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ABSTRACT Designing resource-efficient deep neural networks (DNNs) is a challenging task due to the

enormous diversity of applications as well as their time-consuming design, training, optimization, and

evaluation cycles, especially the resource-constrained embedded systems. To address these challenges,

we propose a novel DNN design framework called accuracy-and-performance-aware neural architecture

search (APNAS), which can generate DNNs efficiently, as it does not require hardware devices or simulators

while searching for optimized DNN model configurations that offer both inference accuracy and high

execution performance. In addition, to accelerate the process of DNN generation, APNAS is built on a weight

sharing and reinforcement learning-based exploration methodology, which is composed of a recurrent neural

network controller as its core to generate sample DNN configurations. The reward in reinforcement learning

is formulated as a configurable function to consider the sample DNNs’ accuracy and cycle count required to

run on a target hardware architecture. To further expedite the DNN generation process, we devise analytical

models for cycle count estimation instead of running millions of DNN configurations on real hardware.

We demonstrate that these analytical models are highly accurate and provide cycle count estimates identical

to those of a cycle-accurate hardware simulator. Experiments that involve quantitatively varying hardware

constraints demonstrate that APNAS requires only 0.55 graphics processing unit (GPU) days on a single

Nvidia GTX 1080Ti GPU to generate DNNs that offer an average of 53% fewer cycles with negligible

accuracy degradation (on average 3%) for image classification compared to state-of-the-art techniques.

INDEX TERMS Neural architecture search, neural processing arrays, embedded systems, accelerator,

performance, accuracy, efficiency, machine learning, deep learning, DNN, deep neural networks, CNN,

convolutional neural network.

I. INTRODUCTION

The accuracy offered by state-of-the-art deep neural net-

works (DNNs) has led to their use in a variety of arti-

ficial intelligence applications, including object detection,

speech recognition, event detection, machine translation,

and autonomous driving [1]–[10]. Advancements in DNNs

The associate editor coordinating the review of this manuscript and

approving it for publication was Byung Cheol Song .

coupled with the evolution of specialized DNN hardware

accelerators have led to the application of high-accuracy

DNNs not only in cloud-based services, but also in a num-

ber of embedded applications such as autonomous driving,

robotics, surveillance, and wearable healthcare [11]–[13].

However, due to large differences in resource availability

with the cloud-based systems, deploying DNNs on embedded

systems requires redesigning the DNNs with several opti-

mizations, such as (iterative) pruning and quantization with
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FIGURE 1. Motivational examples for proposed accuracy-and-
performance-aware neural architecture search (APNAS) framework
(a) Execution time required to process AlexNet and ResNet-50 on a CPU
and GPU with a batch size of 64 (data taken from [24]); (b) overview of
design space exploration by conventional neural architecture search
techniques (e.g., [17], [19], [20], [22]) and proposed APNAS method.

potentially multiple rounds of re-training, to meet the con-

straints of the underlying hardware architectures [14]–[16].

Redesigning DNNs is a time-consuming task, as designers

must explore a large number of parameters to achieve both

satisfactory accuracy and real-time processing (i.e., the short

execution time [15]).

Up to now, many specialized DNNs have been designed

that offer high accuracy for specific application domains. For

example, convolutional neural networks (CNNs) are designed

for image classification and object detection tasks, while

recurrent neural networks (RNNs) are designed for speech

recognition tasks. Even among specialized DNNs, there exist

multiple sub-types of DNNs, and there is no golden rule for

selecting a DNN to achieve the highest accuracy. Moreover,

each DNN has numerous hyper-parameters (e.g., number of

layers and number of filters in each layer) that can be tuned

to achieve higher accuracy. Therefore, several neural archi-

tecture search (NAS) techniques have been proposed to effi-

ciently explore this enormous design space based on various

search algorithms, such as reinforcement learning (RL) [17],

[18], gradient descent [19], and Bayesian optimization [20].

These studies demonstrated that automatically generated

DNNs can outperform several manually designed DNNs

in terms of accuracy. However, because most studies on

NAS [17]–[20] considered only accuracy, the generated

DNNs may be computationally expensive. This may result in

a long execution time, which is particularly problematic for

resource-constrained embedded platforms. Although several

recent studies on NAS considered both accuracy and com-

putation amount (or execution time) [21]–[23], they required

time-consuming evaluation by a hardware device or simu-

lator, resulting in a very long exploration time, which can

significantly delay design and deployment cycles. This is

especially problematic in the context of tight time-to-market

requirements and escalating competition. As a result, there

is a need for analytical models that estimate the computation

amount of the target hardware and that can be integrated in

an efficient NAS framework.

The focus on NAS techniques in this study is motivated

by the fact that different DNN designs have different compu-

tational efficiency on different hardware architectures even

with similar accuracy. For example, Fig. 1(a) presents the

execution time required to process two well-known DNNs

(AlexNet and ResNet-50) on a central processing unit (CPU;

Intel Xeon E5-2687W) and graphics processing unit (GPU;

NVIDIA Tesla K80). As illustrated in this figure, AlexNet

is faster than ResNet-50 on a CPU, whereas ResNet-50 is

faster than AlexNet on a GPU. From these results, it can be

inferred that designing a single unified DNN for all hardware

platforms is not feasible.

Moreover, to achieve the highest accuracy while satisfy-

ing user-defined constraints, DNNs must be designed con-

sidering the architectural characteristics of the underlying

hardware devices. Clearly, using manual DNN designs to

achieve not only high accuracy but also computational effi-

ciency for each combination of target application and under-

lying hardware architecture is impractical. To address the

aforementioned challenges, it is essential to develop a new

hardware-aware NAS technique that can efficiently evaluate

both accuracy and execution time to accelerate DNN explo-

ration while encompassing the diversity of applications and

underlying (resource-constrained) hardware architectures.

Furthermore, to expedite the search process, it is necessary

to employ analytical models for estimating the computation

amount of the target hardware.

In this paper, we propose a novel NAS framework

called accuracy-and-performance-aware neural architec-

ture search (APNAS), which considers both accuracy and

performance1 to automatically generate DNNs suitable for

neural hardware accelerators in resource-constrained embed-

ded systems without the need for hardware devices or

time-consuming simulators. Our framework leverages the

features of efficient neural architecture search (ENAS) [18],

which is a framework for reducing the search time for NAS.

