
rate = 50pulsek) until the maximum reflectivity reached 10% (- 
IOdB), typically requiring a few tens of seconds. The photoim- 
printed Bragg grating resonates at  a centre wavelength of 
1557.5nm with a 3dB bandwidth of 1.5nm (see Fig. 2). The 
sidelobes are ill defined and more than 26dB below the reflection 
peak. For comparison (also in Fig. 2 ) ,  a Bragg grating with a sim- 
ilar 3dB bandwidth and peak reflectivity was fabricated with a 
uniform diffraction efficiency phase mask (the length of the grat- 
ing must be reduced to -0.6 mm to yield the same bandwidth). In 
this case, the sidelobe levels are significantly higher, with the high- 
est sidelobe only 12dB below the peak reflectivity, in good agree- 
ment with theoretical calculations. This demonstrates that 
apodisation with a variable diffraction efficiency phase mask is a 
practical method to reduce sidelobe levels, by as much as 14dB for 
the first sidelobe. 

0 300  600 900 1200 1500 
position, pm 

Fig. 3 Sputiul variation ofreflectivity of Imm long unapodised and apo- 
disedfihre Bragg gratings, measured along length with a .spatial resolu- 
tion better than 5 O p  
(i) Unapodised 
(ii) apodised 

Further verification that the variable diffraction efficiency phase 
mask photoimprints gratings whose reflectivity varies with posi- 
tion was obtained directly using low coherence reflectometry [IO]. 
The measured reflectivity as a function of position is shown in 
Fig. 3 for an apodised grating, whose reflectivity follows a Gaus- 
sian-like shape, and for an unapodised grating, whose reflectivity 
is constant along the length. These two gratings were fabricated 
with low reflectivity (1%) to minimise the loss of probe light along 
the length of the gratings. 

Conclusion: We have achieved the effective apodisation of the 
reflectivity of photoimprinted Bragg gratings by tailoring the dif- 
fraction efficiency of the phase mask. A suitable chosen Gaussian 
profile of diffraction efficiency has reduced sidelobe levels by more 
than 14 dB. 
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Apodised in-fibre Bragg grating reflectors 
photoimprinted using a phase mask 

B. Malo, S. Theriault, D.C. Johnson, F. Bilodeau, 
J. Albert and K.O. Hill 

Indexing fern7.s: Gratings in fibres, OpticulJbres 

An apodised in-fibre Bragg grating reflector is fabricated using 
the phase mask photoimprinting technique. The reflector has a 
centre wavelength of 1550nm, a bandwidth of 0.2271111 and a peak 
reflectivity of 90%. At 0.4nm (50GHr) from the centre 
wavelength the reflectivity is 40dB lower than the peak 
reflectivity; this is an improvement of more than 20dB over an 
unapodised Bragg grating reflector with similar bandwidth and 
peak reflectivity. 

Introduction; Dense wavelength division multiplexing (WDM) sys- 
tems require devices that can isolate channels that are spaced by 
only IOOGHr (0.8nm at 1550nm). Photosensitivity [I] provides a 
versatile means for the fabrication of the gratings used in wave- 
length selective devices for WDM systems [2-51. Finite-length in- 
fibre Bragg grating reflectors with a uniform index modulation 
along the fibre length have a spectral reflection response with sec- 
ondary maxima on both sides of the main reflection peak. This 
characteristic spectral response of the uniform Bragg reflector is 
not desirable in WDM systems applications because the presence 
of the sidelobes increases the frequency separation (guard-space) 
needed between optical carriers to reduce interchannel interference 
to acceptable levels. In this Letter we report apodised Bragg reflec- 
tors with reflection responses exhibiting significantly suppressed 
sidelobes; the apodised reflectors are fabricated using the phase 
mask photoimprinting technique [6]. 

Apodisation: Hill and Matsuhara [7, 81 have shown that the 
sidelobes in the frequency response of a periodically perturbed 
optical waveguide filter can be suppressed by designing filters with 
a grating coupling coefficient that varies spatially along its length. 
The reduction of the secondary maxima in the Bragg grating 
reflection response is called apodisation and is achieved by pho- 
toinducing a refractive index grating with a modulation amplitude 
that has a bell-like functional shape along the grating length (for 
example, one period of cos?). 

