
Apodization of chirped quasi-phasematching devices

C. R. Phillips,1,2,* C. Langrock,1 D. Chang,1 Y. W. Lin,1 L. Gallmann,2 and M. M. Fejer1

1Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
2Department of Physics, Institute of Quantum Electronics, ETH Zurich, Zurich 8093, Switzerland

*Corresponding author: cphillips@phys.ethz.ch

Received February 25, 2013; accepted March 28, 2013;
posted April 17, 2013 (Doc. ID 185964); published May 15, 2013

Chirped quasi-phasematching (QPM) optical devices offer the potential for ultrawide bandwidths, high conversion
efficiencies, and high amplification factors across the transparency range of QPMmedia. In order to properly take
advantage of these devices, apodization schemes are required. We study apodization in detail for many regimes of
interest, including low-gain difference frequency generation (DFG), high-gain optical parametric amplification
(OPA), and high-efficiency adiabatic frequency conversion (AFC). Our analysis is also applicable to second-
harmonic generation, sum frequency generation, and optical rectification. In each case, a systematic and opti-
mized approach to grating construction is provided, and different apodization techniques are compared where
appropriate. We find that nonlinear chirp apodization, where the poling period is varied smoothly, monotonically,
and rapidly at the edges of the device, offers the best performance. We consider the full spatial structure of the
QPM gratings in our simulations, but utilize the first order QPM approximation to obtain analytical and semi-
analytical results. One application of our results is optical parametric chirped pulse amplification; we show that
special care must be taken in this case to obtain high gain factors while maintaining a flat gain spectrum. © 2013
Optical Society of America

OCIS codes: (190.4360) Nonlinear optics, devices; (230.7405) Wavelength conversion devices; (190.4970)
Parametric oscillators and amplifiers; (320.7080) Ultrafast devices.
http://dx.doi.org/10.1364/JOSAB.30.001551

1. INTRODUCTION
Chirped (aperiodic) quasi-phasematching (QPM) gratings
have received attention for various optical frequency conver-
sion schemes, including difference frequency generation
(DFG), optical parametric amplification (OPA), sum fre-
quency generation (SFG), optical parametric oscillators
(OPOs), and many other applications [1–23]. Their main role
so far has been to broaden the phasematching bandwidth
compared to conventional periodic QPM gratings, without
the need to use short crystals with reduced conversion effi-
ciency, tighter focusing, or higher intensities. This broadening
can be understood through a simple spatial frequency argu-
ment: due to dispersion, there is a mapping between phase-
matched frequency and grating k-vector; in chirped QPM
gratings, the grating k-vector is swept smoothly over the range
of interest, thereby broadening the spatial Fourier spectrum of
the grating and hence the phasematching bandwidth.

For continuous wave (cw) interactions involving the
generation of a weak wave from two undepleted waves, the
generation of the output wave can be described in terms of
the spatial Fourier transform of the QPM grating evaluated
at the spatial frequency corresponding to the phase mismatch
associated with the three-wave interaction [2]. This type of
interaction corresponds, for example, to negligible pump
depletion and low signal amplification in OPA, or to second-
harmonic generation (SHG) with negligible pump depletion.
Since the nonlinear polarization is abruptly turned on at the
edges of the nonlinear crystal, this QPM transfer function
exhibits an interference effect associated with the corre-
sponding high spatial frequency components. Such a spectral
ripple is highly undesirable in most applications.

In order to remove the spectral ripple, apodization tech-
niques may be employed to bring some measure of
the effective nonlinearity smoothly to zero [1,24–27]. Several
schemes have been proposed, including deleted domains,
duty cycle variation, waveguide tapering [24], the use of non-
linear chirp profiles [1], and step-chirp designs [26].

