatible.

The table provides some interesting insights. In general, most tools perform much
better in detecting binary incompatibilities. The exception is revapi which performs
relatively poor here. On the other hand, most tools fall short in detecting source
incompatibilities. The only tools that do so reliably are sigtest and japitool.

Other aspects like usability are also important properties to consider when se-
lecting tools. A tool with a few bugs may be a better choice if it provides a better
user experience. While we did not evaluate these aspects systematically in this work,
we did make some observations. All tools provide a similar integration features and
interfaces. For instance, all tools provide a command line interface (CLI) with op-
tions to input JAR files and produce a human readable formatted output. None of
the formats used stands out. Only japicc provides HTML output which is useful to
highlight the detected severity of changes, this could be better readable by users.

To summarise our findings, we answer the research questions as follows:

RQ1 – Does any of the tools reliably check API syntactical compatibility
The answer is yes, the tools do exist but their ability varies. The recommended tool
according to our evaluation is sigtest, which is distributed as open-source and may
be easily integrated into the development process via CLI, Maven or Ant plugins. An-
other well-performing option is japitool, missing only a few incompatible modifiers,

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

API Evolution and Compatibility: A Data Corpus and Tool Evaluation · 17

Category clirr jacc japicc japiChecker japicmp
Access Modifiers 100.00% 100.00% 83.33% 100.00% 100.00%
Data Types 100.00% 100.00% 89.36% 100.00% 100.00%
Exceptions 0.00% 0.00% 100.00% 100.00% 100.00%
Generics 0.00% 33.33% 5.88% 0.00% 0.00%
Inheritance 71.43% 100.00% 71.43% 85.71% 100.00%
Members 100.00% 100.00% 84.21% 89.47% 100.00%
Other Modifiers 61.54% 84.62% 84.62% 53.85% 84.62%
Miscellaneous 100.00% 100.00% 75.00% 100.00% 100.00%
Total 57.79% 72.08% 59.74% 61.04% 65.58%

Category japitool jour revapi sigtest
Access Modifiers 100.00% 83.33% 83.33% 100.00%
Data Types 100.00% 100.00% 95.74% 100.00%
Exceptions 100.00% 100.00% 100.00% 71.43% 100.00%
Generics 100.00% 17.65% 100.00% 100.00%
Inheritance 100.00% 100.00% 42.86% 100.00%
Members 100.00% 84.21% 42.11% 100.00%
Other Modifiers 69.23% 76.92% 61.54% 84.62%
Miscellaneous 100.00% 100.00% 50.00% 100.00%
Total 97.40% 68.18% 82.47% 98.70%

Table 3 – Correctly Detected Incompatibilities in Each Scenario

Type clirr jacc japicc japiChecker japicmp
Source 13.24% 41.18% 25.00% 20.59% 25.00%
Binary 93.02% 96.51% 87.21% 93.02% 97.67%
Both 57.79% 72.08% 59.74% 61.04% 65.58%

Type japitool jour revapi sigtest
Source 100.00% 38.24% 88.24% 100.00%
Binary 95.35% 91.86% 77.91% 97.67%
Both 97.40% 68.18% 82.47% 98.70%

Table 4 – Correctly Detected Scenarios Divided into Source and Binary Incompatibilities

but the main issue is that the tool is not maintained. Other tools miss 17% or more
of the incompatibility patterns identified and should therefore be used with caution

RQ2 – Does any of the tools correctly distinguish between source and bi-
nary compatibility The answer is yes and the most suitable tool is again sigtest

but also japitool. Many alternative tools are still suitable if only binary compat-
ibility checks are required. But this may be sufficient in many scenarios as library
updates are usually distributed in binary form. Hence, binary compatibility checks
may help to find issues that would otherwise result in runtime failures caused by
opaque third-party libraries. Although a source incompatible change may break a
system as well, it is easier to detect during builds of client programs early in the
development process and therefore less harmful.

