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Apnea MedAssist: Real-time Sleep Apnea Monitor
Using Single-Lead ECG
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Abstract—We have developed a low-cost, real-time sleep apnea
monitoring system ‘‘Apnea MedAssist” for recognizing obstruc-
tive sleep apnea episodes with a high degree of accuracy for both
home and clinical care applications. The fully automated system
uses patient’s single channel nocturnal ECG to extract feature
sets, and uses the support vector classifier (SVC) to detect apnea
episodes. “Apnea MedAssist” is implemented on Android operat-
ing system (OS) based smartphones, uses either the general adult
subject-independent SVC model or subject-dependent SVC model,
and achieves a classification F-measure of 90% and a sensitivity
of 96% for the subject-independent SVC. The real-time capability
comes from the use of 1-min segments of ECG epochs for feature
extraction and classification. The reduced complexity of “Apnea
MedAssist” comes from efficient optimization of the ECG process-
ing, and use of techniques to reduce SVC model complexity by
reducing the dimension of feature set from ECG and ECG-derived
respiration signals and by reducing the number of support vectors.

Index Terms—Apnea monitor, ECG, home care, smartphone,
support vector machines (SVMs).

I. INTRODUCTION

A
PNEA is a sleep related breathing disorder—commonly

known as obstructive sleep apnea (OSA) is a common

disorder that affects about 4% of the general population. People

with sleep apnea literally stop breathing repeatedly during their

sleep, often for 10–30 s and as many as hundreds of times

during one night. Sleep apnea can be caused by complete

“apnea” or partial “hypopnea” obstruction of airway [2], both of

which can wake one up. The frequent arousals and the inability

to achieve or maintain the deeper stages of sleep can lead to

excessive daytime sleepiness, nonrestorative sleep, automobile

accidents, personality changes, decreased memory, erectile

dysfunction (impotence), and depression. OSA has also been

linked to angina, nocturnal cardiac arrhythmias, myocardial

infarction, and stroke.

The primary method for diagnosing OSA at present is to

have the patient undergo a sleep study, known as polysomnog-

raphy (PSG). A polysomnogram typically records a minimum

of eleven channels of various biosignals requiring a minimum
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of 22 wire attachments to the patient in a specialized sleep lab-

oratory with attended personnel. Obstructive sleep apnea is di-

agnosed, if the patient has an apnea index (AI) (apneic episodes

per hour) greater than 5/h, or a respiratory disturbance index, the

combination of apneas and hypopneas, greater than 10/h. Sev-

eral treatment options exist for OSA. These include weight re-

duction, oral appliances, positional therapy, continuous positive

airway pressure (CPAP) therapy, and surgical options. CPAP,

the most common of these therapies is usually administered at

bedtime through a nasal or facial mask held in place by velcro

straps around the patients head [3].

Our research study aims to develop a simpler system that pro-

vides a reliable, inexpensive, and faster approach to assessing

OSA in patients before, during and after medical treatments.

The measurement of sleep quality and/or sleep apnea becomes

necessary when certain medical therapies and drugs are admin-

istered, and there is a need to assess the side effects of these

treatments, which may manifest as sleep or breathing distur-

bances. The real-time OSA detection is critical in perioperative

monitoring, which includes assessing the presence and sever-

ity of sleep apnea to avoid complications during and after the

surgery [4]. Also, real-time apnea monitoring can provide in-

stantaneous results for any associated medical treatment, such

as feedback for CPAP pressure adjustments.

Using only single-channel ECG measurements reduces the

complexity of the diagnostic test and enables patients to better

monitor physiological changes corresponding to changes in

sleep apnea severity. The developed apnea smartmonitor uses

a wireless smartphone to realize a cost-effective platform

for ECG acquisition, monitoring, and real-time screening

and assessment of sleep apnea syndrome. Support vector

machine (SVM) [5], [6] is a powerful discriminative method

for pattern classification. Its basic idea is to map data into a

high-dimensional space and find a separating hyperplane with

maximal margin. We developed several SVM classifier (SVC)

models to automatically classify apnea episodes according to

patient criteria—the existence of prior annotated sleep apnea

data for the subject or for another subject matching his physical

attributes—and/or device connectivity and processing capabil-

ities. In this study, we also consider a set of features either ex-

tracted directly from heart rate variability (HRV) RR-tachogram

or from the surrogate ECG-derived respiration signal (EDR) [7];

a total of 111 features (time and spectral domain) from every

1-min epoch. We also apply feature reduction algorithms to

find an optimized input set to the SVM classifier models.

This paper is organized as follows. Section II reviews related

previous studies. Section III gives an overview of the developed

smart monitor (Apnea MedAssist) system architecture.

1089-7771/$26.00 © 2010 IEEE
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Fig. 1. System architecture of Apnea MedAssist showing components and functionalities.

Section IV details the methodology of this paper including the

database used for testing, ECG preprocessing, RR and EDR fea-

ture sets, and the SVC models used. In Section V, we provide

the results. In Section VI we discuss results of the automated

recognition, and in Section VII we give our conclusion.

II. PREVIOUS WORK

There is a significant body of research literature in the study

of simplified sleep apnea monitoring using just one or two

physiological signals such as ECG, pulse oximetry, snoring, or

nasal airflow [8]–[13]. Oliver and Flores-Mangas [8] used blood

oxygen level (SpO2) for screening OSA. Fu-Chung et al. [9]

used integrated CPAP airflow signal to identify OSA episodes.

Pentagay et al. [11] used the heart sound (S1) generated dur-

ing OSA episodes combined with ECG. The application of

SVM classifiers in apnea screening are discussed in [10] and

[11]. Other OSA screening studies based on ECG used Gaus-

sian classifiers, linear or quadratic discriminants [12], [13],

which depend on the assumption that the feature has Gaussian

distribution.

The following summarizes the main contributions of our pa-

per and differentiates it from the aforementioned studies:

1) Apnea screening done on 1-min segment of data rather

than treating the whole recording as one segment. This

measurement segment length is chosen to reduce the hid-

den number of actual episodes within the selected time

interval.

2) Real-time screening as opposed to offline screening.

3) Apnea severity or apnea/hypopnea index is directly based

on the number of apnea episodes detected over the total

segments, rather than based on posterior probability of

SVM outputs.

