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Background: Apigenin is known to have a broad-spectrum efficacy in oxidative stress and 
conditions due to inflammation, although weak absorption, fast metabolic rate and a fast 
elimination (systemic) limit the pharmacological efficacy of this drug. Hence, we propose the 
usage of highly bioavailable Apigenin-solid lipid nanoparticles (SLNPs) to recognize such 
limitations. The defensive function of Apigenin-SLNPs on renal damage induced by strep-
tozotocin (STZ) in animals was studied.
Materials and Methods: We initially injected the rats with 35 mg kg−1 streptozocin intraper-
itoneally, and after 7 days, the rats were then injected 150 mg kg−1 of metformin intragastrically 
followed by a once-daily intragastric dose of Apigenin-SLNP (25 or 50 mg kg−1) for 
a continuous period of 30 days. We then measured the level of insulin and blood glucose, 
superoxide dismutase, catalase and malondialdehyde in the tissues of the kidney. We also 
observed messenger-RNA expression of Interleukin-1β, Interleukin-6 and Tumor Necrosis 
Factor-alpha in renal tissue through RT-PCR technique. Moreover, H&E staining and Western 
blotting observed the histopathological variations and protein expression of nuclear factor 
erythroid 2-related factor 2/heme oxygenase/Nuclear Factor-κB signaling pathway, respectively.
Results: An enhancement in the expressing of nuclear factor erythroid 2-related factor 2 and 
heme oxygenase-1 and a suppression in the expression of Nuclear Factor-κB occurred due to 
Apigenin-SLNPs treatment, which was a result of the protective mechanism of Apigenin- 
SLNPs which is because of not only its anti-inflammatory function (by inhibition of release 
of inflammatory factors) but also their anti-oxidant activity (through reduction of lipid 
peroxidation production).
Conclusion: We found that a protective effect on diabetic nephropathy was shown due to 
Apigenin-SLNPs, in rats induced with streptozocin maybe through the pathway of nuclear 
factor erythroid 2-related factor 2/heme oxygenase-1/Nuclear Factor-κB.
Keywords: Apigenin-SLNPs, DN, Nrf2, HO-1, NF-κB

Introduction
Diabetes mellitus (DM) is a multi-dimensional metabolic disorder which is asso-
ciated with a deficit, wherein, the glucose utilization of the body and insulin 
homeostasis maintenance are affected. A chronic ruination, deterioration and an 
eventual breakdown of the organs mainly the eye, kidney, nerves and the cardio 
vascular system is a result of a constant hyperglycaemia. Globally, there are 

Correspondence: Yogendra Singh  
Email yogendra.singh12223@gmail.com

submit your manuscript | www.dovepress.com International Journal of Nanomedicine 2020:15 9115–9124                                               9115

http://doi.org/10.2147/IJN.S256494 

DovePress © 2020 Li et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

International Journal of Nanomedicine                                                 Dovepress
open access to scientific and medical research

Open Access Full Text Article

http://orcid.org/0000-0001-8125-7972
http://orcid.org/0000-0003-3254-1162
http://orcid.org/0000-0002-2058-255X
http://orcid.org/0000-0003-3908-2413
mailto:yogendra.singh12223@gmail.com
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php
http://www.dovepress.com


366 million DM patients and the numbers of new cases are 
predicted to double up by the year 2030.1 Diabetic nephro-
pathy (DN) is a common disorder that occurs because of 
both type 1 and type 2 DM and affects DM-associated 
mortality drastically. It is also responsible for renal dys-
function in high-income countries. The clinical assessment 
of DN is done through a five-stage criterion, wherein each 
stage features unique sets of functional and clinical altera-
tions along with alterations in the standard renal function 
markers.2 According to various studies, insulin resistance 
and the state of DM govern the production of oxidative 
stress to a large extent. Recent studies have suggested DN 
to be an inflammatory process and the progression of 
which can lead to implication of immune cells, even 
though the heamodynamic and metabolic factors are 
most common causative factors of DN.3–5 Mesangial 
expansion, alterations of extracellular matrix, tubulointer-
stitial renal fibrosis, and glomerulosclerosis are the leading 
pathological conditions of DN. This is due to the diverse 
adverse effects caused by chronic use of hyperglycemic 
drugs, and hence, plant sources with negligible adverse 
effects are now being considered in the development of 
hyperglycemic drugs.6 Phytoconstituents with a persuasive 
antioxidant property have proved to be a breakthrough 
remedy against DM. Also, they have been highly consid-
ered as source of biologically active substance (antioxi-
dants, anti-hyperglycemics and anti-hyperlipidaemics).7