As a result, we are able to perform a fast search for DNNs.

This work focuses on neural processing array-based hard-

ware architectures, as they have been intensively studied to

efficiently accelerate DNNs [25]–[29]. We focus mainly on

CNNs, which are widely used owing to their remarkable

accuracy in image classification and recognition applica-

tions [30]–[33].

Fig. 1(b) illustrates the main differences in design goals

between conventional NAS techniques [17]–[20] and our

APNAS framework. Whereas conventional NAS techniques

mainly aim to obtain models with high accuracy (i.e., ‘‘Tar-

get1’’ in the figure), our APNAS framework aims to obtain

models that achieve fewer computations with comparable

accuracy to models sought by conventional NAS (i.e., both

‘‘Target1’’ and ‘‘Target2’’ in the figure). In APNAS, we for-

mulate theNAS based onRL, which utilizes a RNN controller

as its core. The RNN is responsible for generating sample

DNNs, which are then evaluated to compute the reward in

RL. To define this reward, we use the cycle count required

to execute a CNN on a neural processing array-based hard-

ware accelerator as the performance metric in addition to

1Hereafter, we use performance to indicate the execution time.
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the accuracy. To estimate the cycle count, we propose new

analytical models based on the characteristics of the underly-

ing hardware architecture and the CNN model. These char-

acteristics enable accurate estimation without the need for

time-consuming hardware simulations. A tunable parameter

is introduced in the reward to enable a trade-off between accu-

racy and performance according to the system/user require-

ments. It is also worth noting that our framework can model

hardware constraints and can thus be easily applied to neural

processing array-based hardware architectures of different

sizes.

In our evaluation, we generated CNNs by APNAS for

two different image classification datasets (CIFAR-10 and

CIFAR-100) for two different hardware resource constraints

with a neural processing array size of 8 × 8 and 16 × 16.

We demonstrated that APNAS successfully generated CNNs

that were aware of both validation accuracy and computa-

tional complexity. When compared to a manually designed

CNN (i.e., ResNet [4]), APNAS generated CNNs that

required on average 52.78% and 53.57% fewer cycles with

only 3.43% to 2.65% average accuracy degradation on the

CIFAR-10 and CIFAR-100 datasets, respectively. Moreover,

APNAS required only 0.55 GPU days on Nvidia GTX 1080Ti

GPU to search for themodel, which is significantly faster than

the performance of state-of-the-art NAS techniques. Through

extensive evaluations using different parameter settings for

the reward function and in-depth analyses of the results,

we also provide useful findings and a discussion of the effects

of the parameter settings on the trade-off between the accu-

racy and performance of the generated CNNs.

In summary, the main features and contributions of

APNAS are as follows:

• APNAS can efficiently search for CNNs for the target

hardware architecture from two aspects. First, unlike

existing NAS techniques that utilize time-consuming

evaluation on the target hardware device or its simulator,

our method does not require such evaluation. Instead,

we propose an analytical model that provides an abstract

yet accurate estimation of the performance (i.e., cycle

count) required for the inference of a CNN on neu-

ral processing array-based hardware. Second, among a

variety of NAS techniques, our method also leverages

features from approaches such as ENAS to accelerate

the exploration. Integrating these techniques makes it

possible to search for hardware-aware CNNs faster than

other hardware-aware NAS techniques.

• In the reward function of the RNN controller, we intro-

duce a tunable parameter to configure the trade-off

between the accuracy and the performance of the gen-

erated DNNs.

• We present useful findings and observations by varying

different parameters that construct our proposedmodels.

By analyzing the generated CNNs in detail, we discuss

potential improvements for efficiently exploring a wider

design space to achieve a better accuracy/performance

trade-off in a reasonable exploration time.

FIGURE 2. Proposed accuracy-and-performance-aware neural
architecture search (APNAS) framework, where novel contributions in the
blue box correspond to the red dashed boxes.

The remainder of this paper is organized as follows. First,

Section II briefly reviews the fundamentals of the neural pro-

cessing array-based hardware architecture and existing NAS

techniques. Then, Section III presents an overview of the

proposed APNAS and our analytical model for cycle count

estimation of a neural processing array-based hardware archi-

tecture. Section IV evaluates the effectiveness of APNAS

against manually designed CNNs and existing NAS tech-

niques, and proposes directions for future research. Finally,

Section V concludes the paper.

II. PRELIMINARIES

In this section, we provide an overview of the neural process-

ing array-based hardware that is focused on as DNNhardware

architecture in this paper, followed by recent studies NAS

algorithms.

A. NEURAL PROCESSING ARRAY-BASED DNN HARDWARE

ARCHITECTURE

Neural processing array-based hardware architectures are

a type of domain-specific architectures that mainly aim

to accelerate matrix-multiplication-based applications. The

core unit, which is neural processing array (NPA), is com-

posed of a two-dimensional network of homogenous pro-

cessing elements (PEs). Each PE is composed of an adder,

multiplier, and several local registers, and communicates

with only its neighboring PEs/inputs. The PEs are orches-

trated in a pipelined manner while each PE performs a

multiply-accumulate (MAC) operation on the received data

and stores the result (i.e., partial sum) in its local output

register. This partial sum is then transferred to one of the

neighboring PEs in the next clock cycle to be used in the

subsequent MAC operation.

There are several types of NPAs depending on the dataflow

exploited for processing. Two commonly used dataflows are

as follows: (i) weight-stationary, where the weights are kept

stationary inside the PEs for MAC operations [34]–[39]; and

(ii) output-stationary, where the partial sums of the outputs

are kept inside the PEs to minimize the data movement

cost [40]–[42]. Weight-stationary dataflow is often adopted

for recent NPAs, such as the tensor processing unit (TPU)

developed by Google [25].

Our work also focuses on a weight-stationary dataflow-

based NPA, such as the massively-parallel neural array

(MPNA) accelerator [27], which is composed of a

smaller-scale NPA suitable for embedded systems. Fig. 3
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FIGURE 3. Overview of core modules of a neural processing array.

provides a brief overview of the key units constituting the

accelerator: A©, the weight buffer; B©, the input buffer; C©, the

M×N NPA; D©, the accumulator unit; E©, the activation unit;

and F©, the pooling/normalization unit.