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

18 · Kamil Jezek, Jens Dietrich

PMD Checkstyle Findbugs Jenkins SonarQube
KLOC 175 142 286 1086 785
Contributors 32 113 47 1665 106
last commit 2mo 2mo 2mo 3mo 2mo
commits 8726 6000 15336 91995 25337
QA 3217 3603 4002 48166 11499

Clirr Japicmp japiChecker japicc Revapi Sigtest Japitools Jour JaCC
KLOC 5 9 21 n/a 6 9 27
Contributors 3 15 1 3 5 n/a 3 1 2
last commit 2y 2mo 5mo n/a 4y 5y 6mo
commits 427 525 113 62 796 n/a 153 152 1898
QA 32 8 25 3 30 26 9 n/a 0

Table 5 – Comparison of Code Style Checkers and API Compatibility Tools
QA – [stackoverflow.com]

5.4 Tools and Community Size

An important aspect to evaluate the “business-readiness” of tools are the communities
supporting them. To put this into perspective, we gathered some data on the tools
evaluated here, and also on some widely used static code quality (smell-detection)
tools: PMD, checkstyle and Findbugs. We found that the communities behind the
compatibility checkers are small.

Existing work on the usability and impact of open source software has also con-
sidered other aspects such as project activity level, development team/community
size [11], amount of development activity, input from the development community
and user interest [45] as measures of success. We have followed their approach and
also measured the size of projects in terms of number of commits, lines of code, de-
velopers (contributors) and frequency of commits. The numbers were obtained from
https://www.openhub.net/ on 16 September 2016. openhub collects project statis-
tics from the respective source control systems. Not all of the tools investigated were
tracked. In particular, we were not able to get data for sigtest as its subversion
repository can not be parsed by openhub and we did not find an alternative source
for comparable data.

We also searched the popular Q&A website stackoverflow.com to see how the
respective projects were discussed. We tried to search by tag first, but this produced
no results for most tools. For this reason we did a plain text search with tool names.
We manually checked that the respective queries produced relevant results. We do
not expect a lot of false positives here as the tool names such as ”revapi” are unlikely
to have homonyms used in this context. One exception was ”jour” colliding with a
French expression and we did not find any relevant questions for the jour tool.

The results are shown in Table 5. It is evident that the static code checkers – the
first five tools – have a much bigger code-base, more contributors, commits and finally
are more discussed in the community. These tools are also under active development.

5.5 Threats to Validity

The main possible threat of this paper is data completeness. If there were more
API changes not covered here, where the tools perform differently, this could change
the overall result. We have tried to mitigate this by composing data from several

Journal of Object Technology, vol. 16, no. 4, 2017

https://www.openhub.net/
stackoverflow.com
http://dx.doi.org/10.5381/jot.2017.16.3.a2

API Evolution and Compatibility:A Data Corpus and Tool Evaluation · 19

sources: our own experience, existing academic research, the Java specification and
the catalogue by des Rivières. Moreover, the dataset is extensible and the experiment
can be repeated with new data.

6 Conclusion

In this paper, we have investigated how existing open-source tools cope with detecting
incompatibilities in evolving APIs. We found that while the tools vary in performance
and have only small and in some cases no supporting community, there are some highly
usable and accurate tools available. The best performing tool was Sigtest.

We have also created and made public a benchmark data set for compatibility
issues that occur during program evolution which can be used for other studies. This
corpus is unique as it contains a oracle of all API-breaking changes we are aware
of, and a script to produce this oracle that can also be used to assess future and
alternative compilers and Java runtimes. The synthetic corpus we have created for
this purpose is compact and minimalistic by design.

Possible future work is on extending the benchmark to cover more aspects of
inheritance, and to add scenarios that describe other aspects of compatibility such as
subtle behavioural changes.

Acknowledgment

This publication was supported by the project LO1506 of the Czech Ministry of
Education, Youth and Sports. The work of the second author was supported by a
gift by Oracle Labs Australia.

The authors would like to thank Michal Bratner and Rudolf Augusta for their
thorough preparation of test data, and for their support to find tools and documenting
their usage.