4) Two SVM classifier models, subject-independent and

subject-dependent, are developed for apnea detection.

5) SVM models capable of controlling sensitivity and/or

specificity are developed. This is accomplished by

designing SVM with unbalanced penalty parameters

(C+ , C−).

6) Increased predictivity performance of the classifier is

achieved using a comprehensive set of HRV and EDR

time and frequency-based features (111 features).

7) Fully automated ECG processing, feature extraction, and

apnea SVM classifier implemented in a smartphone.

III. SYSTEM ARCHITECTURE

The increased processing power available in todays smart-

phones and its capability to connect locally through Blue-

tooth (IEEE 802.15.1) and to the internet through Wi-Fi (IEEE

802.11) or 3G make it an attractive platform to implement a

simplified personal sleep apnea monitor. The architecture and

the various functional modules of “Apnea MedAssist” monitor

are described in Fig. 1.

The ECG sensor used for recording heart activity is an off-

the-shelf one lead ECG sensor with sampling rate of 250 Hz.

The lightweight and small form factor of the ECG sensor makes

it easy to wear for a prolonged period with the convenience of

mobility. Additional advantages for the ECG sensor are the low-

power consumption enabling long periods of ECG signal col-

lection and easy connectivity to the smartphone via Bluetooth.

The computing platform used here is an Android operating

system (OS) based universal mobile telecommunications sys-

tem/global system for mobile communications (GSM/UMTS)

smartphone [14]. It has Qualcomm MSM 7201A/528-MHz CPU

running Android 1.5 OS [15]. It also has 128-MB RAM and

256-MB ROM with microSD extended flash memory storage

card. Its supported connectivity interfaces include, Bluetooth for

BAN/PAN, Wi-Fi 802.11 b/g for wireless local area network,

and GPRS/HSDPA for wide area network. The smartphone pro-

vides initialization, configuration, and synchronization of Blue-

tooth connectivity to ECG sensor. The system also establishes

secure communication to “MedAssist Server” using either Wi-Fi

or cellular 3G connectivity.
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Fig. 2. Functional flow diagram for automated detection of OSA using single-lead ECG measurements.

TABLE I
PHYSIONET APNEA–ECG DATABASE

The main functions of the smartphone are the automated ECG

signal processing including feature extraction, and OSA assess-

ment using locally customized “subject-dependent” classifier or

providing gateway connectivity to the server to use the “subject-

independent” classifier.

IV. METHODOLOGY

This paper describes the design of “Apnea MedAssist,” a reli-

able automated OSA-monitoring device that uses measurements

from just one lead ECG sensor. Fig. 2 shows the functional flow

diagram for the signal processing and episode classification im-

plemented on an Android-based smartphone.

A. Subjects Database

The device and algorithms were tested using Physionet

Apnea-ECG Database [16]. The database has a total of 35 sub-

jects’ sleep studies. The recordings were visually scored by an

expert for sleep apnea/hypopnea events on the basis of respira-

tion and oxygen on a per minute basis. The subjects’ recordings

(30 men, 5 women) were arranged in three groups: Group A

recordings (20 subjects) with clear occurrence of sleep apnea

(100 min or more, AHI ≥ 15), Group B (borderline) recordings

(five subjects) with some degree of sleep apnea (between 5 and

99 min, 5 ≤ AHI < 15), and Group C (control) recordings (ten

subjects) of healthy subjects with no sleep apnea (fewer than

5 min, AHI < 5).

For apnea scoring, each record was divided into 1-min

nonoverlapping segments [17]. Each minute was classified as

either a “nonapnea minute” or an “apnea minute.” Minutes

containing either apnea or hypopnea were classified as apnea

minutes. The AI is the number of apneas observed per hour,

and the HI is the number of hypopneas observed per hour. The

apnea–hypopnea index (AHI) is defined as the sum of AI and

HI. Hours containing one to four apnea minutes (not considered

to be clinically significant) are counted as hours without apnea.

Table I shows the collected subjects’ data. This segment length

reduces hidden apnea episodes that actually occur within the

segment. Clearly, as we increase the segment length over 1 min,

the actual estimate of AHI deviates considerably.

A single channel of ECG was extracted from all polysomno-

graphic recordings, sampled at 100 Hz, with 16-bit resolution

and 5-µV A–D Converter (ADC) gain per step. The standard

sleep laboratory modified lead V2 position ECG is used. The

ECG signal was then resampled to an equivalent sample rate of

250 Hz used in “Apnea MedAssist.”

B. Automated ECG Processing

The ECG measurements with a sampling period of 4 m/s are

segmented into 1-min epochs and then analyzed using “ECG

MedAssist” signal-processing module. This is an automated

wavelet-based analysis algorithm for denoising and detrending

ECG signal, and detecting its characteristic points: QRS com-

plex, P, and T waves. The wavelet transform algorithm used here

is based on the undecimated lifting scheme (ULWT) [18], [19].

The ULWT has reduced computational cost compared to the

basic finite-impulse response implementation. We use a low-

order Daubechies/D4 wavelet to minimize the filter order and

consequently reduce computational cost and overall filter delay.

Single-decomposition phase with seven stages yields details

{Ds}7
s=1 and approximations C7 . Signal denoising is imple-

mented by zeroing out D1 detail coefficients. Detrending is

performed by zeroing out C7 approximation coefficients.

To separate QRS complex from P–T waves, we extract

two signals by reconstructing two groups of ULWT subbands.
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{Ds}5
s=2 are used for QRS-complex signal reconstruction

(SQRS ) and {Ds}7
s=5 are used for P and T waves reconstruction

(SPT ). We also apply real-time adaptive thresholding [18] to

all details before each reconstruction stage to minimize spec-

tral overlap between the QRS and the PT signals and also to

emphasize the core details (those details defining either QRS or

PT waves). The novel level-based thresholding that removes an

amount proportional to a window centered on the corresponding

coefficients of the earlier stage, also amplifies the contributing

higher spectral energy detail levels. For xj , the jth coefficient for

sth details Ds , we define a window of length 2w + 1 centered

at xj of the earlier level Ds−1 . Then, the applied threshold for

that coefficient is

Thrsj = ts −
1

2w + 1

j+w
∑

i=j−w

(∣

∣xs−1
i

∣

∣ − V s
)

(1)

where ts is the initial threshold for level s, xs−1
i is the ith coeffi-

cients for level s − 1. V s is the window average for D2 or D3 ,

and 0 for D4 or D5 and “| |” is the absolute value operator.