Here, we describe the operation of the weight-stationary

NPA starting from A©. The weights are loaded in the NPA

through vertical connections and are kept stationary inside the

PEs for the corresponding computations, where weights from

a single filter are mapped to the same column of the NPA. The

number of weights in a filter is given as k × k × cin, where

k × k is the kernel size and cin is the number of channels in

the input. If the number of weights in a filter is larger than

the number of rows M in the NPA, the filter is divided into

multiple segments of (at most) M elements each. Note that

segments from N different filters that use the same input are

mapped to the NPA together to exploit parallelism.

In B©, the inputs to the PE array are first pre-processed to

acquire the shape required by the NPA to perform a matrix

multiplication operation. For an input of size w × h and a

filter with kernel size k × k , each input block of size k × k

(highlighted in gray in B©) is flattened into a column of the

new matrix and stacked from right to left. In other words, the

rightmost column of the inputs is the first group of data that

are used for processing in C©.

The inputs are then fed to C© from top to bottom in a

pipelined manner. For example, the first input, X11, is fed to

the top-left PE11 and multiplied by the weight W 1
11 in the

first cycle. In the second cycle, PE21 receives PE11’s output

(i.e., W 1
11 · X11) and the new input, X12. At the same time,

PE12 receives the first input (i.e., X11) from PE11. Each

PE performs a MAC operation individually: PE11, PE21,

and PE12 perform W 1
11 · X21, W

1
11 · X11 + W 1

12 · X12, and

W 2
11 · X11, respectively. Similarly, data transfer is repeated

from the top-left to right-bottom of C©. Because all of the PEs

work in parallel, the same number of MAC operations can be

performed in one cycle as the number of PEs.

The accumulation results of all columns (i.e., results of

PEM#, where #=1, · · · ,N ) are all accumulated in D©. Then,

the activation function is performed in E©, followed by the

pooling and normalization on the results in F©. The generated

results of one convolutional layer of a DNN are then used as

input to the next layer, and the same process is repeated for

processing.

B. ENAS: EFFICIENT NEURAL ARCHITECTURE SEARCH

A variety of techniques have been studied to automate

DNN design for specific classification tasks. Among various

automation techniques, NAS [17] was the first work, where

an RNN was used to generate DNN models and was trained

with RL using a reward function. We note that here, archi-

tecture represents model to define the detailed structure and

should not be confusedwith hardware architecture in comput-

ing platforms. In NAS, the RL reward function considers the

validation accuracy of the generated model so that the RNN

can learn to generate better neural networks that offer higher

validation accuracy. Although NAS provided a breakthrough

in complex DNN design, it had a critical bottleneck in search

time, which grew exponentially longer with an increase in the

exploration parameters.

Therefore, subsequent studies aimed to accelerate

the search using various approaches. For instance, an

evolutionary-algorithm-based technique repeatedly performs

tournament selection from promising models, resulting in

6.67× speedup in [43]. Sequential model-based optimization

learns a surrogate model to guide the search to enable 8.89×

speedup in [20]. Gradient-based optimization techniques,

such as Darts [19], relax the search space to be continuous,

and obtained 300-500× speedup. Several techniques have

also been extended from NAS that also used RL, including

ENAS. Unlike NAS, ENAS reuses the weights of previously

generatedmodels to shorten the training process by represent-

ing the superposition of all generated models as a directed

acyclic graph (DAG) and forcing all generated models to

share weights between nodes in the DAG. ENAS successfully

achieved a speedup of more than 4,000× and 3-8× relative

to NAS [17] and Darts [19], respectively, with only negligi-

ble accuracy loss. Recently proposed, random search-based

techniques, such as that proposed in [44], also utilize weight

sharing and DAG in their search to further accelerate the

search time. However, on average, these techniques can not

generate a model comparable to other techniques without

generating and evaluating many models (i.e., 2,000 models).

In summary, among these automation techniques, although

Darts [19] may achieve the highest accuracy, ENAS is among

the faster techniques with less than 1% accuracy degra-

dation. Therefore, we leverage the underlying features of

weight-sharing-based techniques as the baseline of our work.

In our experiment, these features are applied to the RL-based

technique (i.e., ENAS) and evaluated. ENAS assumes that

the generated model has a start block, several nodes (or

hidden layers) with a skip connection, factorized reduction

blocks, a global average pooling layer, and a softmax layer

165322 VOLUME 8, 2020
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FIGURE 4. Convolutional neural network (CNN) generated by efficient
neural architecture search (ENAS). The upper part of the figure displays
the main building blocks used to construct CNNs in ENAS, while the lower
part illustrates the structure of an example CNN generated by ENAS.

(see Fig. 4). Given the number of nodes, the RNN aims to

determine (i) the structure of each node, which should be

composed of a building block and adjusting block; and (ii) the

insertion of a skip connection. Only the building block has

multiple candidates (i.e., convolutional block and pooling

block) and is selectable for each node, while other blocks

have only one type individually. A start block initializes

the input data channels as cin. In each node, a building

block is placed that can be either a convolutional block

(3× 3.5× 5 convolution or 3× 3.5× 5 depthwise separable

convolution [45]) or a pooling block (average/max pooling).

An adjusting block is used to keep the number of output

channels in each node equal to the number of input channels

when taking a skip connection; therefore, an adjusting block

may be used only in the second node and later. A factorized

reduction block is used to reduce the spatial dimensions of the

data by a factor of 2 to decrease the number of computations

in the subsequent blocks. ENAS always specifies two factor-

ized reduction blocks whose locations are fixed according to

the total number of nodes L, that is after nodes ⌊L/3⌋ and

2 × ⌊L/3⌋.

An example model generated by ENAS with three nodes

is illustrated in the lower part of Fig. 4. Initially, a start

block is used to transform the input from a w× h red-green-

blue (RGB) color image with three channels into a w × h

matrix with 36 channels. The start block is followed by three

nodes and two factorized reduction blocks between the nodes.

As the number of nodes is 3 (i.e, L = 3), the factorized blocks

are placed after nodes 1 and 2. In nodes 1, 2, and 3, the RNN

places a 3 × 3 convolution block, max-pooling block, and

5×5 convolutional block, respectively. In nodes 2 and 3, skip

connections are inserted. The inserted features in the nodes

from the previous layers are concatenated with the output

of the convolutional/pooling block, and the output channel

size is adjusted using an adjusting block. At the end, global

average pooling is used to average the activation values of

all channels, and the result is then passed through a softmax

layer. Note that the softmax layer here also contains a fully

connected layer for performing the classification.