In the context of apodization, we take linearity to mean that
the output wave of interest is linear in the nonlinear coeffi-
cient d�z�. In many cases of practical interest, the assumption
of linearity does not hold. For example, in high-gain OPA
employing chirped QPM gratings, apodization is particularly
important [1]. Furthermore, relatively recently it has been
shown that saturated nonlinear interactions in chirped QPM
gratings can exhibit high efficiencies due to an adiabatic
following process [7,8]. As a result of this process, for
three-wave mixing (TWM) processes involving input pump
and signal waves and a generated idler wave, the ratio of
pump output and input intensities approaches 0 with respect
to both the input signal and pump intensities, i.e., approaches
100% pump depletion. This behavior, termed adiabatic fre-
quency conversion (AFC), occurs for interactions that are
both plane wave and monochromatic, provided that the
QPM grating is sufficiently chirped.

In this paper, we study apodization for various different
types of operating regimes of interest to chirped QPM devices,
including low-gain and low-efficiency interactions such as
DFG, high-gain OPA interactions, and even AFC. We show
how apodization profiles can be constructed systematically,
and how their construction can be connected with the under-
lying structure of the TWM process in an intuitive way. This
approach enables high performance, limited only by the
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inherently discrete QPM grating structure. We analyze all of
the designs presented in detail numerically, in particular tak-
ing into account the full nonlinear evolution of the coupled
waves in the actual discrete QPM structure (as opposed to as-
suming a simplified first order QPM interaction). Our study
will enable the continued development of many different
chirped QPM devices and technologies.

In Section 2, we establish the CWEs that will be used in the
remaining sections. In Section 3, we solve these equations for
the simple case of DFG in a chirped QPM grating, highlighting
the connection between these solutions and the eigenmodes
of the relevant CWE. In Section 4, we determine and compare
apodization profiles for the linear cases [corresponding to
DFG, SFG, SHG, optical rectification (OR), etc.]. In Section 5,
we consider the case of high-gain OPA in chirped QPM
devices, and establish and compare apodization techniques.
In Section 6, we introduce AFC, and show in detail how these
interactions can be analyzed and understood using the
geometrical analysis of TWM processes developed in [28].
In Section 7, we develop apodization procedures for AFC via
this geometrical analysis. We give an example apodization
profile designed for the case of a moderate-gain, high-pump-
depletion OPA device. Our results show that for all of the
above types of interactions, and particularly for OPA and AFC,
nonlinear chirp apodization offers significant advantages over
other approaches, such as deleted domain apodization (DDA).
Last, we conclude and discuss several important practical as-
pects of our results in Section 8.

2. COUPLED WAVE EQUATIONS
In this section, we introduce the equations governing arbitrary
TWM processes in QPM devices. We consider plane wave,
quasi-cw interactions, for which each signal frequency mixes
with a single pump and idler frequency. Even for non-cw inter-
actions, this assumption is very useful for studying TWM proc-
esses, for example, in optical parametric chirped pulse
amplification (OPCPA) systems.

A. Three-Wave Mixing
In the quasi-cw approximation, the evolution of the electric
field in the QPM grating is given by the coupled wave equa-
tions (CWEs) [29]:

dAi

dz
� −i

ωid0

nic
d̄�z�A�

s Ape
−iΔk0z; (1a)

dAs

dz
� −i

ωsd0

nsc
d̄�z�A�

i Ape
−iΔk0z; (1b)

dAp

dz
� −i

ωpd0

npc
d̄�z�AiAse

�iΔk0z; (1c)

where subscripts i, s, and p denote quantities associated with
the idler, signal, and pump envelopes, respectively. The nor-
malized nonlinear coefficient d̄�z� is defined in terms of the
spatially varying nonlinear coefficient d�z� as d̄�z� �
d�z�∕d0, where d0 is the nonlinear coefficient in the unmodu-
lated material. ωj is the angular optical frequency of wave j

(these satisfy ωp � ωi � ωs), and nj is refractive index of
wave j. The material phase mismatch Δk0 is given by

Δk0 � kp − ks − ki, where kj � ωjnj∕c is the wavevector for
wave j. The electric field envelopes Aj are assumed here
for simplicity to contain only a single frequency component,
and are defined such that the total electric field is given by

E�z; t� � 1
2

X
j

Aj�z� exp�i�ωjt − kjz�� � c:c:; (2)

where c.c. denotes complex conjugate.
Note that when pulsed interactions are analyzed within the

quasi-cw limit, a set of CWEs similar to Eqs. (1) should be
found, and expressed in the frequency domain, since the
coupling coefficients �ωjd0�∕�njc� and phase mismatch Δk are
frequency dependent.