We then use rules-based detection algorithm with no search-

back based on Tompkins method [20]. It uses the reconstructed

SQRS and SPT signals to detect the five characteristic points of

QRS-complex including the R fiducial point (PQ, Q, R, S, and J),

and the six characteristic points of P and T waves (Pstart , Ppeak ,

Pend , Tstart , Tpeak, and Tend ).

The RR-interval time series {RR(m) : rri , i = 1, . . . , m},

where rri is the ith RR interval, is analyzed to detect and remove

any outliers (≥2 s or ≤0.4 s) due to false detections or missed

detections using a sliding window averaging filter (window of

41 samples) with an exclusion threshold of ±20%.

C. Respiration Efforts Estimate (EDR and RSA)

The morphology changes in the ECG waves allow deriving

a signal proportional to the respiratory movement. In the liter-

ature, various methods were proposed to extract the surrogate

EDR signal [7], [21] based on R-wave amplitude, R-wave dura-

tion, QRS complex area, T-wave amplitude or T-wave area. We

use the T-wave method, since it is more suited for ECG record-

ing with low sampling rates (<250 Hz) as in our case. However,

we use the R-wave amplitude method on recordings with un-

detected T-wave (or inverted T-wave). Fig. 3 shows a 20-min

segment of one of the recordings with the computed EDR and

corresponding respiratory signals obtained using other respira-

tory sensor measurements.

The calculated EDR sequence is analyzed to detect and re-

move any outliers due to false detections or missed beats us-

ing a sliding window averaging filter (window of 41 sam-

ples) with an empirically selected exclusion threshold (±70%).

The extracted respiratory time series is denoted as {EDR(q) :
edri , i = 10, . . . , q}.

Another ECG derived respiratory signal is respiratory si-

nus arrhythmia (RSA), defined by the heart rate variability

in synchrony with the respiration, where R–R interval from

the ECG is shortened during inspiration and prolonged during

expiration [22]. To estimate respiratory frequency, we define

Fig. 3. ECG-derived respiratory (EDR) signal compared to actual readings
for the “a01” Apnea–DB subject’s respiratory signals. Shaded region is apneic.

“number of extreme points” (NEP) as the biased average of

extreme points [23] as follows:

NEP =
1

m − 2

m−1
∑

i=2

(1 − unit [(rri − rri−1) (rri+1 − rri)]) (2)

where unit[·] is the unit step function. This measure is sensitive

to the RR(m) series filter processing of outliers and missed

detections. For each segmented 30 s epoch, m is the number of

heart beats in the segment. The NEP measurements can be used

in evaluating parasympathetic nerve activity [22].

D. Feature Measures

In this research, we considered a set of time-based and

spectral-based features for both the training and the test datasets

to increase classifier (+/–)OSA predictivity performance. The

time-based features in Table II and the spectral-based features

in Table III are calculated for both RR(m) and EDR(q) time

series. The majority of these time- and spectral-domain features

are described in [24]–[26]. Here, we provide more details on the

predominantly used spectral-based features for both signals.

Both of the irregularly sampled time series RR(m) and

EDR(q) are spline-resampled at 2 Hz and then detrended by

removing the resampled time-series average. Two spectral anal-

ysis methods are performed: wavelet transform (WT) decompo-

sition and fast Fourier transform (FFT). Decimated WT (DWT)

using DB4 wavelet is performed with eight levels for RR(m)

and nine levels for EDR(q) with the first-level details and ap-

proximations discarded, since they lie outside the autonomous

system (ANS) frequency ranges [25].

The spectral variances of the DWT decomposition scales are

then calculated as follows:

Var
[

Ds
k

]

=

Kk , s
∑

i=1

(

ds
k,i − µs

)2
, where µs = E

[

ds
k,i

]

(3)

where k denotes either rr or edr signal, ds
k,i is the ith detail coef-

ficient, and Kk,s is the detail coefficient count at scale s of signal

k. Three more features are extracted for each sequence using the
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TABLE II
TIME-DOMAIN MEASURES FOR HRV RR(m) AND EDR(q) EPOCH SEQUENCE

WT variances by identifying the frequency bands of WT details

corresponding to very low frequency (VLF) range (0.003 < f ≤
0.04 Hz), low-frequency (LF) range (0.04 < f ≤ 0.15 Hz), and

high-frequency (HF) range (0.15 < f ≤ 0.4 Hz). Breathing dis-

order causes short-term oscillations that reflect changes in the

relative balance between the sympathetic and parasympathetic

branches of the ANS, the sympathovagal balance. HF range

thought to be mainly due to the parasympathetic activity at the

sinoatrial node. Since respiration is a parasympathetically me-

diated activity (through the vagal nerve), a peak corresponding

to the rate of respiration can often be observed in the HF band.

The LF region is generally thought to reflect sympathetically

mediated activity. Similarly, a 256 point FFT power spectral

density (PSD) estimate is performed and only the first 32 points

related to ANS frequency range (0.003–0.4 Hz) are kept and

three additional features are calculated for each VLF, LF, and

HF range.

Tables II and III show the extracted features listing and corre-

sponding feature count contribution. Each 1-min ECG segment

is now mapped to the full set (FS) of n = 111 total extracted

feature measures (63 using RR time series and 48 using EDR

time series).

E. Support Vector (SV) Classifier Models

The SVM classifier simply performs classification by con-

structing an n-dimensional hyperplane that optimally separates

the data into two classes. The SVM has been developed by

Vapnik [5], [6] and its formulation uses the structural risk min-

TABLE III
SPECTRAL-DOMAIN MEASURES FOR RR(m) AND EDR(q) EPOCH SEQUENCE

imization (SRM) principle, which proved superior to the tradi-

tional empirical risk minimization (ERM) principle used by tra-

ditional neural networks [27]; SRM minimizes an upper bound

on the expected risk, as opposed to ERM that minimizes the

error on the training data. SVM finds the Optimum-separating

hyperplane with maximum distance from nearest training pat-

terns. Those nearest training vectors are called support vectors

(SVs). Fig. 4(a) shows the case where the training data have

linearly separable classes (+)OSA and (−)OSA.