ENAS generates neural network models with the following

two steps, as illustrated in Fig. 5: training the shared weights

FIGURE 5. Recurrent neural network (RNN) training process in efficient
neural architecture search (ENAS) [18].

of the child models (Step 1), and training the RNN (Step 2).

In Step 1, for a target task, neural network models m are

generated based on the RNN policy π (m; θ ), and the shared

weights ω of the child models are trained to minimize the

expected loss L(m; ω) through back-propagation on a training

dataset. Then, in Step 2, based on those weights ω, the reward

function R(m; ω) is evaluated on a validation dataset (e.g.,

using the accuracy on a mini-batch of validation images for

image classification), and the RNN parameters θ are trained;

in other words, the RNN policy π (m; θ ) is updated. Then,

the trained RNN again generates child modelsm. These steps

are iteratively performed for a number of epochs, where a

pair of Steps 1 and 2 is regarded as one epoch. Finally,

a model with the highest reward mi is selected to retrain

the weights from scratch. Note that since the weights shared

during the search are not optimal for the final model, ENAS

does not guarantee that the selected model remains optimal

after retraining. ENAS aims to enhance the efficiency of the

search algorithm and does not attempt to generate an optimal

model, but rather, a satisfactory one.

It should be noted that in the flow of ENAS, the reward

function is set to maximize the validation accuracy only, that

is, without consideration of the computational complexity

of the model. However, the computational complexity is

one of the most crucial parameters for resource-constrained

machine learning systems, such as edge devices and smart

cyber-physical systems (e.g., autonomous vehicles and

robotics); therefore, ENAS cannot be used to generate neu-

ral networks that offer both near-optimal accuracy and high

computational efficiency.

III. APNAS: ACCURACY-AND-PERFORMANCE-AWARE

NAS

A. OVERVIEW

As mentioned earlier lightweight neural network models are

preferable for embedded deep learning systems as they reduce

computation. However, ENAS would not explore these mod-

els, as it is unaware of the computational complexity of the

target device or other system constraints.

This motivated us to develop a new NAS that is aware of

both the validation accuracy and computational complexity

VOLUME 8, 2020 165323
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(hereafter referred to as performance). Without loss of gen-

erality, as the underlying computing platform, we consider a

state-of-the-art neural processing array (MPNA [20]), which

is a representative embedded DNN hardware architecture

with limited PEs that supports the acceleration of both convo-

lutional and fully connected layers with efficient data reuse.

It should be noted that MPNA also supports an NPA structure

similar to the one used in the Google TPU [25].

Due to the limited number of PEs, embeddedDNN acceler-

ators can compute only a small portion of a neural network at

a time, as mentioned in Section II-A. Therefore, it is essential

to reduce the computation (hereafter referred to as number of

cycles or cycle count) on the PE array. In addition, we aim

to develop an efficient NAS technique that can explore an

enormous design space in a short time. Unlike state-of-the-

art hardware-aware NAS techniques (e.g., [21]–[23]) that

involve hardware-based execution or time-consuming hard-

ware simulations to estimate the performance of a design

candidate, in this study, we propose novel analytical models

to accurately estimate the computation requirement of the

NPA-based devices, thereby significantly expediting the NAS

process.

To achieve the above goal, we incorporate both the valida-

tion accuracy and cycle count in the reward function during

the search, the details of which are provided in Section III-B.

In the MPNA, computations on the PE array dominate the

total computation of the generated networkmodel while other

modules work in the background [25]; therefore, during the

search, we estimate the cycle count required by the MPNA

to perform all MAC computations of convolutional layers

on the PE array. In other words, because we do not need

to run a time-consuming hardware simulator during RNN

training, in contrast to ENAS, our approach does not affect

the search time. To demonstrate the effectiveness of our

estimation-based approach, we discuss the estimation accu-

racy by comparing the estimated cycle count and actual hard-

ware performance in Section III-D. In addition, we evaluate

the search time in Section IV.

B. MULTI-OBJECTIVE REWARD FUNCTION

In APNAS, we search models that require a lower cycle

count while mitigating the validation accuracy degradation

as expressed in our reward function RAP(m; ω) in (1):

RAP(m; ω) = Am − α × Cm_norm (1)

where Am and Cm_norm represent the validation accuracy and

normalized cycle count of network models m, respectively,

and a coefficient α is a weight to trade-off between the cycle

count and accuracy. The cycle count refers to the number

of cycles of all convolutional layers executed on the PE

array to infer one image. Note that as described in Fig. 4,

not only building blocks but also the other blocks contain a

convolutional layer(s) (i.e., 3× 3 or 1× 1). Am, Cm_norm, and

α, all take the range of [0, 1].

FIGURE 6. Four cases of cycle counts estimation: when weights are
loaded into (a) all columns and rows (CASE 1), (b) all columns but only
some rows (CASE 2), (c) all rows but only some columns (CASE 3), and
(d) some columns and rows of the processing element (PE) array (CASE 4).
The small rectangles at the bottom represent the accumulator in all cases.

To handle the cycle count in the same range as the accu-

racy, we obtain the cycle count by a min-max normalization

method [46] as follows:

Cm_norm =
Cm − Cmin

Cmax − Cmin
(2)

where Cm is the cycle count of models m, and Cmax and Cmin
are the maximum and minimum cycle count, respectively

among random generated models prior to training. In our

evaluation, we used 1,000 random models.

C. CYCLE COUNT ESTIMATION FOR CNN

The cycle count on the PE array pertains mainly to two pro-

cesses: weight loading (Cw,l) and MAC operations (CMAC,l)

in each convolutional layer l. Thus, (3) holds:

Cm =
∑

l

(Cw,l + CMAC,l) (3)

1) Cw ,l COMPUTATION

When the PE array size is small, we cannot load all of the

weight into the PE array at once. Instead, we must fold the

excess weights and load them after all computations using

the current weights are completed. Moreover, as explained

in Section II-A, our target MPNA supports parallel weight

loading along with the columns of the PE array. Therefore,

the cycle count for weight loading, Cw,l , can be estimated as

follows:

Cw,l = M ×

⌈

(k × k × cin)

M

⌉

×
⌈cout

N

⌉

(4)

where k represents the filter size, cin/cout represents

the input/output channels, and M /N represents the row

size/column size of the PE array.
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2) CYCLE COUNT ESTIMATION FOR PERFORMING

COMPUTATIONS RELATED TO A SINGLE MAPPING

For one mapping of MAC operations on the NPA, we can

calculate the cycle count of the MAC operations depending

on how the PE array is used. Here, we can divide the use of

the PE array into four different cases, as depicted in Fig. 6.