B. Quasi-Phasematching
Equations (1) apply for arbitrary spatial profiles of the nonlin-
ear coefficient d�z�, provided that backward waves can be
neglected. In a QPM grating, d � �d0. Because of this con-
straint, it is possible to write arbitrary QPM grating profiles
in a Fourier series:

d̄�z�≡ d�z�
d0

� sgn�cos�ϕG�z�� − cos�πD�z��� (3a)

� �2D�z� − 1� �
X∞

m � −∞
m ≠ 0

2 sin�πmD�z��
πm

exp�imϕG�z��;

(3b)

where D�z� and ϕG�z� are the grating duty cycle and phase
functions, respectively. Often, D�z� ≈ 0.5 by design, due to
QPM fabrication limitations [30], minimization of photorefrac-
tive effects [31–33], and also in order to maximize the ampli-
tude of the first Fourier order (m � �1) in Eq. (3), but we
consider more general cases here. In chirped QPM gratings,
the phase function can be expressed as

ϕG�z� � ϕG�zi� �
Z

z

zi

Kg�z0�dz0; (4)

where Kg�z� is the smooth and continuous local grating
k-vector (or local spatial frequency), and ϕG�zi� is a chosen
initial phase. zi and zf denote the positions of the input
and output ends of the grating. Note that we do not assume
zi � 0, and therefore the exp�−ikjz� phase factors in Eq. (2)
must be accounted for in determining the input envelopes
Aj�zi� given a known input electric field E�zi; t�.

In an interaction where only one Fourier order of the QPM
grating is close to the phasematching condition, d̄�z� can be
approximated by considering only the�mth terms in Eq. (3b).
In particular, for a first order QPM interaction, Eqs. (1)
become

dAi

dz
� −iκi�z�A�

s Ape
−iϕ1�z�; (5a)

dAs

dz
� −iκs�z�A�

i Ape
−iϕ1�z�; (5b)
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dAp

dz
� −iκp�z�AiAse

�iϕ1�z�: (5c)

In these equations, the coupling coefficients κj�z� are given by

κj�z� �
ωjd0

njc

2
π

sin�πD�z��; (6)

and the accumulated phase mismatch ϕ1�z� is given by

ϕ1�z� � ϕ1�zi� �
Z

z

zi

Δk1�z0�dz0; (7)

where the local phase mismatch is given by

Δkm�z� � kp − ks − ki −mKg�z�; (8)

for integer m (the QPM order), and ϕ1�zi� corresponds to the
relative phase between the three envelopes and their driving
terms at the input of the device. Usually, one of the envelopes
is initially zero, and in such cases ϕ1�zi� has no effect on the
dynamics. The first order QPM approximation is often very ac-
curate in practical situations, as wewill show later in this paper.

C. Normalized Coupled Wave Equations
For the purposes of analysis and numerical simulations, it is
often useful to normalize Eqs. (5). The photon flux of wave j

is proportional to �nj∕ωj�jAjj2. Motivated by energy conserva-
tion, and in particular by the Manley–Rowe relations, we in-
troduce dimensionless envelopes aj whose square magnitudes
are proportional to these photon fluxes. These envelopes are
implicitly defined with

Aj �
�����
ωj

nj

r ����������������������������X
n

nn

ωn

jAn0j2
s

aj: (9)