Apigenin is a flavonoid naturally present in tea, berries, 
fruits, and vegetables. These have had various biological 
functions, like antioxidant and anti-inflammatory activity.8 

Apigenin was reported to be playing a protective role in 
oxidative-related disorders like CVD and neurology- 
related diseases. Apigenin alleviates myocardial toxicity 
by modulating oxidative stress and inflammation in myo-
cardial injury model reactive oxygen species (ROS) and  
malondialdehyde (MDA) decreased significantly in rat 
acrylonitrile-induced subchronic sperm injury.9–11 

Pharmacological studies have confirmed that Apigenin 
markedly inhibited glomerular mesangial cell prolifera-
tion, glomerulus hypertrophy, and extracellular matrix 
development and aggregation in DN patients and mice. 
Apigenin plays a multi-target role in DN treatment. Its 
low solubility, short half-life, low renal concentration, 
and minimal bioavailability hamper Apigenin uses.12 

Therefore, in laboratory animals, this research aimed to 
examine the attenuating effects of Apigenin-solid lipid 
nanoparticles(SLNPs) in diabetic nephropathy caused by 
streptozotocin (STZ) nicotinamide.

Materials and Methods
Chemicals
We obtained Apigenin and STZ from Sigma. Glucose, UA, 
Creat. and commercial kits were provided by Jiancheng 
Bioengineering Institute. Rest of the chemicals and 
reagents in use were of analytical grade.

Preparation of Apigenin-SLNPs
We used microemulsification method to prepare SLNPs. 
We then briefly placed a mixture of 45.45% Tween 80, 
0.58% PLPC, and water in a beaker which was then 
subjected to heat to a temperature to attain the lipid- 
melting point. We also melted Lipid (7.27%) at 
a temperature of 82°C to 85°C separately. We then added 
Apigenin (25 mg) aqueou phase containing Tween 80, 
later we dropped the hot aqueousemulsifier mix into the 
lipid melt all at once. This was done under magnetic 
stirring for obtaining a clear micro-emulsion. We then 
transferred hot microemulsion in cold water (~2°C) of an 
equal amount. This process was carried out under mechan-
ical stirring at a speed of 5000 rpm for a time period of 1.5 
hrs. The SLNPs are formed in aqueous medium by crystal-
lization of the hot droplets of lipid that are present in the 
microemulsion. The aqueous  SLNP dispersion that was 
prepared was refrigerated until further analysis.13

Characterization Studies of 
Apigenin-SLNPs
Nano-ZS ZEN 3600 measured the polydispersion (PDI), 
zeta potential, mean size, and size distribution of 
Apigenin-SLNPs using the dynamic light scattering tech-
nique. We measured the scattering frequency at 90° and 
25° angles. TEM investigated on the size of the Apigenin- 
SLNPs. We examined the morphology of the Apigenin- 
SLNPs by using SEM. We then viewed SEM images of 
Apigenin-SLNPs by a Scanning Electron Microscope.

Evaluation of Apigenin-SLNPs 
Encapsulation Efficiency
We determined the nanoformulation encapsulation- 
efficiency as the percent of Apigenin trapped in the nanopar-
ticles. We then dissolved 25 mg of Apigenin nanoparticles 
with 1 mL of 90% methanol, further subjected to sonication 
for 5 mins in order to cause disruption of the nanoparticles 
and release encapsulated Apigenin. The resulting solution at 
10,000xg was centrifugated and we then gathered the 
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supernatant. Supernatant absorption was read to quantify 
Apigenin at 425 nm in a spectrophotometer.14

In vitro Drug Release
Apigenin-SLNPs were screened with a dialysis bag tech-
nique for the in vitro discharge profile. In short, a 25 mg 
Apigenin-SLNPs in PBS (2 mL) were suspended and 
moved to a dialysis bag (molecular weight 12,000–-
14,000Da). We secured the pocket with pins which were 
held in a bottle at 50 mL phosphate buffer saline (pH 7.4) 
with 1% of polysorbate 80 under steady agitation at 
a speed of 100 rpm. One millilitre PBS has been removed 
at 1 hr intervals and spectrometric tests of Apigenin have 
been conducted at 425 nm. After each removal, we intro-
duced 1 mL new phosphate buffer saline in the container 
to preserve fluid circumstances.15