The following text explains the cycle count measurement for

each case.

• CASE 1. Using all columns and rows (Fig. 6(a)).

Because the input data are transferred from the top-left

to the right-bottom of the PE array,M+N−1 cycles are

necessary to perform all MAC operations in addition to

another one cycle to feed the results to the accumulator.

Additionally, it takes Cin−1 cycles to feed the unfolded

inputs to the PE array (recall the process of B© in Fig. 3),

where Cin = (w− k + 1)× (h− k + 1). Then, the cycle

count for this case (C1) can be estimated as follows:

C1 = M + N + Cin − 1 (5)

• CASE 2. Using all columns but some rows (Fig. 6(b)).

We can regard the used PEs as a smaller PE array. This

case is similar to Case 1; however, only each segment of

the filter weights (k × k × cin) is smaller than the row

size. The cycle count reduction depends on the number

of the unused PEs, CUR:

CUR =

⌈

k × k × cin

M

⌉

×M − k × k × cin (6)

Then, the cycle count for this case (C2) can be estimated

using C1 (in Eq. (5)) and CUR as follows:

C2 = C1 − CUR (7)

• CASE 3. Using all rows but some columns (Fig. 6(c)).

Unlike Case 2, because the number of columns used

depends on the output channels cout , the number of

unused PEs, CUC can be obtained as follows:

CUC =
⌈cout

N

⌉

× N − cout (8)

Similarly to C2, the cycle count for this case (C3) can be

estimated as follows:

C3 = C1 − CUC (9)

• CASE 4. Using some columns and rows (Fig. 6(d)).

Lastly, when both columns and rows are partially used,

the cycle count, C4, can be estimated using the number

of unused rows and columns (CUR and CUC , respec-

tively). As mentioned in Case 2, the cycle count depends

on the number of used columns and rows, not on the

number of used PEs; thus, the following equation holds:

C4 = C1 − (CUR + CUC ) (10)

3) CMAC,l COMPUTATION

To perform all MAC operations in one convolutional layer,

it may be necessary to fold and map the weights on the PE

array iteratively if the number of operations is larger than the

PE array size. Thus, depending on the computations and the

PE array size, we obtain the MAC operation cycle count for

each convolutional layer l by combining the above four cases,

as described in Fig. 7, and the following explanations.

1© If the output channels (cout ) exceed the column size (N )

but the filter weights (k × k × cin) do not exceed the row

size (M ), only the exceeded output channels are folded

and loaded into the PE array iteratively (corresponding to

CASE 2). Then, the last iteration handles the remaining,

if any (corresponding to CASE 4). Thus, the calculation

of CMAC,l is composed of the product of the number

of output channel folds and C2, which is added to C4

(required only if CASE 4 occurs).

2© Unlike ①, if the filter weights exceed the row size but

the output channels do not exceed the column size, only

the exceeded filter weights are folded and loaded into the

PE array iteratively (corresponding to CASE 3). Then,

the last iteration handles the remaining (corresponding to

CASE 4). Thus, the calculation of CMAC,l is composed of

the product of the number of filter weight folds and C3,

which is added to C4 if necessary.

3© If the filter weights and output channels exceed the row

and column sizes, respectively, both are folded and loaded

into the PE array iteratively (corresponding to CASE 1).

Furthermore, if only the output channels are equal to

the integral multiple of the column size, CASE 2 also

occurs. Thus, the calculation ofCMAC,l is composed of the

product of the number of filter weight folds, the number

of output channel folds, and C1 in the first term, which is

added to ①.

4© Unlike ③, if only the filter weights are equal to the

integral multiple of the row size, CASE 3 occurs instead

of CASE 2. Thus, the calculation of CMAC,l is composed

of the product of the number of filter weight folds, the

number of output channel folds, and C1, which is added

to ②.

5© If neither the filter weights nor output channels are equal

to the integral multiple of the row or column sizes, respec-

tively, all four cases occur. Thus, the calculation ofCMAC,l

is composed of the product of the number of filter weight

folds, the number of output channel folds and C1 in the

first term, which is added to ①, ②, and C4.

6© Finally, if the filter weights and output channels are both

equal to the integral multiple of the row and column

sizes, respectively, only CASE 1 occurs. Thus, CMAC,l is

composed of the product of the number of filter weight

folds, the number of output channel folds, and C1.

We provide two examples of parameter combination to

calculate the cycle count for a convolutional layer with a

PE array size of 8 × 8 as follows. First, let us consider a

convolutional layer with an input image size of 32×32, kernel
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FIGURE 7. Flowchart of cycle count estimation for each convolutional layer to be executed on the processing element (PE) array. In total, there
are six patterns to calculate according to the amount of computation and the PE array size.

size of 3×3, input channel number of 36, and output channel

number of 36. Because both the filter weights (3 × 3 × 36)

and output channels (36) exceed the row and column sizes

and neither are equal to the integral multiple of the row and

column sizes, condition ⑤ is applied to calculate the cycle

count. Next, for a convolutional layer with the same input

image size, kernel size, but input channel number of 32 and

output channel number of 36, because both the filter weights

and output channels exceed the row and column sizes but only

the filter weights are equal to the integral multiple of the row

size, condition ④ is applied to calculate the cycle count.

D. CYCLE COUNT ESTIMATION VERSUS SIMULATION

To evaluate the accuracy of the proposed estimation approach

presented in Section III-C, we compared the total cycle count

obtained by the equations with that obtained by the hardware

execution of MPNA.2 We assumed two different PE array

2This is a cycle-accurate hardware simulator.

sizes (i.e., 8 × 8 and 16 × 16), which we also used in our

evaluation in Section IV. As can be seen in Fig. 7, when the

PE array size is small, conditions ① and ② are unlikely to

occur, especially for large DNNs. Thus, it is sufficient to

evaluate conditions ③-⑥.