In these definitions, An0 is the envelope of wave n at the input
to the grating. With these definitions, Eqs. (5) become

dai

dz
� −ig�z�γa�s ape−iϕ1�z�; (10a)

das

dz
� −ig�z�γa�i ape−iϕ1�z�; (10b)

dap

dz
� −ig�z�γaiase�iϕ1�z�; (10c)

where g�z� � sin�πD�z��, and the coupling coefficient γ is
given by

γ �
����������������
ωiωsωp

ninsnp

r ��������������������������X
j

nj

ωj

jAj0j2
s

2d0
πc

: (11)

ϕ1�z� is defined in Eq. (7). The input conditions for Eqs. (10)
satisfy, in all cases,

X
j

jaj�zi�j2 � 1: (12)

Furthermore, we could also introduce a dimensionless
propagation coordinate ζ � γz; however, for clarity we work
with physical units instead. An analogous set of normalized
CWEs could be obtained, accounting for the full spatial
dependence of the QPM grating [d̄�z� � �1]. The only
differences would be substituting g�z� → πd̄�z�∕2, and
ϕ1�z� → Δk0z [see Eqs. (1)].

3. LOW-GAIN, LOW-DEPLETION DEVICES
To begin our study, we first consider cases in which only the
generated idler wave in Eqs. (10) changes substantially; the
other two envelopes propagate linearly, i.e., without depletion,
amplification, or nonlinear phase shifts, and hence are con-
stant. This type of configuration, while quite simple, is appli-
cable to many different types of devices, and can help guide
intuition for more complicated cases. We will always assume
in this paper that one of the waves is zero at the input of the
grating. For definiteness we choose this to be the idler wave,
but our results apply to other cases, with minor modifications.

The generated wave, found by integrating Eq. (1a), can be
expressed as

Ai�zf � � −i
ωid0

nic
A�
s ApF �d̄�z���Δk0�; (13)

where the F denotes the Fourier transform, defined as
F �f �z���k� � R

∞
−∞ f �z� exp�−ikz�dz. Eq. (13) holds for arbitrary

QPM structures, for which d̄�z� � �1 within the interval
�zi; zf � and d̄�z� � 0 elsewhere. An important consequence
of this Fourier transform relation is that in a device of finite
length, the idler spectrum acquires a ripple, due to interfer-
ence associated with the abrupt changes in d̄�z� at zi and zf .
The same argument applies if we consider only the first Fou-
rier order of the grating, as in Eqs. (5) and (10). In Section 4,
we discuss apodization functions to suppress such spectral
ripples. In this section, we show solutions for the particular
case of a linearly chirped QPM grating, and use that solution
to introduce a heuristic for constructing apodization functions
for general chirped QPM gratings.

A. Analytical Solution
For a linearly chirped grating, given by Kg�z� � Kg�zi� −
Δk0�z − zi� for constant chirp rate Δk0. In this case, the phase
ϕ1�z� in Eqs. (10) is given by

ϕ1�z� � ϕ1�zi� �
Δk0

2
��z − zpm�2 − �zi − zpm�2�; (14)

where zpm is the phasematched point, satisfying Kg�zpm� �
Δk0. Assuming ϕ1�zi� � 0 and a constant QPM duty cycle
[g�z� � g0 � constant for zi ≤ z ≤ zf ], we integrate Eq. (10a)
to obtain a normalized output idler field under the first order
QPM approximation. The result is

ai�z� � −
1
2
a�s apeiπ∕4eiΔk

0�zpm−zi�2∕2

���������������
2πγ2g20
Δk0

s

×
�
erf

� ���
2

p
eiπ∕4

��������
Δk0

p
�zpm − zi�

�

�erf
� ���

2
p

eiπ∕4
��������
Δk0

p
�z − zpm�

��
; (15)
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where erf is the error function. Based on Eq. (15), the gener-
ated idler (at z � zf ) exhibits a significant ripple in amplitude
and phase as a function of zpm, and hence as a function of
phase mismatch Δk0 (based on the mapping between Δk0
and zpm), and thus on optical frequency ω (based on the map-
ping between Δk0 and ω). A mathematically simple way to
suppress this ripple is by extending the QPM grating length
L to infinity, i.e., zi → −∞ and zf → �∞. In these limits,
the (asymptotic) output idler field is given by