Apodised fibre Bragg reflectors have been written using the 
holographic technique [9] with interfering ultraviolet beams that 
have a Gaussian spatial profile. Although the sidelobes in the 
spectral response of these gratings are suppressed, the gratings 
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have a fine structure on the short-wavelength side of their reflec- 
tion response curve which is particularly strong in high-reflectivity 
gratings [IO]. The fine structure is attributed to Fabry Perot reso- 
nances that are obtained in index gratings with a uniform pitch 
and index modulation whose amplitude has a Gaussian spatial 
profilc. In such structures. the local Bragg resonant wavelength at 
the grating centre is longer than the local Bragg resonance wave- 
lenyths at the grating ends. Consequently, the reflections between 
the ends of the grating form a Fabry Perot. 

In this work, we photoimprint index gratings with a uniform 
period and index modulation amplitude that has a cosz functional 
variation along the grating length. However, the average local 
refractive index of these photoimprinted Bragg gratings has been 
corrected so that the local Bragg resonance is constant along the 
whole length of the grating. The reflection responses of these apo- 
dised Bragg reflectors do not have fine structure on the short- 
wavelength side that has been observed in the apodised Bragg 
reflectors of [9]. 

E.rpwitiient N I I ~  results: The method we use in this work for 
obtaining pure apodisation of the grating reflection response, 
while maintaining invariant the Bragg condition throughout the 
entire length of the grating. is based on a double-exposure tech- 
nique described earlier with respect to dispersion-compensating 
Bragg grating devices [I]. In essence. a first exposure (with the 
phase inask absent) is made using an appropriately designed 
ahadou mask. This first exposure is computer-controlled to pre- 
condition the effective index of the optical waveguide in auch a 
way as to compensate for any nonuniform variations in average 
index that are created in the second stage of the fabrication proc- 
css. In the second exposure, an index modulation with a bell- 
shaped profile is photoimprinted using the phase mask technique 
[6]. This profile is obtained using once again a shadow mask to 
control the irradiation dose such that it has a cosi dependence on 
grating length. Using this procedure, a Bragg grating was fabri- 
cated in standard Corning SMF-28 monomode telecommunication 
fibre that had been preloaded with hydrogen [12]. The grating is 
I O  mm long, has a centre resonance wavelength of 1549.8nm and 
a full width at half maximum (FWHM) of 0.22nm. The reflection 
response for this grating is shown in Fig. 1. At wavelengths 1-0.4 
nm (+5OGHr) from the centre wavelength of the reflector. the 
reflectivity is 40dB lower than the peak reflectivity of the Bragg 
grating. No well defined sidelobes are apparent in the reflection 
rcsponse. 

t . . . . , . .  ,,'.A 
1549 1549 5 1550 1550 5 

wavelength. nm pJ 
Fig. 1 Spcwmrl reflection rcspunse of an apodised and un uflapodised 
fibre Brugy ,qruting reflector 

For comparison, we fabricated an unapodised Bragg grating 
with similar peak reflectivity and bandwidth. This grating was fab- 
ricated using the standard single-step phase mask photoimprinting 
technique [6]. The unapodised Bragg reflector has a length of 6 
mm. a centre resonance wavelength of 1550nm, a reflectivity of 

90"/;, and a bandwidth (FWHM) of 0.24nm. The reflection spcc- 
trum for this unapodised grating is also shown in Fig. 1.  At *0.4 
nm from the centre wavelength, the sidelobes in the reflection 
response of the unapodised grating are 20dB higher than those in 
the reflection response of the apodised grating. 

1.0 , 

I 
0 4 8 12 16 

distance, mm , F E  
0 

Fig. 2 R&efir,ity 41 UII unupodisrd and qmdised Brag,? rqfkctor LIS  u 
function ofposition in the, Brayg grating 

(i) Unapodised 
(ii) Apodised 

The variation in index modulation along the length of an apo- 
dised Bragg reflector can he measured directly using low coher- 
ence reflectometry [13]. We made these measurements using a 
commercial low coherencc reflectometer (Hcwlett-Packard, model 
No. H P  8504A) that has a resolution better than 50pm at 1550nm 
and maximum return loss of 75dB. The sensitivity of this instru- 
ment is insufficient to characterise the high reflectivity Bragg grat- 
ings whose reflection responses are shown in Fig. 1. Consequently, 
we fabricated apodised and unapodised Bragg reflectors with 
lower reflectivity (= 10%). The low-coherence reflectometry meas- 
urements (see Fig. 2) give the local reflectivity as a function of 
position along the length of the grating. The results verify that the 
profile of the index modulation in unapodised and apodised Bragg 
gratings are, respectively, flat and hell-like shaped along the grat- 
ing length. 