Table 1 presents the results for PE array sizes 8×8 and 16×

16 in the upper and lower tables, respectively. For each table,

the condition, input channels (cin), output channels (cout ),

estimated cycle count (Cm) obtained by (3), and hardware

simulator results (MPNA-Sim) are summarized in columns

1-5. We used the same input image size as CIFAR-10 and

CIFAR-100 (i.e., 32 × 32) and a kernel size of 3 × 3 for the

comparison. It should be noted that in this study, we applied

zero-padding to the input of each convolutional layer to keep

the number of rows and columns of the output equal to that

of the input. We observed that independent of the parameter

combinations and PE array size, our estimation provided

the same results as the hardware simulation while avoiding

time-consuming evaluation. Thus, we conclude that our esti-
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TABLE 1. Comparison of total cycle count between our estimation (Est.)
and that of a hardware simulator (MPNA-Sim).

FIGURE 8. Tool flow for accuracy-and-performance-aware neural
architecture search (APNAS), cycle counts estimation, multi-objective
reward function and evaluation for APNAS.

mation approach is sufficient for estimating the performance

of models generated by APNAS.

IV. EXPERIMENTS

This section evaluates the effectiveness of APNAS compared

to state-of-the-art techniques. We first describe the experi-

mental setup followed by the results of the proposed APNAS.

By examining the results, we present useful findings and

observations regarding searching neural network models for

the resource-constrained MPNA.

A. EXPERIMENTAL SETUP

Fig. 8 illustrates our tool flow to evaluate the effectiveness of

our proposed framework (APNAS), namely by exploring the

trade-off between the validation accuracy and performance

and evaluating the model search time. The orange box indi-

cates our framework, blue boxes indicate input parameters,

and boxes with red text indicate the outputs used for the

evaluation.

In the first evaluation, we utilized two image classification

datasets, CIFAR-10 and CIFAR-100, to evaluate APNAS

against two existing works, ResNet [4] (a manually opti-

mized neural network) and ENAS [18] (NAS that considers

only validation accuracy). Because APNAS is aware of the

accuracy and performance (i.e., cycle count), we evaluated

these three methods in terms of the test accuracy of the image

classification and the cycle count in the PE array.

• CIFAR-10: Dataset of 32 × 32-pixel color images that

can be classified into 10 classes: airplane, automobile,

bird, cat, deer, dog, frog, horse, ship, and truck. The

dataset contains 50,000 training images and 10,000 test

images. Although validation images are not provided by

the dataset, they can be easily created by using some

training images for validation. In our evaluation, we used

45,000 images for training and 5,000 images for valida-

tion of the 50,000 training images.

• CIFAR-100: Another image classification dataset

that is similar to CIFAR-10 but has 100 classes

of 32 × 32-pixel color images. This dataset also con-

tains 50,000 training images and 10,000 test images.

Similarly, we used 45,000 images for training and 5,000

images for validation.

Here we describe the parameters of ENAS and APNAS,

namely, those for the RNN (i.e., during model generation)

and those for the target models to be generated (tabulated

in Table 2). We followed [18] in the setting of epochs and

the types of building blocks. In total, six different α values

were set (i.e., as α = 0 indicates ENAS, while the other

five α values indicate APNAS). Two resource-constrained PE

array sizes (8 × 8 and 16 × 16) were assumed. By spec-

ifying 12 nodes, both ENAS and APNAS determined the

building block type and the insertion of skip connections for

each node. It is also known that a larger number of filters

helps achieve higher accuracy in a neural network. Therefore,

we also set two different output channel numbers# for each

dataset: 36 and 96 channels# for CIFAR-10, and 96 and

256 channels# for CIFAR-100. We named each model of

APNAS according to the number of output channels (e.g.,

APNAS36, APNAS96, andAPNAS256 for an output channel

setting of 36, 96, and 256, respectively). In our evaluation,

10 models were generated after we continued the search

process for 310 epochs, and we selected the best model

(i.e., model with the highest reward) to further retrain out of

the 10 models, as performed in [18].

For ResNet, we used the ResNet structure for CIFAR10

with a different number of layers to provide a comparable

cycle count to ENAS for each output channel size. The

detailed parameters of the ResNet models are provided in

Table 3. The model was composed of a 3 × 3 convolutional

layer, a stack of 6n 3 × 3 convolutional layers (where n is an

integer), and a fully connected layer. In every 2n layers, the

number of output channels was doubled as {16, 32, 64}, and

the input was sub-sampled by the convolution with a stride of

two. Skip connections were included in every two layers. The

network ended with a global average pooling layer, a fully

connected layer, and a softmax layer. We set two different

settings for each dataset corresponding to each output channel

size of ENAS: n = 5, 18 for CIFAR-10 and n = 18, 200 for

CIFAR-100.
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FIGURE 9. Visualization of cycle count and accuracy from five average search results: (a) for CIFAR-10, (b) for CIFAR-100
(please refer to [4] and [48] for accuracy results of ResNet on CIFAR-10 and CIFAR-100, respectively).

TABLE 2. Recurrent neural network (RNN) and model parameters for
each dataset.

TABLE 3. Parameters of ResNet for each dataset.

In the second experiment, for the CIFAR-10 image

classification task, we compared the RNN runtime and the

performance of the model generated by APNAS against state-

of-the-art NAS techniques (i.e., NASNet, Hierarchical evo-

lution, PNAS-5, Random search WS, DARTS, ENAS) and

hardware-aware NAS techniques (i.e., AmoebaNet, PNAS-1,

ProxylessNAS).

In the evaluation of the RNN runtime, APNAS was per-

formed on a single Nvidia GTX1080Ti GPU similar to ENAS

and DARTS, while AmoebaNet, ProxylessNAS, and other

techniques were performed on Tesla K40, V100, and P100

GPU, respectively. We converted GPU time on Tesla K40,

V100, and P100 GPU to an equivalent GPU time on 1080Ti

by multiplying by 2 as noted in [47], 1.5 as noted in [44] and

1.0 respectively. We used the total GPU days as a metric to

evaluate the runtime overhead for each technique; thus, it was

not necessary to distinguish betweenmultiple and single GPU

usage.