For training vectors xi ∈ R
n , i = 1, . . . , l, of two classes,

and a label vector y ∈ R
l such that yi ∈ (+1,–1), there exist a

vector w ∈ R
n normal to the hyperplane and margin bias b ∈ R,

and the points x that lie on the hyperplane satisfy w · x + b = 0,
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Fig. 4. SVM optimal separating hyperplane for two classes (+1, −1).
(a) Linearly separable datasets. (b) Nonlinearly separable datasets.

(w · x = wT x, where (·)T is the transpose operator) and the

training data satisfy the constraint yi(w · xi + b) − 1 ≥ 0 ∀i,

with a maximum distance in this case 2 ‖w‖−2
[27]. This is a

convex optimization problem that can be solved by quadratic

programming (QP) [27], [28], with the use of Lagrange multi-

pliers αi , ∀i, which is equivalent to solving the dual problem

LD ≡

l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjxi · xj (4)

such that αi ≥ 0 ∀i and
∑l

i=1 αiyi = 0.

Fig. 4(b) shows the general case, where the training data are

not linearly separable due to noise and outliers or just training

data distribution. No linear separating hyperplane can be con-

structed now. In this case, two methods are introduced. First we

introduce nonnegative “slack” variables (ξi ≥ 0 ∀i), where l is

the number of training vectors, and minimize the penalty func-

tion Fσ (ξ) =
∑

i ξσ
i , for small σ > 0, subject to the modified

constraints

yi (w · xi + b) ≥ 1 − ξi , i = 1, . . . , l (5)

ξi ≥ 0, i = 1, . . . , l. (6)

The problem now corresponds to minimizing the following ob-

jective function:

‖w‖2

2
+ C

l
∑

i=1

ξσ
i (7)

where C is a constant defined as the “penalty” parameter or “mis-

classification tolerance” parameter [27]. This SVM is defined

as soft-margin SVM using L1-norm penalty (C) or C-SVM. A

larger C assigns a higher penalty to errors. Fσ describes the

training errors and is a monotonic convex function. As shown

in [5], Fσ is a nondeterministic polynomial (NP) complete prob-

lem. To avoid the NP completeness, σ = 1 is considered as the

smallest value of σ for which the optimization problem has a

unique solution.

Second, we introduce a mapping Φ : R
n → H by which the

dataset is mapped to some other (possibly infinite dimensional)

“feature space” H that has a linear hyperplane separating the

two classes. The dot product in H-space is computed using a

“kernel” function K such that Φ(xi) · Φ(xj ) = K(xi ,xj ). The

TABLE IV
KERNEL-MAPPING FUNCTIONS USED IN SVCS

QP dual problem solution is modified to use the kernel mapping

xi · xj ⇒ K(xi ,xj ), and modified α-constraints.

To classify a test vector x as either class (+1,−1), we com-

pute the decision function f(x) as follows:

f(x) = sgn

[

N s
∑

i=1

(αiyiK(xi ,x)) + b

]

(8)

where sgn[·] is the sign function and Ns is the number of

SVs. Some commonly used kernels with required parameters

are shown in Table IV.

The Gaussian radial-basis function (RBF) kernel is a popular

kernel since RBF kernels were shown to perform similar or bet-

ter than linear or polynomial kernels for appropriately selected

(C, γ) values [5]. The sigmoidal kernel is a representation of

a two-layer neural network multilayer perceptron (MLP). In

this study, we developed SVM models based on these kernels

and investigated the classification performance. A library for

SVMs [28] is used for SVM training and classification, and

MATLAB is used for SVs and feature reduction.

F. Learning and Classification Phases

Even though SVMs can generalize well, a careful choice of

kernel function is necessary to produce a classification bound-

ary that effectively separates (+/–)OSA classes. We use the

automated system, aforementioned in two phases; training and

classification (see in Fig. 5). Features with most predictive value

are selected during feature search. During the learning phase we

find the best performing classifier kernel type and parameters,

and solve the SVM QP problem [5] to generate the set of SVs for

the optimum separating hyperplane for the OSA’s two classes.

In classification phase the SVM classifies test epoch feature

vector x into (+/–)OSA classes. We use here K-fold cross-

verification method to evaluate the performance of the classi-

fier [29]. The cross-validation method can prevent the overfit-

ting problem. Here, K depends on the classifier input training

dataset size for both subject-dependent (SVC-SD) and subject-

independent (SVC-SI) classifiers. For K-fold method, we divide

the training set into K subsets of equal size. Sequentially one

subset is tested using the SVM classifier trained on the remain-

ing K-1 subsets. The cross-validation accuracy is the percentage

of data that are correctly classified.

The F-measure is used to compare the performance of

SVM types and kernels using test sensitivity and specificity

measures [30]

F = 2 ×
Sens × Spec

Sens + Spec
. (9)
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Fig. 5. Automated learning and classification of (+/–)OSA classes.

The SVM training is very sensitive to the dynamic ranges

of feature matrix and differences in magnitude scale of these

dynamic ranges. Any significant difference can lead to loss in

precision during the computationally intensive SVM QP algo-

rithm. All features are normalized to be within (–1,+1). The

normalizing factors generated during training are applied on

test vectors prior to classification.

G. Reducing Classifier Complexity: SVs and Feature Counts

The F1-score measures the relative discrimination level of

two sets of real numbers. Given training vectors {xi}
l
i=1 , if

the number of positive and negative instances are l+ and l−,

respectively, then the F1-score of the kth feature is as follows

[31]:

F1(k) =
(xk+ − xk )2 + (xk− − xk )2

X+
k + X−

k

X+
k =

1

l+ − 1

n
∑

i=1

(xi,k+ − xk+ )2
(10)

X−
k =

1

l− − 1

n
∑

i=1

(xi,k− − xk−)2

where x̄k , x̄k+ , and x̄k− are the averages of the total, positive,

and negative datasets, respectively, of the kth feature. The F1-

score reaches its best value at 1 and worst value at 0.

Fig. 6(a) shows the F1-score discrimination measure for all

features considered. These F1-scores were obtained after ap-

plying appropriate transformation over feature distribution. A

transformation was applied where appropriate so that the his-

togram of the transformed feature approximates more closely

a Gaussian distribution [13]. This transformation enhances the

F1-scores of those features. A logarithmic transform was ap-

plied to σrr , σrd , RMSSD, σedr, and spectral-domain features.