a
�L→∞�
i �

8<
:−i

���������������
2πγ2g20
jΔk0j

s
e−iπ sgn�Δk

0�∕4e
�
iΔk

0
2 �zpm−zi�2

�

� γg0
Δk1�zf �

e

�
iΔk

0
2 ��zpm−zi�2−�zf −zpm�2�

�
−

γg0
Δk1�zi�

9=
;a�s ap;

(16)

where Δk�zf �−1 → 0 as zf → ∞, and similarly Δk�zi�−1 → 0 as
zi → −∞. The second and third terms in this equation, whose
phase oscillates rapidly compared to that of the first term,
eventually vanish, yielding a magnitude that is independent
of zpm (and hence frequency). In this case, the nonlinear in-
teraction is turned on and off smoothly by the gradual transi-
tion from large to small phase mismatch; the result is an
apodized interaction.

Further insight can be gained by examining Eq. (10a). In the
case of a constant grating duty cycle and a constant, finite
phase mismatch, Eq. (10a) supports idler eigenmodes: solu-
tions whose magnitude is independent of z. We define these
eigenmodes in the general case [with varying g�z� and Δk�z�,
but still maintaining the assumption of constant signal and
pump envelopes] as

a
�eig�
i �z� � γg�z�

Δk1�z�
a�s ape−iϕ1�z�: (17)

If Δk�z� and g�z� are constant, this eigenmode is a solution to
Eq. (10a). Based on Eq. (16), we also define the “zeroth-order”

idler as a
�0�
i � −i

���������������������������
2πγ2g20∕jΔk0j

q
a�s ape−iπ sgn�Δk

0�∕4. With these

definitions, Eq. (16) can be written in the following form:

a
�L→∞�
i �zf � � a

�0�
i e−iϕ1�zpm� � a

�eig�
i �zf � − a

�eig�
i �zi�; (18)

with spectral ripples essentially originating from the nonzero
values of the idler eigenmode at the input and output ends of

the device (a�eig�i �zi� and a
�eig�
i �zf �, respectively). This form

usually applies even for gratings with monotonic but spatially
varying chirp rates and can, in these more general cases, be
understood via the stationary phase approximation [34].
Apodization can thus be viewed as reducing the magnitude
of idler eigenmode to zero (or close to zero) sufficiently
slowly. The connection between eigenmodes of the TWM in-
teraction and apodization is quite general, and even applies for
other, more complicated types of interactions [7], as we dis-
cuss in Section 7. Such eigenmodes are also connected with
the cascaded phase shifts acquired during phase mismatched
χ�2� interactions [35]. To illustrate Eq. (18) and its accuracy,
we show in Fig. 1 the propagation of the idler as a function
of z for a particular linearly chirped grating.

B. Adiabaticity Heuristic
In this subsection, we will use Eqs. (17) and (18) to develop a
heuristic criterion by which apodization profiles can be con-
structed. These apodization regions will be appended to the
ends of a nominal grating profile (e.g., linearly chirped); we
illustrate different types of apodization in Section 4.