Experimental Design
Animals
We acquired adult rats (male) weighing 180 to 200 gm 
from the animal house of Zhengzhou Central Hospital, 
China. We then allowed them to adapt to a new environ-
ment for 5 days. We maintained the animals in a 12 hr 
light-dark natural cycle at an ambient temperature of 24 ± 
1°C. The animals were given a standard diet and water ad 
lib. We obtained approval from Zhengzhou University 
Committee on Animal Care, also we followed all the 
procedures as per the legislation of China on the use and 
care of experimental animals and the guidelines given by 
Institute for Experimental Animals of Zhengzhou Central 
Hospital.

Induction of Diabetes
To prepare diabetic models, we injected the rats with 35 mg 
kg−1 of STZ intraperitoneally, which was made in 0.1 
M citrate buffer with a pH of 4.4. Alongside, we adminis-
tered the same amount of citrate buffer to the control group 
(n=10). We collected the blood sample from the orbital 
venous plexus. Post 7 days of streptozocin, we estimated 
their levels of blood glucose with the help of a kit. For further 
study, we only selected animals who had a blood glucose 
level ≥11.1 mmol L−1. We randomly divided the rats with 
DM into four groups having 10 rats in each group. The 
groups were: Streptozocin group, Streptozocin + Metformin 
(150 mg kg−1) group, Streptozocin + Apigenin-SLNPs 
(25 mg kg−1) group, and Streptozocin + Apigenin-SLNPs 
(50 mg kg−1) group. On confirmation of DM in the rats, we 
administered them with Metformin (150 mg kg−1), Apigenin- 

SLNPs (25 mg kg−1) or Apigenin-SLNPs (50 mg kg−1) 
intragastrically, once daily for 30 days consecutively. 
Control and Streptozocin group were simultaneously given 
equal volume of distilled water. When the experiment period 
was completed, we sacrificed the rats after the rats were 
given anesthesia (urethane 20%). We obtained blood sam-
ples, which were kept for 20 mins at ambient temperature, 
meanwhile the clots formed. The samples were further sub-
jected to centrifugation at a speed of 3000 rpm for a period of 
10 mins. For histopathological examination, we excised three 
renal tissues and then fixed in neutral buffered formalin 
(10%). Remaining tissues of the kidney were preserved at 
−70°C till further usage.16,17

Measurements of Blood Glucose and 
Insulin
Determination of insulin and blood glucose in the serum 
was done by the aid of glucose and ELISA kit as per the 
protocol of the manufacturer.

Superoxide Dismutase (SOD), Catalase 
(CAT), and MDA Measurement in Renal 
Tissue
We determined the renal tissues’ Catalase, superoxide dis-
mutase, and malondialdehyde levels with the help of pur-
chased test kits purchased. We carried out all the 
procedures in accordance to the manual.18

qRT-PCR
Total RNA were subjected to isolation from kidney sam-
ples we prepared with the use of guanidinium thiocyanate 
reagent. By RT, complementary DNA was synthesized in 
accordance to the protocol of the manufacturer. We per-
formed qRT-PCR with a std. Synergy Brands, Inc. green 
Polymerase Chain Reaction kit, we also performed a PCR 
amplification which was gene specific by the use of ABI 
7300. We calculated levels of relative gene expression by 
the use of 2-ΔΔCt methodology after normalizing the 
levels of messenger RNA of GAPDH. Primers used for 
real-time PCRs are as follows: Tumor Necrosis Factor- 
alpha, Fwd: 5ʹ-ACTTTGGAGTGATCGGCCCC-3ʹ; Rev: 
5ʹ-TTCTGTGTGCCAGACACCCTA-3ʹ, IL-6, Fwd: 5ʹ- 
CCTTCTCCACAATACCCCCAGG-3ʹ; Rev: 5ʹ- TGTGC 
CCAGTGGACAGGTTT-3ʹ and IL-1β, Fwd: 5ʹ- ACCTG 
AGCTCGCCAGTGAAAT-3ʹ; Rev: 5ʹ-ACCCTAAGGC 
AGGCAGTTGG-3ʹ, GAPDH, Fwd: 5ʹ- TGGGGTGA 
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TGCAGGTGCTAC-3ʹ; Rev: 5ʹ- GGACACGGAAGGCC 
ATACCA-3ʹ.19