Conrhions; We have fabricated an apodised Bragg grating reflec- 
tor with a centre wavelength of 1550nm. a handwidth (FWHM) of 
0.22nm and a peak reflectivity of 90 '%~ At 1-0.4nm (*50GHz) 
from the centre wavelength the reflectivity is 40 dB lower than the 
peak reflectivity, a 20dB improvement over an unapodised Bragg 
grating reflector with similar characteristics. 
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Technique for measuring the distributed 
zero dispersion wavelength of optical fibres 
using pulse amplification caused by 
modulation instability 

S. Nishi and M. Saruwatari 

Indexing terms: Opticu! dispersion, Optical fibre testing, Optical 
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A novel method for measuring the distributed zero dispersion 
wavelength & along a fibre’s length is proposed that uses the 
dispersion dependent amplification induced by modulation 
instability. The & distribution of a lOkm fibre is successfully 
measured without cutting the fibre into short pieces. The 
measured distribution is compared with the average values of each 
span as measured with the conventional method. 

Zntroduccion: The evaluation and management of fibre dispersion 
along an optical fibre is very important in many applications, for 
example high speed optical soliton transmission [I] and a n  optical 
FDM system experiencing four-wave mixing [2]. However, com- 
monly used measurement techniques [3, 41 cannot reveal the distri- 
bution of dispersion, only the average dispersion of the fibre 
measured. A method that can estimate longitudinal dispersion dis- 
tributions was recently proposed [SI. This method estimates the 
distribution of waveguide dispersion from the observed distribu- 
tion of the mode-field diameter. 

This Letter proposes a novel technique for measuring the distri- 
bution of zero dispersion wavelength directly. This method uses 
the gain generation due to the modulation instability that occurs 
in the anomalous dispersion region near the zero dispersion wave- 
length. 

Measurement principle: Fig. la shows the principle of the pro- 
posed measurement method. The pump light, whose wavelength is 
swept gradually, is launched into the fibre under measurement. 
Simultaneously, the loss variation along the fibre length is 
observed by an OTDR setup. When the wavelength of the pump 
light enters the anomalous dispersion region from the normal 
region, modulation instability occurs and the probe pulse from the 

fibre under measurement 
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I 

a- 
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Fig. 1 Measurement principle 

a Configuration 
b Gain coeficient against pump wavelength 
D = s . (h ynp ~ b), s = 0.07ps/km/nm2, Po = IWmW, n, = 3.2 X 
10-16cm’&, A ,  = S o p ’  

OTDR setup is amplified. The parts of the fibre at  which the loss 
decreases as shown in Fig. 1 are estimated to exhibit anomalous 
dispersion. The gain coefficient (m-I) due to modulation instability 
is given by the following equation [6]: 

1 / z  

G(4X) = ~ 2sXpUm, ~ p u m , ~ e f , l ~ l  - ~ ~ ) * L X ) ~ }  
l D I A X  { 8an2cPo 

(1) 
where D is the dispersion at  the pump wavelength, n, the nonlin- 
ear-index coefficient, c the velocity of light in a vacuum, Po the 
power of pump light, A,, the effective core area, hDmp the wave- 
length of pump light, and AX the wavelength shift from the pump 
light. 

Fig. Ib shows the gain coefficient as a function of pump wave- 
length as calculated by eqn. 1. We assume that the dispersion is 
given by ID1 = s . (h , , ,  - &), that the probe signal is also swept 
and that the difference between pump and probe wavelengths is 
constant (= hpump.proh). & is the zero dispersion wavelength and s is 
the slope of dispersion around &. & is obtained experimentally by 
scanning hp, from the normal to anomalous dispersion region 
and checking whether gain appears or not. 
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Fig. 2 Experimental results (using fibre A )  

hprobr- ump = nm 
a OTBR traces 
b Gain coefficient against pump wavelength (9-IOkm) 
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