In the performance comparison, when the size of the PE

array is fixed, the cycle count depends on the number of

parameters. Therefore, we used the number of parameters

instead of cycle count to simplify the comparison between the

performance of APNAS and state-of-the-art NAS techniques.

It is important to note that we included the parameters but

not the cycle count of the batch normalization layer in our

calculation. Nevertheless, it was reasonable to use the number

of parameters to compare the performance, as there were

very few parameters in batch normalization layer, and its

proportion of the entire model was small (less than 4%).

Among the many APNAS models, we selected the APNAS

model with the highest test accuracy for comparison, where

the number of channels was 36 and 96.

B. EXPERIMENTAL RESULTS

The validation accuracy and performance results among base-

line models are visualized in Figs. 9, 10, and 11. In each

figure, the baseline neural network models (i.e., ResNet

and ENAS) are represented as triangles in the plots, while

APNAS models, generated by varying the coefficient α, are

represented as circles. The x-axis of each plot indicates the

proportion of the cycle count, while the y-axis indicates the

accuracy compared to the ResNet model. First, we describe

the difference between the results in Fig. 9 and the results

in Figs. 10 and 11. In Fig. 9 (a) and (b), we first intensively

searched the model by adding another three values of the

coefficient α into the experiments (i.e., α = 0.03, 0.07, 0.15).

We evaluated each setting five times and used the average of

the results to plot the graph.We observed that each search and

a specific value of α produced similar results; thus, we per-

formed the remainder of the search in Figs. 10 and 11 with

only six different values for the coefficient α, as described in

Table 2 only one time per setting to speed up the experiment.

The results presented in Figs. 9, 10, and 11 demon-

strate that APNAS achieved comparable accuracy to ResNet.
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FIGURE 10. Visualization of cycle count and accuracy of image classification on CIFAR-10 dataset.

FIGURE 11. Visualization of cycle count and accuracy of image classification on CIFAR-100 dataset.

In CIFAR-10, when the number of output channels# for

APNAS was 36 and the number of layers in ResNet was 32

(see Fig. 9(a) and Fig. 10), APNAS required 49% to 72%

fewer cycles with negligible accuracy degradation (only 2%

to 6% decrease) relative to ResNet. When the number of

output channels for APNAS was 96 and the number of layers

in ResNet was 110, APNAS required 33% to 52% fewer

cycles at an accuracy loss of 0-3% relative to ResNet (see

Fig. 10). Similar trends can be observed for CIFAR-100 in

Fig. 9(b) and Fig. 11. Interestingly, for CIFAR-100, unlike

for CIFAR-10, APNAS outperformedResNet in terms of both

the cycle count and test accuracy in cases in which the number

of output channels# in APNAS was 256 and the number

of layers in ResNet was 1,202. These results indicated that

APNAS can achieve comparable or even better accuracy with

significantly fewer cycles compared to manually developed

state-of-the-art methods.

Furthermore, we studied the relationship between the α

value and patterns of these trade-offs. Fig. 12 further presents

the detailed structure of the generated models described in

Fig. 9(b), where only building blocks with skip connections

are described. When α = 0 (i.e., ENAS), the RNN controller

selected either a 3×3 depthwise separable convolutional layer

or a 5× 5 convolutional layer for each building block. Recall

that a 5 × 5 convolutional layer has the largest number of

computations among the selectable type of building blocks

(the average/maximum pooling layers have the least number

of computations). By increasing the α value (i.e., APNAS),

FIGURE 12. Visualization of generated models in Fig. 9(b) (i.e., 96 output
channels for CIFAR-100 on a 16 × 16 processing element array).

the RNN controller tends to replace such computationally

intensive layers with lighter layers in the generated models.
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TABLE 4. Holistic comparison between proposed method and existing
methods on CIFAR-10 dataset.

Consequently, APNAS used only 5 × 5.3 × 3 depthwise

separable layers and used only average/max pooling layers

when α = 0.05 and α = 0.1, respectively. After α =

0.2 and later, to further reduce the number of computations,

APNAS reduced the number of skip connections. Although

visualizations for the other figures are omitted from this

paper, we also observed similar results by changing the

parameters. From these analyses, we determined that APNAS

successfully reduced the cycle count by adjusting the type

of selected building blocks and skip connections according

to the α value. In future work, we will further investigate

the influences on the α value leading to saturation of the

trade-offs.

We present a comparison between state-of-the-art NAS

methods and APNAS in Table 4 in terms of the search time

and parameters. Despite the fact that our GPU had the low-

est computation capability among the other search methods

in Table 4, APNAS required only 0.55 GPU days to find

models in APNAS, which was comparable to ENAS [18]

and faster than the remaining state-of-the-art NAS tech-

niques. We can also see that when we searched for the model

with 96 channels, compared to the state-of-the-art NAS tech-

niques, APNAS found the model with (36% to 96%) fewer

parameters (i.e., cycle count) and relatively high accuracy.

When we performed the search for the model with 36 chan-

nels, the generated model contained much fewer parameters

(91% to 99%) with only a small accuracy decrease (approx-

imately 3% less than APNAS with 96 channels). We note

that there are techniques to improve accuracy, such as prepro-

cessing the training data by a cutout technique, as performed

in [19], [47], [49]. Thus, it is possible to further improve the

accuracy of the current APNAS without affecting the cycle

count.

C. DISCUSSION

As discussed above, in APNAS, the α value can create and

control the trade-off between the test accuracy and cycle

count. However, in some cases, the cycle count when α =

0.5 or 1 is higher than the cycle count when α = 0.2. There

are two reasons for this. The first reason involves the nature

of the RNN controller. Although an RNN usually explores

better models based on the current model in training, it may

degrade the models by greatly changing the model structure

due to the uncertainty contained in the RNN [50]. To mitigate

this uncertainty, APNAS generates 10 models and selects a

single best model to further retrain its weights, as performed

in [18]. Although this approach can mitigate the impact of

the RNN’s uncertainty, generating 10 models may not yet be

sufficient. In fact, the authors of [18] suggested improving

model selection by re-training all of the generated models

and selecting only the best model as performed in other

studies [17], [20], [43], [49] at the cost of exploration time.