Histopathological Changes
We harvested the kidney tissue longitudinally and was fixed in 
paraformaldehyde (4%), embedded with paraffin and sliced 
into sections (4-µm) and then stained with H&E staining, we 
then observed this under an optical microscope. We examined 
deep coronal section with the help of a microscope, which was 
then graded as per the magnitude of damage which was based 
on the % involvement of the kidneys. We graded the damage 
quantification from ten areas corresponding to the renal PT by 
use of following parameters: tubular cell necrosis, cytoplasmic 
vacuole formation, hemorrhage, and tubular dilatation.20

Western Blot
Western Blot
We performed western blot as mentioned previously. 
Shortly, 150 μg protein aliquots from the supernatant of 
the tissue of the kidney were run on SDS-PAGE (10%). 
We blocked bull serum albumin (3%) in 0.2% to 0.4% 
TBST for 1 hr. After doing so, we incubated the mem-
branes at 4°C overnight with primary Ab against active 
TAT-14 Peptide, Heme Oxygenase-1, and NFKB and later 
with alkaline phosphatase-conjugated secondary Ab. We 
developed the membranes by 5-b-romo-4-chloro-3-indolyl 
phosphate/nitroblue tetrazolium. We stained the blots with 
an anti-β-actin Ab. The protein levels were then normal-
ized concerning β-actin band density. We measured the 
Ag-Ab products by Thermo Scientific Super Signal West 
Pico Chemiluminescent Substrate. We analyzed the result 
with a Fluor Chem system.21

Statistical Analysis
We expressed the data as mean ± SEM. We used ANOVA 
to evaluate the difference between the groups by using 
Tukey’s multiple comparison test (significance p value 
< 0.05).

Results
Characterization of Prepared 
Apigenin-SLNPs
SEM, TEM, and light dynamics were used to execute the 
Morphology and Distribution of the Apigenin-SLNPs. The 
prepared Apigenin-SLNPs are small, compact spheres 
with an average size of 152.7 ± 7.04 nm of particles as 
shown in Figures 1 and 2 and have a zeta potential of 
52.18±3.9 mV and 0.692 PDI. Apigenin-SLNP’s encapsu-
lation performance was 78.90%. Figure 2B shows the 
quantity of the released drug against time for Apigenin- 
SLNPs. The average release rate of a medication up to 24 
hrs is 71.52% with a rapid release of 34.28% in 5 hrs. 
Thereafter, the percentage release over 24 hrs was steadily 
increased.

Apigenin-SLNPs Effect on Insulin and 
Blood Glucose
Table 1 shows, insulin and blood glucose levels in 
diabetic animals induced by STZ were suggestively 
greater as compared to controls (p value<0.001). 
Comparatively, Apigenin-SLNP (25 and 50 mg kg−1) 
and metformin therapies effectively reduced level of 
glucose in the blood and increased insulin levels in 
rats given Streptozocin (significance p<0.05, <0.01, 
and <0.001). Such findings show that diabetic rats are 

Figure 1 (A) SEM micrographs of the Apigenin-SLNPs, (B) TEM image of Apigenin-SLNPs. 
Abbreviations: SEM, scanning electron microscope; TEM, transmission electron microscope; SLNPs, solid lipid nanoparticles.
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induced by STZ, and Apigenin-SLNPs exhibited anti- 
diabetic properties.

Apigenin-SLNPs Effect on Oxidative 
Stress
Lipid peroxidation was measured by measuring SOD, 
catalase as well as MDA. Table 2 shows the stimulation 
of streptozocin markedly reduced superoxide dismutase 
and catalase activities (p value <0.001). Thus, Apigenin- 
SLNPs (25 and 50 mg kg−1) as well as metformin thera-
pies were successful in restoring superoxide dismutase and 
catalase levels (significant p<0.05, <0.01, and <0.001). 
Furthermore, STZ treatment revealed a remarkably strong 
MDA amount (p<0.01). On the opposite, prescribing 
Apigenin-SLNPs (25 and 50 mg kg−1) and metformin 
dramatically reduced MDA quality (p value <0.05, 
<0.01, and <0.001). Our findings have shown these 
Apigenin-SLNPs could decrease oxidative-stress STZ- 
induced diabetic rats.