References

[1] Apache Maven. https://maven.apache.org/, 2016. [Online; accessed 28-
November-2016].

[2] Meriem Belguidoum and Fabien Dagnat. Formalization of component substi-
tutability. Electronic Notes on Theoretical Computer Science, 215:75–92, June
2008.

[3] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins.
Making components contract aware. Computer, 32(7):38–45, 1999.

[4] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang,
Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z Guyer, et al. The dacapo benchmarks: Java benchmark-
ing development and analysis. In ACM Sigplan Notices, volume 41, pages 169–
190. ACM, 2006.

[5] Premek Brada. Enhanced type-based component compatibility using deploy-
ment context information. Electronic Notes on Theoretical Computer Science,
279(2):17–31, December 2011.

Journal of Object Technology, vol. 16, no. 4, 2017

https://maven.apache.org/
http://dx.doi.org/10.5381/jot.2017.16.3.a2

20 · Kamil Jezek, Jens Dietrich

[6] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. The fractal component model and its support in java. Soft-
ware: Practice and Experience, 36(11-12):1257–1284, 2006.

[7] Toms Bures, Petr Hnetynka, and Frantisek Plasil. SOFA 2.0: Balancing ad-
vanced features in a hierarchical component model. In Software Engineering
Research, Management and Applications, pages 40–48. IEEE Computer Soci-
ety, 2006.

[8] Carlos Canal, Ernesto Pimentel, and José M. Troya. Compatibility and inheri-
tance in software architectures. Science of Computer Programming, 41(2):105–
138, October 2001.

[9] Lawrence Chung and Julio Cesar Prado Leite. Conceptual modeling: Founda-
tions and applications. chapter On Non-Functional Requirements in Software
Engineering, pages 363–379. Springer-Verlag, Berlin, Heidelberg, 2009.

[10] Bradley E. Cossette and Robert J. Walker. Seeking the ground truth: A
retroactive study on the evolution and migration of software libraries. In Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the Founda-
tions of Software Engineering, FSE ’12, pages 55:1–55:11, New York, NY, USA,
2012. ACM.

[11] Kevin Crowston, James Howison, and Hala Annabi. Information systems suc-
cess in free and open source software development: theory and measures. Soft-
ware Process: Improvement and Practice, 11(2):123–148, 2006.

[12] Joseph D. Darcy. Kinds of Compatibility: Source, Binary, and Behavioral.
https://blogs.oracle.com/darcy/entry/kinds_of_compatibility, 2008.
[Online; accessed 28-November-2016].

[13] Jim des Rivières. Evolving Java-based APIs. http://wiki.eclipse.org/

Evolving_Java-based_APIs. [Accessed: Dec. 1, 2014], 2007.

[14] J. Dietrich, K. Jezek, and P. Brada. What Java Developers Know About Com-
patibility, And Why This Matters. Journal of ESE, August 2014. submitted to
second review.

[15] Jens Dietrich and Graham Jenson. Components, contracts and vocabularies-
making dynamic component assemblies more predictable. Journal of Object
Technology, 8(7):131–148, 2009.

[16] Jens Dietrich, Kamil Jezek, and Premek Brada. Broken promises: An empirical
study into evolution problems in java programs caused by library upgrades. In
IEEE CSMR-WCRE Software Evolution Week. IEEE Computer Society, 2014.

[17] Jens Dietrich, David J Pearce, Kamil Jezek, and Premek Brada. Contracts
in the wild: A study of java programs. In Proceedings of the 31st European
Conference on Object-Oriented Programming (ECOOP’17), volume 74. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[18] S. A. Ebad and M. A. Ahmed. Measuring stability of object-oriented software
architectures. IET Software, 9(3):76–82, 2015.

[19] Ira R. Forman, Michael H. Conner, Scott H. Danforth, and Larry K. Raper.
Release-to-release binary compatibility in SOM. In Proceedings OOPSLA ’95,
pages 426–438, New York, NY, USA, 1995. ACM.