The second reason involves the normalized cycle count of

the reward function in APNAS. Asmentioned, we normalized

the cycle count of the current model (Cm) by the maximum

and minimum count (Cmax and Cmin) among 1,000 models

that were initially generated at random due to the enormous

design space. APNAS then attempted to reduce the cycle

count Cm only down to Cmin. This signifies that if there was

no light lightweight computation model among the first 1,000

randomly generated models (i.e., relatively large Cmin), then

APNAS did not attempt to explore the models with lower

cycle count. Moreover, if Cm was sufficiently close to Cmin,

the second term of the reward function was nearly zero,

resulting in almost no consideration of the cycle count. This

situation is likely to occor when Cmin is relatively large, and

there are two potential methods of resolving this problem.

One is to utilize the absolute cycle count rather than the

normalized one by tuning only the coefficient values (i.e., α).

However, determining how to adjust the coefficient values is a

difficult task, especially when multiple objectives are consid-

ered in the reward function. The appropriate setting may also

vary according to the target dataset, underlying architecture,

and model parameters. The second potential solution is to

change the baseline results for the normalization. For exam-

ple, we can use the cycle count of the initially generated mod-

els (i.e., at epoch 0) as the baseline and attempt to improve

the reduction rate from them. In addition to handling the

second term, we can also consider how to integrate multiple

objectives in a single reward function, referring to a number

of design space exploration studies [21]–[23], [51]–[53].

To further improve the trade-off between the accu-

racy and cycle count, we can consider exploiting an

accuracy-enhancement technique that has been used in sev-

eral manually constructed neural networks [4], [54], [55].

While the input channels and output channels are the same,

this enhancement technique doubles the number of output

channels# from the number of input channels# while halving

both the height and width of the input, leading to halve the

computation amount. For example, if the height, width, and

number of input channels# of a layer are h, w, and cin, respec-

tively, the height, width, and number of output channels# are

h/2, w/2, and 2 × cin (=cout ). This change in the number of

channels# is adopted at some pre-determined interval (e.g.,

in ResNet), the entire network is divided into three chunks,
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TABLE 5. Comparison between current and extended model when α = 1
and processing element array = 8 × 8.

and this technique is applied to the last layer of each chunk.

Through this technique, useful features can be extracted and

preserved in the newly added channels while reducing the

cycle count. Straightforward adoption of this technique will,

however, increase the computation. Therefore, we can start

from the halved number of channels# and apply this technique

at the last layer of three chunks similarly to ResNet. The

current and extended models, ccurrent and cext., have the fol-

lowing computation amount if the same computation amount

(cout = 36) is specified for the output channels in the middle

chunk:

Ccurrent = 36wh+
36

4
wh+

36

16
wh = 47.25wh

Cext. = 18wh+
36

4
wh+

72

16
wh = 31.50wh

Note that as mentioned, we start 18 channels for the first

chunk in the extended approach. By comparing these theo-

retical estimations, we expect that in the extended approach,

the total computation amount (and thus the cycle count) can

be effectively reduced. It should be noted that the effects of

skip connections are not considered in these estimates.

To evaluate the effects of this technique, we evaluated

the accuracy and cycle count for the case α = 1 on an

8 × 8 PE array. In Table 5, APNAS repeats the results

presented in Figs. 10 and 11. Based on the models explored

by APNAS, we manually applied changes to the number of

channels# only (Ext. in the table indicates a counterpart of

eachmodel). The table demonstrates that despite starting with

a halved number of channels#, the extended models achieved

comparable or better accuracy than the explored models.

Furthermore, as discussed above with the estimations, the

extendedmodels successfully reduced the cycle count, except

for the case of 48 channels for CIFAR-100. We found that

this increase in cycle count was caused by skip connections.

Because skip connections increased the computation amount

but the change in the number of output channels# was not

considered during exploration, this manual adoption coinci-

dentally increased the cycle count. By allowing APNAS to

consider this technique, the skip connections are expected to

be appropriately inserted to suppress the cycle counts, which

will be considered in future work.

Other directions for future work include the relaxation of

the assumptions on the model structure and the adoption

TABLE 6. Abbreviations used in this paper.

TABLE 7. Symbols used in this paper.

of the newly created methods from the inheritor of NAS.

Although the number of nodes# and output channels# is

currently fixed in this work, their pre-determined settings

may be excessive for some databases, leading to an unnec-

essarily large cycle count and overfitting [56]. In addition,

we may miss the opportunity to explore smaller models with

comparable accuracy. We thus expect that relaxing these con-

straints can enhance the flexibility and usefulness of APNAS.

Furthermore, as mentioned above, there are data augmenta-

tion techniques, such as cutout, that can help increase the

accuracy of the model with out affecting the performance.

Moreover, there are other similar methods to search for DNN

models, such as sequential model-based optimization, gradi-

ent descent, and evolutionary methods [19], [20], [57], that

may boost the effectiveness of APNAS.
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V. CONCLUSIONS

In recent years, NAS has become an attractive method for

automatically searching useful neural network models by an

RNN and RL. Although there are a number of studies on

accuracy-aware NAS, to the best of our knowledge, no stud-

ies have considered performance (or cycle counts) to per-

form inference. Moreover, no studies have utilized a method

to evaluate the performance without hardware devices or

simulators. Therefore, targeting neural-network-based appli-

cations executed on resource-constrained neural process-

ing array-based architectures of embedded systems, this

study proposes an accuracy-and-performance-aware NAS

(APNAS). We first present a method for estimating the cycle

count in an RNN so that a time-consuming hardware simula-

tor does not need to be run during the network search.We then

define a reward function in the RL to trade-off the accuracy

and performance (i.e., cycle count). Our evaluation, demon-

strated that APNAS can generate neural network models with

only 0.55 GPU days on an Nvidia GTX 1080Ti GPU and

obtain an average of 53% fewer cycles against a manually

developed neural network model (ResNet) and a state-of-the-

art NAS considering only validation accuracy (ENAS) for the

CIFAR-10 and the CIFAR-100 datasets.

In addition, unlike NAS, which is unaware of the cycle

count, APNAS successfully trades off the accuracy and cycle

count by varying the weight for considering the cycle count

in the RNN. In this paper, we also discuss the limitations

of the current APNAS and present useful observations and

findings to achieve both accuracy improvement and cycle

count reduction in future work.

APPENDIX

SYMBOLS AND ABBREVIATIONS

The following tables describe the symbols and abbreviations

used in this paper.
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