A square-root transform was applied to ATk .

One disadvantage of the F1-score is that it does not reveal

mutual information among features. Despite this disadvantage,

the F1-score is simple and generally quite effective. Another

feature discrimination score used in isolating best performing

features is receiver operating characteristics (ROC) graphs [30],

[32]. Fig. 6(b) summarizes the calculated ROC analysis scores

for the various features. We select high F1-scoring features from

those listed in Tables II and III according to features type or

group. We then intersect these with features having ROC scores

≥ 0.5 [31].

A local type of the SVM classifier uses only the training set of

each subject to generate a customized classifier for the subject.

This subject-dependent SVM classifier (SVC-SD) significantly

decreases the complexity of the SVM model and enhances the

classifier prediction and accuracy.

The K-fold cross-validation method is also used for evaluating

the performance of SVC-SD. Here we use K = 30, based on the

number of subjects in the database and available subject’s data.

The final classification performance was calculated based on

the total true positive (TP), true negative (TN), false positive

(FP), and false negative (FN). Each input features’ data vector

is classified only once.

H. Controlling Classification Sensitivity and Specificity

In this classification problem, the numbers of datasets in the

two classes (+/−)OSA are unbalanced. Depending on the sub-

ject, the data can be either heavily (−)OSA or heavily (+)OSA.

In this study, the overall 1-min segments distribution is heavily

(−)OSA, where Pr[(−)OSA] = 0.63. In clinical applications of

apnea detection, the sensitivity optimization is preferred over

specificity optimization within an appropriate accuracy cost. In

this case, we should locate our optimal separating hyperplane

with an increasing bias toward the (+)OSA class. With a modi-

fied C-SVM formulation [5] that uses different penalty param-

eters for the two classes y+ ≡ (yi = +1) and y− ≡ (yi = −1),
(7) becomes

‖w‖2

2
+ C+

∑

i∈y+

ξi + C−
∑

i∈y−

ξi (11)

subject to yi(w · xi + b) ≥ 1 − ξi and ξi ≥ 0 ∀i.

By assigning a higher penalty for the (+)OSA class than the

(–)OSA class, we allow higher predictivity at the expense of

specificity within an appropriate accuracy cost.

V. RESULTS

Fig. 6(a) identifies the groups of features with highest F1

discrimination scores, which are also summarized in Table V.

Our reduced feature set (RS) comprises feature groups A, B,

C, E, and G. Groups D and F were not selected because of the

higher computation cost using PSD/FFT. The ANS ranges (LF

and VLF) were excluded from group E since they are covered

by using FS of EDR spectral variances {Var [Ds
edr ]}

9
s=2 . Each

1-min ECG segment is now mapped to the RS of n′ = 19 total

extracted feature measures (11 using RR time series and 8 using

EDR time series).
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Fig. 6. Feature selection using F1-measure and ROC. (a) Using F1-score discrimination measure for features considered after normal distribution transformation.
(Grp* denotes Group*, see Table V). (b) Features’ ROC scores (Only features with ROC scores ≥ 0.5 are selected).

TABLE V
BEST DISCRIMINATION FEATURES BASED ON FEATURE’S F1-SCORE. Ds

RR IS

sTH SCALE COEFFICIENTS OF RR(m) WAVELET DECOMPOSITION AND Ds
EDR

IS sTH SCALE COEFFICIENTS OF {EDR(q)} WAVELET DECOMPOSITION

Using our automated process described earlier, we extracted

a large number (l = 14 700) of training samples (of 1-min seg-

ment feature vectors) from the subjects Apnea–ECG database.

We then used the K-fold cross-validation method for assessing

the performance of the various classifier models developed in

our study and for finding the optimum kernel and SVM param-

eters. Different K values (K = 5, 10, and 35) are used for each

cross-validation run. The classification performances accuracy,

sensitivity, and specificity, are calculated using the overall clas-

sification results over the K-fold iterations of the same K-value.

In this way, every training vector xi is classified only once. K-

fold cross-validation methods are used to prevent the classifier

overfitting issues [29].

A. SVM Classifier—Subject-Independent (SVC-SI)

Table VI shows the results for the K-fold cross-validation

performance of SVC-SI classifier with different kernels and pa-

rameters (C, γ) using the FS; comprising n = 111 temporal

and spectral domain (RR + EDR) features. Table VII shows

the results for SVC-SI using the reduced set (RS); comprising

of n′ = 19 features. The kernels considered are linear, polyno-

mial, Gaussian/RBF, and Sigmoid/MLP. Each kernel type has

different number of kernel parameters in addition to the SVM

model penalty parameter C that determine the training strategy

to find the optimal kernel values and also affects the compu-

tational complexity during the training and classification. The

linear kernel represents effectively “no kernel mapping” and

hence has no parameters. The polynomial kernel parameters are

(γ, r, d). The sigmoid/MLP kernel parameters are (γ, r). The

Gaussian/RBF kernel’s only parameter is (γ). The RBF is con-

sidered very efficient numerically and geometrically suited for

nonlinear data distributions.

The best performing classifier for both sets (FS and RS) was

the one using Gaussian-kernel (Tables VI and VII). Fig. 7 shows

the performance of the Gaussian-kernel classifiers for both

features sets.

B. SVM Classifier—Subject-Dependent (SVC-SD)

Table VIII using the FS and Table IX using the reduced set

(RS) show the best performing (C, γ) for the SVC-SD classifier

with several kernel types: linear, polynomial (d = 2), RBF, and

MLP. We used a balanced penalty parameter C for both classes

(+)OSA and (–)OSA (C+ = C– = C).

When biasing the penalty parameter C towards (+)OSA to

enhance sensitivity within an accepted accuracy, the C+ was

chosen as 5 × C, and C– as 1 × C. Table X shows the results of

SVC-SD with sensitivity bias. We selected only the linear and

Gaussian/RBF kernels since they exhibited better performance

and provided efficient implementation in real-time monitors.