Journal of Object Technology, vol. 16, no. 4, 2017

https://blogs.oracle.com/darcy/entry/kinds_of_compatibility
http://wiki.eclipse.org/Evolving_Java-based_APIs
http://wiki.eclipse.org/Evolving_Java-based_APIs
http://dx.doi.org/10.5381/jot.2017.16.3.a2

API Evolution and Compatibility:A Data Corpus and Tool Evaluation · 21

[20] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The
Java Language Specification. California, USA, java se 7 edition edition, Febru-
ary 2012.

[21] Mark Grand. Patterns in Java: A Catalog of Reusable Design Patterns Illus-
trated with UML. John Wiley & Sons, Inc., New York, NY, USA, 2nd edition,
2002.

[22] H. Hansson, M. AAkerholm, I. Crnkovic, and M. Torngren. Saveccm - a com-
ponent model for safety-critical real-time systems. In Euromicro Conference,
2004. Proceedings. 30th, pages 627–635, Aug 2004.

[23] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576–580, 1969.

[24] K. Jezek and J. Ambroz. Detecting incompatibilities concealed in duplicated
software libraries. In 2015 41st Euromicro Conference on Software Engineering
and Advanced Applications, pages 233–240, Aug 2015.

[25] Kamil Jezek and Jens Dietrich. On the use of static analysis to safeguard re-
cursive dependency resolution. In SEAA 2014, pages 166–173. IEEE Computer
Society, 2014.

[26] Kamil Jezek and Jens Dietrich. Magic with Dynamo – Flexible Cross-
Component Linking for Java with Invokedynamic. In Shriram Krishnamurthi
and Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented
Programming (ECOOP 2016), volume 56 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 12:1–12:25, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[27] Kamil Jezek, Jens Dietrich, and Premek Brada. How java apis break - an em-
pirical study. Journal of IST, 2015. submitted to second review.

[28] K.-K. Lau and C. Tran. X-MAN: An MDE tool for component-based system
development. In Proc. 38th EUROMICRO Conference on Software Engineering
and Advanced Applications, pages 158–165. IEEE, 2012.

[29] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimil-
iano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. Api change and fault
proneness: A threat to the success of android apps. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013,
pages 477–487, New York, NY, USA, 2013. ACM.

[30] Bertrand Meyer. Eiffel: A language and environment for software engineering.
JSS, 8(3):199–246, June 1988.

[31] Jay Michaelson. There’s no such thing as a free (software) lunch. Queue,
2(3):40, 2004.

[32] Brad A. Myers and Jeffrey Stylos. Improving api usability. Commun. ACM,
59(6):62–69, May 2016.

[33] Oracle. Kinds of compatibility. Online: https://blogs.oracle.com/darcy/
entry/kinds_of_compatibility (Jan, 2015).

[34] The OSGi Alliance. Semantic Versioning: Technical Whitepaper, revision 1.0
edition, May 2010.

[35] The OSGi Alliance. OSGi Service Platform Core Specification, June 2011. Re-
lease 4, Version 4.3.

Journal of Object Technology, vol. 16, no. 4, 2017

https://blogs.oracle.com/darcy/entry/kinds_of_compatibility
https://blogs.oracle.com/darcy/entry/kinds_of_compatibility
http://dx.doi.org/10.5381/jot.2017.16.3.a2

22 · Kamil Jezek, Jens Dietrich

[36] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software com-
ponents. IEEE transactions on Software Engineering, 28(11):1056–1076, 2002.

[37] Steven Raemaekers, Gabriela F. Nane, Arie van Deursen, and Joost Visser.
Testing principles, current practices, and effects of change localization. In
Proceedings of the 10th Working Conference on Mining Software Repositories,
MSR ’13, pages 257–266, Piscataway, NJ, USA, 2013. IEEE Press.

[38] Steven Raemaekers, Arie van Deursen, and Joost Visser. Exploring risks in the
usage of third-party libraries. Software Improvement Group, Tech. Rep, 2011.