Effect of Apigenin-SLNPs on Interleukin- 
6, Interleukin-1β, and Tumor Necrosis 
Factor-Alpha mRNA Expression
For STZ-administered rats, Interleukin-6, Tumor Necrosis 
Factor-alpha and Interleukin-1β mRNA expression were 
expressively up-regulated (p<0.001) in contrast with con-
trol rats. Thus, Apigenin-SLNPs (25 and 50 mg kg−1) and 
metformin therapies are significantly down-regulated (p 
value< 0.05, < 0.01, and < 0.001) Interleukin-6, Tumor 
Necrosis Factor-alpha and Interleukin-1β mRNA expres-
sion relative to diabetic rats induced by STZ (Figure 3).

Apigenin-SLNPs Effect on Renal Tissue 
Histopathology
Apigenin-SLNPs defensive function in physiological dys-
function, H&E staining was assessed. Histological analysis 
of control-group renal tissue revealed normal cell architec-
ture. Conversely, diabetic rat kidneys showed extreme tub-
ular necrosis, mild glomerular dilation, and interstitial 
inflammation. Nonetheless, Apigenin-SLNPs and metformin 
attenuated the extent of renal damage. Analytical results 
showed that Apigenin-SLNPs strengthened the histopatho-
logical status of streptozocin-induced DN (Figure 4).

Apigenin-SLNPs Effect on Proteins 
Expression of TAT-14 Peptide, NRKB and 
Heme Oxygenase-1
In the antioxidant reaction, TAT-14 Peptide/heme oxyge-
nase-1 has a crucial role. To examine if TAT-14 Peptide 
and heme oxygenase-1 expression are intertwined with the 
defensive effects of Apigenin-SLNPs on STZ-induced oxi-
dative damage to the kidneys. As predicted, NF-kB protein 

Figure 2 (A) DLS analysis of the Apigenin-SLNPs, and (B) in vitro release profile of Apigenin-SLNPs. 
Abbreviations: DLS, dynamic light scattering; SLNPs, solid lipid nanoparticles; STZ, streptozotocin.

Table 1 Effects of Apigenin-SLNPs on Blood Glucose and Insulin

Treatment 
Groups

Blood Glucose 
(mmol/L)

Serum Insulin 
(ng/mL)

Control 06.83±1.93 09.04±1.73

STZ 13.84±1.82z 4.92±2.83z

Metformin 07.02±1.03c 10.92±1.04c

STZ+Apigenin- 

SLNPs (25)

10.55±1.78a 10.05±1.92b

STZ+Apigenin- 

SLNPs (50)

07.14±1.21c 7.60±1.21c

Notes: Values are expressed as means ± SEM. Compared with control: zP < 0.001; 
compared with STZ: aP < 0.05, bP < 0.01 and cP < 0.001. 
Abbreviations: Apigenin-SLNPs, Apigenin-solid lipid nanoparticles; STZ, 
streptozotocin.
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expressions have increased substantially, whereas diabetic 
rats caused by STZ expressions of Nrf2 and HO-1 have 
been substantially reduced relative to control (P<0.001). 
Thus, Apigenin-SLNPs (25 and 50 mg kg−1) and metfor-
min therapies effectively reduce controlled protein expres-
sion of NF-πB and TAT-14 Peptide and heme oxygenase-1 
regulated expression in support of diabetic rats caused by 
STZ (p value <0.05, <0.01, and <0.001), as seen in 
Figure 5.

Discussion
Apigenin was encapsulated into SLNP through the micro-
emulsification method. We placed 45.45% Tween 80, 
0.58% PLPC, and water together in a beaker which was 

subjected to heat till it attained lipid melting temperature. 
We also melted 7.27% lipid at a temperature of 82°C to 
85°C separately. We then added Apigenin to the aqueous 
phase that contained Tween 80, after which we dropped 
the hot aqueous  emulsifier mixture into the lipid melt 
under continuous magnetic stirring in order to get 
a microemulsion which is visibly clear and is more advan-
tageous than using Apigenin alone. An improvement in the 
biodistribution, elevated sensitivity and specificity, and 
reduced pharmacological toxicity can be attained by mod-
ification to nanoparticle. The obtained nanoparticles in our 
study had a particle size of 152.7 ± 7.04 nm, the small 
particle size may increase its antioxidant and anti- 
inflammatory properties.