VI. DISCUSSION

Although SVM can build classifiers with high-classification

accuracy, the response time of SVM classifiers still need to be

improved when applied in real-time systems. In this study our

goal is to design an automated processing system to screen 1-min

sleep epochs for apnea using SVM classifiers and identify the

parameters and methods that allow efficient implementation in

real-time monitors. Three elements affecting the response time

of SVM classifiers [33], [34] are the number of feature input

variables, the mapping kernel type, and the number of the SVs.

A. Feature Set Selection

The applied feature selection methods are independent of

SVM model and kernel type. Using both F1 score and ROC areas

[30], we selected the best performing set (RS) that is a reduction
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TABLE VI
K-FOLD CROSS-VALIDATION PERFORMANCE OF SVC-SI USING FS

of the original feature set by 83%. This set had two components:

RR-intervals based features representing HRV variability that

captured vagal and sympathetic variability and EDR and NEP

features, which represent the approximate respiratory variability

efforts. The spectral-domain features corresponding to VLF and

LF frequency bands provide the best discriminant features.

The other features of the FS have increased the classification

performance to 91%, but it significantly increases the memory

size requirement and test phase computations. One advantage in

using a large number of features is it enhances the performance

for a simple linear kernel without the need to map data to a higher

dimensional space. In this case, the nonlinear mapping does

not improve the performance significantly (see in Tables VIII

and IX).

B. SVM Classifier Kernels

The performance of various kernel types was evaluated with

constrained and unconstrained SVM penalty parameter C in

the training phase using grid-search methods with a coarse

dyadic scale. Then a more detailed search was performed in

the kernel parameters region with a high accuracy. The best per-

forming combination of SVM-kernel parameters are reported in

Tables VI–X.

The linear kernel results are shown for various C values where

C ≥ 512 approximates unconstrained SVM. The linear kernel

performs very well in a high-dimension feature set with n =
111 as shown in Table VI and its performance degrades as we

reduce the feature set (see Table VII). The polynomial kernel is

a common method to work with nonlinear separation of data.

We selected quadratic polynomial of (d = 2). It shows very good

performance for both FS and RS feature sets. The Poly/d = 2 also

exhibits very good resilience to the feature set reduction from n

to n′ = 19. The disadvantages of the polynomial kernel are the

number of kernel parameters to consider and high computation

cost for real-time monitors.

The sigmoid kernel was quite popular for SVMs due to its

origin from neural networks, where it models a multilayer per-

ceptron (MLP) classifier with a single hidden layer; the SVs

correspond to the first layer and the Lagrange multipliers (αi)

to the weights [35]. The performance results using the MLP re-

ported are very poor, (<65%). This can be due to our SVM and

kernel parameter search that was not able to find high perform-

ing (C, γ, r) values. The sigmoid kernel matrix was shown to be

conditionally positive definite (CPD) in certain parameters and

thus are valid kernels only there [35] and hence, a kernel matrix

CPD analysis is needed to identify the valid search boundaries.

The Gaussian RBF kernel nonlinearly maps the input dataset

into a higher dimensional space. The RBF has less kernel pa-

rameters than polynomials and MLP kernels, hence reducing

the complexity of the SVM model. The RBF is also numerically

efficient and should be the first choice for general users [35].

C. Subject Dependent and Independent SVMs

OSA screening and monitoring use can range from offline

analysis, side effect studies, CPAP verification and feedback

control, and also in ambulatory systems and perioperative mon-

itoring. Although, SVM provides high generalization accu-

racy [5], the response time of SVM classifiers is still a con-

cern when applied in real-time OSA monitors. By reducing the

number of SVs (Tables VIII–X), and also by optimizing feature

space using feature set reduction and selection of appropriate

kernel (Tables VII and IX), we can speed up the response of

SVM classifiers.

Table VII shows that the polynomial or Gaussian/RBF per-

forms better with a RS. The advantage of collecting more effi-

cient features for OSA screening (extracted from ECG or other

physiological signals) is to enable the use of more efficient lin-

ear kernel in SVC-SI, as well as to improve the performance of

the SVC. In this case, the number of SVs is high ranging from

2500 to 4100, which is 15%–30% of input dataset. We deployed

the subject-independent SVC on “MedAssist Server” due to its

high computation cost requirement.

A reduced subject-dependent SVC can be generated either

based on prior subject’s sleep study or based on subject’s

physiological attributes. This SVC can be deployed efficiently

on real-time monitors that are used as home monitoring devices

to allow OSA recognitions for applications like CPAP treatment

assessment and feedback control. Tables VIII and IX show the

performance of various kernels for the SVC-SD. The range of

SVs is 15–160.

D. SVM C+ /C– Penalty Parameters

Clinically, for OSA screening, sensitivity performance op-

timization is preferred over specificity performance within an
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Fig. 7. Gaussian/RBF kernel cross-validation accuracy performance of SVC-SI for different SVM and kernel parameters (C, γ) Using: (a) reduced feature set
(RS). (b) complete feature set (FS).

TABLE VII
K-FOLD CROSS-VALIDATION PERFORMANCE OF SVC-SI USING RS

accepted accuracy (or F-measure). SVM model can be designed

with unbalanced penalty parameters (C+ ,C–) to optimize either

sensitivity and/or specificity.

Table X shows the increased sensitivity performance (96%)

while keeping the same F-measure around (89.90%).

E. Comparison With Previous Studies

As reported earlier, other studies [10], [11] addressed SVM

classifiers in OSA screening and also other researchers have

applied different other methods [12], [13].

The SVM studies in OSA are still new in published studies.

These studies either [10] used the complete nocturnal recording

as one segment or used posterior probability as OSA severity

indicator. In addition, they do not consider model complexity

or method of controlling predictivity. In [11], authors use two

different biomedical sensor signals without using EDR.

The authors of [12], [13] use different classifier models, or

different feature extraction methods and coarser time resolution

for OSA recognition because they apply temporal averaging

over multiple epoch segments to enhance performance.

In contrast, in this study we considered per minute segment

based OSA detection and presented several new methods to in-

crease the predictivity of the classifier performance and also

reduce the complexity of the classifier for efficient implemen-

tation in real-time monitors. We presented two models of soft-

margin support vector classifiers (C-SVC); subject-independent

and subject-dependent SVC models combined with unbalanced

“penalty parameters” (C+ ,C–). Also, we presented methods for

efficient automated processing of ECG recording and feature ex-

traction for the OSA recognition in real-time monitors. We have

implemented our SVM classifier successfully on a smartphone

with Android OS and this is first of such implementation to the

best of our knowledge.