[39] Steven Raemaekers, Arie van Deursen, and Joost Visser. Measuring software
library stability through historical version analysis. In Proceedings of the 2012
IEEE International Conference on Software Maintenance (ICSM), ICSM ’12,
pages 378–387, Washington, DC, USA, 2012. IEEE Computer Society.

[40] Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic version-
ing versus breaking changes: a study of the maven repository. In Source Code
Analysis and Manipulation (SCAM), 2014 IEEE 14th International Working
Conference on, pages 215–224. IEEE, 2014.

[41] Girish Maskeri Rama and Avinash Kak. Some structural measures of api us-
ability. Softw. Pract. Exper., 45(1):75–110, January 2015.

[42] Anand Ashok Sawant and Alberto Bacchelli. A dataset for api usage. In Pro-
ceedings of the 12th Working Conference on Mining Software Repositories,
MSR ’15, pages 506–509, Piscataway, NJ, USA, 2015. IEEE Press.

[43] Thomas Scheller and Eva Khn. Automated measurement of {API} usability:
The {API} concepts framework. Information and Software Technology, 61:145
– 162, 2015.

[44] Severine Sentilles, Petr Stepan, Jan Carlson, and Ivica Crnkovic. Integra-
tion of extra-functional properties in component models. In Iman Poernomo
Christine Hofmeister, Grace A. Lewis, editor, 12th International Symposium on
Component Based Software Engineering (CBSE 2009), LNCS 5582. Springer-
Verlag Berlin, Heidelberg, June 2009.

[45] Katherine J. Stewart and Sanjay Gosain. The impact of ideology on effective-
ness in open source software development teams. MIS Q., 30(2):291–314, June
2006.

[46] Clemens Szyperski. Component Software, Second Edition. ACM Press,
Addison-Wesley, 2002.

[47] Kunal Taneja, Danny Dig, and Tao Xie. Automated detection of api refactor-
ings in libraries. In Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering, ASE ’07, pages 377–380, New
York, NY, USA, 2007. ACM.

[48] Richard N. Taylor, Nenad Medvidovic, and Eric Dashofy. Software Architec-
ture: Foundations, Theory, and Practice. Wiley, 2009.

[49] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus
Lumpe, Hayden Melton, and James Noble. The qualitas corpus: A curated
collection of java code for empirical studies. In 2010 Asia Pacific Software En-
gineering Conference, pages 336–345. IEEE, 2010.

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a2

API Evolution and Compatibility: A Data Corpus and Tool Evaluation · 23

About the authors

Kamil Jezek is a Postdoc at University of West Bohemia,
Plzen, Czech Republic. His research areas include compatibility,
program analysis and verification. He works on static recon-
struction of API from Java byte-code and its correctness checking.

Email: kjezek@kiv.zcu.cz
URL: http://relisa.kiv.zcu.cz/

Jens Dietrich is an Associate Professor at Massey University in
New Zealand. Jens research interests are in the areas of software
componentry and evolution and static analysis.

Email: J.B.Dietrich@massey.ac.nz
URL: https://sites.google.com/site/jensdietrich/

Journal of Object Technology, vol. 16, no. 4, 2017

mailto:kjezek@kiv.zcu.cz
http://relisa.kiv.zcu.cz/
mailto:J.B.Dietrich@massey.ac.nz
https://sites.google.com/site/jensdietrich/
http://dx.doi.org/10.5381/jot.2017.16.3.a2

	Introduction
	Related Work
	API Evolution
	API Analysis
	API Changes Categorisation
	Mitigation
	Miscellaneous

	Background: About Compatibility
	A Data Corpus to Study API Changes
	Methodology
	Structure
	Data Types
	Exceptions
	Generics
	Inheritance
	Members
	Access Modifiers
	Other Modifiers
	Miscellaneous

	Tool Evaluation
	Methodology
	Extendibility
	Results
	Tools and Community Size
	Threats to Validity

	Conclusion
	References
	About the authors