Table 2 Effects of Apigenin-SLNPs on MDA, SOD and CAT

Treatment Groups MDA (nmol/mg prot) SOD (U/mg prot) CAT (U/mg prot)

Control 1.93±0.04 79.61±3.28 17.27±1.72
STZ 4.89±0.18z 20.88±1.04z 6.03±1.00z

Metformin 1.98±0.49c 75.81±3.05c 16.77±1.32c

STZ+Apigenin-SLNPs (25) 3.05±0.08a 58.26±3.29b 10.04±1.72a

STZ+Apigenin-SLNPs (50) 2.02±0.50c 72.90±3.81c 14.28±1.04b

Notes: Values are expressed as means ± SEM. Compared with control: zP < 0.001; compared with STZ: aP < 0.05, bP < 0.01 and cP < 0.001. 
Abbreviations: Apigenin-SLNPs, Apigenin-solid lipid nanoparticles; CAT, catalase; MDA, malondialdehyde; SOD, superoxide dismutase; STZ, streptozotocin.

Figure 3 Effect of Apigenin-SLNPs on the expression of inflammatory cytokines (IL-1β, IL-6 and TNF-α) in the kidney of STZ treated rats. 
Notes: (A) The mRNA expression of IL-1β, IL-6 and TNF-α in the kidney tissue of each group was measured by RT PCR. (B) Bands of each group were scanned, and the 
data are expressed as the fold change vs the control group. Values are expressed as means ± SEM. Compared with control: zP < 0.001; compared with STZ: aP < 0.05, bP < 
0.01 and cP < 0.001. 
Abbreviations: GAPDH, glyceraldehyde 3-phosphate dehydrogenase; IL-6, Interleukin-6; IL-1β, Interleukin-1β and TNF-α, Tumor Necrosis Factor-α; RT PCR; reverse 
transcription polymerase chain reaction; SLNPs, solid lipid nanoparticles; STZ, streptozotocin.
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DM is a common disorder related to metabolism and has 
a partial relation to the lipid peroxidation derangements. 
Pancreatic cell apoptosis is caused due to streptozocin, and 
hence makes it an experimental model for inducing 
T1DM.22,23 In our study, the protective effect of Apigenin- 
SLNPs on the kidney injury of streptozocin-induced 

diabetic rats is by its anti-oxidative and anti-inflammatory 
properties.24 Streptozocin-induced diabetic model was con-
firmed to be a well-established model due to elevated levels 
of blood glucose and insulin. Also, the levels of blood 
glucose and insulin were decreased by Apigenin-SLNPs 
treatment which indicated it to possess a protective shield 

Figure 5 Effect of Apigenin-SLNPs on the protein’s expression of Nrf2, Nf-kB and HO-1 in the kidney of STZ treated rats. 
Notes: (A) The protein’s expression of Nrf2, Nf-kB and HO-1 in the kidney tissue of each group were measured by Western blot technique. (B) Bands of each group were 
scanned, and the data are expressed as the fold change vs the control group. Values are expressed as means ± SEM. Compared with control: zP < 0.001; compared with STZ: 
aP < 0.05, bP < 0.01 and cP < 0.001. 
Abbreviations: HO-1, heme oxygenase-1; NF-κB, nuclear factor-κB; and Nrf2, nuclear factor erythroid 2-related factor 2; SLNPs, solid lipid nanoparticles; STZ, 
streptozotocin.

Figure 4 Apigenin-SLNPs effect on histopathological changes of renal tissue. 
Notes: H&E staining of kidney sections. The kidney from control (A), STZ (B) showed extreme tubular necrosis, mild glomerular dilation, and interstitial inflammation, 
Metformin (C), and Apigenin-SLNPs 25 and 50 mg/kg (D and E) revealed normal cell architecture. Blue arrow mark showing a infiltration of cells. (F) Histopathological 
scoring. Values are expressed as means ± SEM. Compared with control: zP < 0.001; compared with STZ: aP < 0.05, and cP < 0.001. 
Abbreviations: H&E; hematoxylin and eosin; SLNPs, solid lipid nanoparticles; STZ, streptozotocin.
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against DM.25,26 At the same time, the study of histopathol-
ogy of streptozocin-stimulated renal sections showed grave 
degeneration of the tubules (necrosis), glomerular dilatation 
(moderate), thickening of the vascular wall and inflamma-
tion of the interstitium. These alterations were reduced by 
Apigenin-SLNPs. The results on the whole suggested the 
efficacy of Apigenin-SLNPs over streptozocin-challenged 
diabetic rats.