The other studies have presented accuracies (90%–91%) sim-

ilar to or lower than ours for the subject independent classifier.

For the subject-dependent classifier, our methods achieved a

higher predictivity of 96%.
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TABLE VIII
K-FOLD CROSS-VALIDATION PERFORMANCE OF SVC-SD USING FS

TABLE IX
K-FOLD CROSS-VALIDATION PERFORMANCE OF SVC-SD USING RS

TABLE X
K-FOLD CROSS-VALIDATION PERFORMANCE OF SVC-SD USING FS, (C+ > C–)

VII. CONCLUSION

Several C-SVM classifiers have been proposed for obstruc-

tive sleeping apnea screening and recognition based on ECG

readings on a per 1-min epoch basis. An F-measure of 90%

and sensitivity of 96% were achieved for the SVC-SD clas-

sifier. The subject independent C-SVM classifier can be used

for initial screening or when no previous sleep study (PSG)

data are available. The subject-dependent C-SVM classifier is

based on subject’s PSG) that physicians can utilize in a custom

designed classifier to achieve better performance. An efficient

automated processing system on a smartphone has been imple-

mented and evaluated to capture and process ECG, generate

input features for the SVM classifier and classify OSA events.

Several methods are proposed and evaluated to reduce the nu-

merical computational complexity of the SVC model: feature

selection and reduction strategies, kernel mapping, reduced SV

subject-dependent classifier and use of unbalanced “penalty pa-

rameters” C. The classification accuracies were evaluated for

these various methods.

Other SVM simplification strategies like SVM clustering

or K-means clustering can be added to this study to simplify

further the SVC model [36]. Addition of other input features

(either extracted from ECG or other biomedical sensor like

SpO2) can be added to the ones considered here to increase the

accuracy.

ACKNOWLEDGMENT

The authors would like to thank Prof. M. Nourani and Prof. G.

Gupta of University of Texas and Dr. W. Brock of Presbyterian

Hospital, Dallas, TX for helpful discussions.

REFERENCES

[1] W. T. McNicholas and P. Levy, “Sleep-related breathing disorders: Def-
initions and measurements,” Eur. Respir. J., vol. 15, no. 6, pp. 988–989,
2000.

[2] American Academy of Sleep Medicine (AASM) Task Force, “Sleep-
related breathing disorders in adults: Recommendations for syndrome
definition and measurement techniques in clinical research,” Sleep, vol.
22, pp. 667–689, 1999.



BSOUL et al.: APNEA MEDASSIST: REAL-TIME SLEEP APNEA MONITOR USING SINGLE-LEAD ECG 427

[3] R. K. Kakkar and R. B. Berry, “Positive airway pressure treatment for
obstructive sleep Apnea,” Chest, vol. 132, pp. 1057–1072, 2007.

[4] C. den Herder, J. Schmech, D. Appelboom, and N. de Vries, “Risks of
general anaesthesia in people with obstructive sleep Apnea,” Br. Med. J.,
(BMJ), vol. 329, pp. 955–959, 2004, 2011.

[5] C. Cortes and V. Vapnik, “Support-vector machines,” Mach. Learning,
vol. 20, pp. 273–297, 1995.

[6] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[7] G. B. Moody, R. G. Mark, A. Zoccola, and S. Mantero, “Derivation of
respiratory signals from multilead ECGs,” Comput. Cardiol., vol. 12, pp.
113–116, 1985.

[8] N. Oliver and F. Flores-Mangas, “HealthGear: A real-time wearable sys-
tem for monitoring and analyzing physiological signals,” in Proc. IEEE

Int. Workshop Wearable Implantable Body Sens. Netw. (BSN), Apr. 2006,
p. 4.

[9] Y. Fu-Chung, K. Behbehani, E. Lucas, J. Burk, and J. Axe, “A noninvasive
technique for detecting obstructive and central sleep Apnea,” IEEE Trans.

Biomed. Eng., vol. 44, no. 12, pp. 1262–1268, Dec. 1997.
[10] A. H. Khandoker, M. Palaniswami, and C Karmakar, “Support vector

machines for automated recognition of obstructive sleep Apnea syndrome
from ECG recordings,” IEEE Trans. Inf. Technol. Biomed., vol 13, no. 1,
pp. 37–48, Jan. 2009.

[11] A. Patangay, P. Vemuri, and A. Tewfik, “Monitoring of obstructive sleep
Apnea in heart failure patients,” in Proc. 29th Annu. Int. Conf. IEEE

Eng. Med. Biol. Soc. (EMBS) Citı̈ 1/2 Int., Lyon, France, Aug. 2007, pp.
1043–1046.

[12] B. Raymond, R. M. Cayton, R. A. Bates, and M. J. Chappell, “Screening
for obstructive sleep Apnea based on the electrocardiogram—The com-
puters in cardiology challenge,” Comput. Cardiol., vol. 27, pp. 267–270,
2000.

[13] P. de Chazal, C. Heneghan, E. Sheridan, R. Reilly, P. Nolan, and M.
O’Malley, “Automated processing of the single-lead electrocardiogram
for the detection of obstructive sleep Apnea,” IEEE Trans. Biomed. Eng.,
vol. 50, no. 6, pp. 686–696, Jun. 2003.

[14] HTC Corporation, G1 Specifications. (2009). [Online]. Available: http://
www.htc.com/.

[15] Android Open Source Project. (2009). [Online]. Available: http://www.
android.com/.

[16] T. Penzel, “The Apnea–ECG database,” Comput. Cardiol., vol. 27, pp.
255–258, 2000.

[17] G. B. Moody, R. G. Mark, A. L. Goldberger, and T. Penzel, “Stimulat-
ing rapid research advances via focused competition: The computers in
cardiology challenge,” Comput. Cardiol., vol. 27, pp. 207–210, 2000.

[18] M. Jansen and P Oonincx, Second Generation Wavelets and Applications.
New York: Springer-Verlag, 2005.

[19] C. S. Lee, C. K. Lee, and K. Y. Yoo, “New lifting based structure for
undecimated wavelet transform,” IEEE Electron. Lett., vol. 36, no. 22, pp.
1894–1895, Oct. 2000.

[20] P. Hamilton and W. Tompkins, “Quantitative investigation of QRS detec-
tion rules using the MIT/BIH arrhythmia database,” IEEE Trans. Biomed.

Eng., vol. BME-33, no. 12, pp. 1157–1165, Dec. 1986.
[21] G. D. Furman, Z. Shinar, A. Baharav, and S. Akselrod, “Electrocardiogram

derived respiration during sleep,” Comput. Cardiol., vol. 32, pp. 351–354,
2005.

[22] F. Yasuma and J. Hayano, “Respiratory sinus arrhythmia,” Amer. College

Chest Physicians, Chest, vol. 125, pp. 683–690, 2004.
[23] Y. Yoshida, K. Yokoyama, and N. Ishii, “Real-Time continuous estimation

of respiratory frequency during sleep based on heart rate time series,” in
Proc. 29th Annu. Int. Conf. Eng. Med. Biol. Soc. (EMBS), Aug. 2007, pp.
648–651.

[24] M. Teich, S. B. Lowen, B. M. Jost, K. Vibe-Rheymer, and C. Heneghan,
“Heart-rate variability: Measures models,” in Nonlinear Biomedical Signal

Processing, M. Akay, Ed. Piscataway, NJ: IEEE Press, 2001, ch. 6, pp.
159–213.

[25] G. D. Clifford, Advanced Methods & Tools for ECG Data Analysis. Lon-
don, U.K.: Artech House, 2006.

[26] A. Aldroubi and M. Unser, Wavelets in Medicine and Biology. Boca Raton,
FL: CRC-Press, 1996.

[27] S. R. Gunn, “Support vector machines for classification and regression,”
University of Southhampton, Southampton, U.K., Tech. Rep., 1998.

[28] C. Chang and C. Lin. (2001). “LIBSVM: A library for support vector ma-
chines,” [Online]. Available: http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[29] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estima-
tion and model selection,” in Proc. Int. Joint Conf. Artif. Intell. (IJCAI),
1995, pp. 1137–1143.

[30] C. J. van Rijsbergen, Information Retrieval, 2nd ed. London, U.K.:
Butterworth–Heinemann Press, 1979.

[31] Y. Chen and C. Lin, Combining SVMs with Various Feature Selection

Strategies. New York: Springer-Verlag, 2006.
[32] J. Hanley and B. McNeil, “A method of comparing the areas under receiver

operating characteristic curves derived from the same cases,” Radiology,
vol. 148, pp. 839–843, 1983.

[33] A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik, “Support vector
clustering,” J. Mach. Learning Res., vol. 2, pp. 125–137, 2001.

[34] Q. Tran, Q. Zhang, and X. Li, “Reduce the number of support vectors
by using clustering techniques,” in Proc. 2nd Int. Conf. Mach. Learning

Cybern., Xi’an, Nov. 2003, pp. 1245–1248.
[35] S. Keerthi and C. Lin, “Asymptotic behaviors of support vector machines

with Gaussian kernel,” Neural Comput., vol. 15, no. 7, pp. 1667–1689,
2003.

[36] J. Wang, X. Wu, and C. Zhang, “Support vector machines based on
K-means clustering for real-time business intelligence systems,” Int. J.

Bus. Intell. Data Mining, vol. 1, no. 1, pp. 54–64, 2005.

Majdi Bsoul (S’95–M’98) received the B.S. degree
in electrical engineering from Jordan University of
Science and Technology, Irbid, the M.S. degree in
electrical and computer engineering from the Uni-
versity of Missouri, Columbia, in 1998, and Ph.D.
degree in electrical engineering from the University
of Texas at Dallas, Richardson, in 2010.

He was involved in R&D of next generation net-
works (NGN) in the wireless and IP networks for sev-
eral telecommunication companies, and is currently
engaged at Alcatel–Lucent, Plano, TX. His research

interests include wireless sensor networks and applications in body area net-
works, sleep-related staging analysis and breathing disorders, and wavelet signal
processing techniques for biomedical systems.

Hlaing Minn (S’99–M’01–SM’07) received the B.E.
degree in electronics from Yangon Institute of Tech-
nology Yangon, Myanmar, in 1995, the M.Eng. de-
gree in telecommunications from Asian Institute of
Technology (AIT), Pathumthani, Thailand, in 1997,
and the Ph.D. degree in electrical engineering from
the University of Victoria, Victoria, BC, Canada, in
2001.

During 1998, he was a Laboratory Supervisor at
AIT, where he was involved with the telecommunica-
tions program. From 1999 to 2001, he was a Research

Assistant and during 2002, a Postdoctoral Research Fellow in the Department
of Electrical and Computer Engineering, University of Victoria. In September
2002, he joined the Erik Jonsson School of Engineering and Computer Science,
the University of Texas at Dallas, Richardson, where he is currently an As-
sociate Professor. His research interests include wireless communications, sta-
tistical signal processing, error control, detection, estimation, synchronization,
signal design, cross-layer design, cooperative/relay systems, cognitive radios,
and biomedical and healthcare-related signal processing and wireless systems.

Dr. Minn is an Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS.

Lakshman Tamil (S’81–M’88–SM’05) received the
B.E. degree in electronics and communication engi-
neering from Madurai Kamaraj University, India, in
1981, the M.Tech. degree in microwave and optical
communication from the Indian Institute of Technol-
ogy, Kharagpur, India, in 1983, and the M.S. degree in
mathematics and the Ph.D. degree in electrical engi-
neering from the University of Rhode Island in 1989.

He is a Professor in electrical engineering at the
University of Texas at Dallas (UTD), Richardson,
where he is also the Director of the Quality of Life

Technology Laboratory. He has directed more than a dozen doctoral disserta-
tions. He was also the Founder, CEO, and CTO of Yotta Networks Inc., which
designed and marketed terabit-switching platforms. He has also directed re-
search on advanced optical networks at Alcatel’s Corporate Research Center,
and he was a leader in creating both the early optical IP router and a multi-
channel, multipoint distribution service that was a precursor to WiMAX. He has
been an optical and wireless communication consultant to the Naval Research
Laboratories, Raytheon Co., Electrospace Systems Inc., and Spike Technology.
He has authored or coauthored more than 100 research publications and holds
18 U.S. patents.