An imbalance between oxidants and antioxidants is 
known to cause Oxidative stress. The ROS which was 
accumulated could have an interaction with fatty acids 
(polyunsaturated) leading to lipid peroxidation formation 
in the renal tissues. This could ultimately result in damage 
and toxicity.27 The fact that oxidative stress is the major 
factor for DM-related complications including DN is 
acknowledged widely.28,29 The membrane fatty acid (poly-
unsaturated) is degraded by ROS and leads to production 
of 4-HNE and MDA, which is an unstable aldehyde that 
could form a covalent protein adduct which is a trait of 
oxidative stress in tissue injuries. Superoxide dismutase 
and catalase are free radical scavenging enzymes, which 
act as the first defense line against oxidative damage in 
mammals. The oxidation/reduction/conversion of SOD 
radicals (O2−) to molecular O2 and hydrogen peroxide is 
catalyzed by superoxide dismutase. There is evidence of 
existence of a close association of superoxide dismutase 
and malondialdehyde with DN. Catalase is considered to 
be a prominent antioxidant in the kidneys that are respon-
sible for the elimination of hydrogen peroxide and also 
guards the tissues from the reactive OH− radicals.30,31 

Studies in the past have shown an accelerated kidney 
injury in DM due to catalase deficiency due to deficiency 
of the peroxisome. The result of our study confirms the 
role of Apigenin-SLNPs in an increase in activity of super-
oxide dismutase and catalase and also reduced levels of 
malondialdehyde in the renal tissues of rates stimulated 
with streptozocin.

Besides, the anti-inflammatory effect of Apigenin-SLNPs 
was validated from the mRNA expression of cytokines from 
renal tissues. mRNA level of Interleukin-6, Tumor Necrosis 
Factor, and Interleukin-1β were highly stimulated in renal 
tissues of diabetic rats, whereas Apigenin-SLNPs treatment 
decreased the level as that of normal rats. Studies have shown 
that Interleukin-6 has a major function in leukocyte recruit-
ment, apoptosis, and activation of T-lymphocyte.32,33 Also, 
Tumor Necrosis Factor is known to stimulate neutrocytes for 
transcribing and releasing of cytokines and chemokines 
biosynthesis.34 Inhibiting Tumor Necrosis Factor-alpha, 

Interleukin-1β, and Interleukin-6 release may decrease 
inflammation. Nuclear Factor-κB has a major role in the 
nephropathy (pathophysiologically) in rats with DM with 
inflammation and oxidative stress. Activation of Nuclear 
Factor-κB expression is positively related to the expression 
of Tumor Necrosis Factor-alpha, Interleukin-1β, and 
Interleukin-6. The property of heme oxygenase-1 to 
catabolize free heme and also to produce CO is responsible 
for its inherent anti-inflammatory property by up-regulation 
of Interleukin-10. Nuclear factor erythroid 2-related factor 2 
is an important regulator of antioxidative defence pathway 
which can be activated by diabetes and DN.35,36

An earlier study has shown that the enhancement of 
Nuclear factor erythroid 2-related factor 2/heme oxygenase- 
1 pathway has shown an anti-apoptosis activity and also that 
activating Nuclear factor erythroid 2-related factor 2 could 
lead to induction of heme oxygenase-1 expression.37 From 
the current study, we inferred that there was a down- 
regulation in the expression of Nuclear factor erythroid 
2-related factor 2 and heme oxygenase-1 whereas, there 
was an up-regulation in the expression of Nuclear Factor- 
κB in rats with DM.10 Treatment with Apigenin-SLNPs 
improved Nrf2 and HO-1 expression and reduced NF-kB 
activity, suggesting that Apigenin-SLNP protection is based 
on its anti-inflammatory activity by decreasing the develop-
ment of LPO by preventing the pro-inflammatory factors 
release and its anti-oxidant activity, which is likely dependent 
on controlling activated IL-6, IL-1β, TNF-α and NF-κB 
through Nrf2/HO-1 signaling pathway on DN induced 
by STZ.

Conclusion
Our results showed that Apigenin-SLNPs possessed 
a protective effect by reducing the OS and inflammation 
which might be through the Nuclear factor erythroid 
2-related factor 2/heme oxygenase-1/Nuclear Factor-κB 
signaling pathway. More studies are needed for the 
exploration of clinical application of Apigenin-SLNPs.
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