The essential idea is to impose changes in g�z� and Δk1�z�
such that the ratio g�z�∕jΔk1�z�j ≪ 1 at z � zi and z � zf , and
for this change to be slow enough that the idler eigenmodes
Eq. (17) are still accurate local solutions to Eq. (10a). Inspecting
Eq. (17), away from zpm, the eigenmodes have a slowly varying
amplitude and rapidly varying phase. Our heuristic is to main-
tain this structure (phase varying much more rapidly than
relative changes in amplitude), which leads to the condition

����
�

γg

Δk1

�
−1 d

dz

�
γg

Δk1

����� ≪
���� ddz �e−iϕ1 �

����: (19)

In a QPM device supporting a wide spectral bandwidth, this
condition must be met for all the spectral components of inter-
est, and hence for all values of zpm, at all positions zwithin both
the input and output apodization profiles. Evaluating the deriv-
atives in Eq. (19) and replacing the ≪ by ≤ϵ for “small” ϵ > 0,
we thus find, within the apodization regions,

max
ω

	����1g dgdz − 1
Δk1

dΔk1
dz

���� − ϵjΔk1j


≤ 0; (20)

where maximization with respect to ω is performed over the
spectral range of interest. This equation can be used to con-
struct differential equations for apodization profiles in which
Kg�z�, g�z�, or both, or a related quantity, are varied nonlinearly
with position. In Section 4, we consider specific apodization
examples based on this adiabaticity equation.

|a
i|2

|∆k’|1/2(z-zpm)

Exact idler
Estimate

−15 −10 −5 0 5 10 15

10
−4

10
−2

10
0

Fig. 1. Evolution of the idler ai in a linearly chirped QPM grating, for
a DFG interaction. The solid (blue) line shows the numerical solution
of Eq. (10a), corresponding to (and indistinguishable from) the ana-
lytical solution given by Eq. (15). The dashed (black) line shows the
asymptotic solution corresponding to Eq. (18). A normalized propaga-
tion coordinate, given by ξ �

�����������
jΔk0j

p
�z − zpm�, is used. The idler in

each curve is normalized to ja�0�i j2 [defined by Eqs. (16) and (18)].

The dashed (black) curve shows �a�eig�i �z� − a
�eig�
i �zi�� for ξ < −0.5,

and �a�eig�i �z� − a
�eig�
i �zi� � a

�0�
i exp�−iφ1�zpm��� for ξ > 0.5. The input,

phasematching, and output points correspond to ξ � −15, ξ � 0,
and ξ � 15, respectively. Because of the way the figure has been
normalized, there are no other free parameters in the calculation.
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4. QPM APODIZATION TECHNIQUES
In this section, we use Eq. (20) to construct apodization
regions for nominally chirped QPM devices, and compare dif-
ferent apodization techniques. We assume that there is a nomi-
nal, unapodized chirp profile Knom�z� that has already been
chosen, and show how to determine apodization profiles that
are appended to the ends of this nominal profile in order to
suppress the spectral ripples that would otherwise occur.

A. Nonlinear Chirp (NLC) Apodization
First, we consider nonlinear chirp apodization (NLCA). In
this case, there is a constant duty cycle, dg∕dz � 0, but a spa-
tially varying chirp rate dΔk1∕dz. Therefore, Eq. (20) can be
written as

sc
dKg

dz
� ϵmin

ω
f�Δk0�ω� − Kg�z��2g; (21)

where sc � −sgn�Δk0� is the sign of the grating chirp rate, and
we have replaced the ≤ with� (assuming that the inequality is
strict for the extrema of the spectrum). Eq. (21) can be ex-
pressed in a more explicit form by distinguishing between
the input and output ends of the grating, and by treating Kg

as the integration variable rather than z (which is possible since
we assume monotonic chirp functions):

sc
dKg

dz
�

	
ϵ�K− − Kg�2 if Δk�z;ω� > 0;
ϵ�K� − Kg�2 if Δk�z;ω� < 0;

(22)

where K− � minω�Δk0�ω�� and K� � maxω�Δk0�ω�� (with min
and max performed over the frequency range of interest).
Within each apodization region, Eq. (22) can be solved analyti-
cally, yielding the following implicit equation:

1
Kg�z� − K�

−
1

Kb;� − K�
� ϵsc�z − zb;��; (23)

where zb;� and Kb;� represent boundary conditions. These
boundary conditions can be determined from the fact that
we append apodization regions to a nominal QPMprofile, under
the assumption that Kg and dKg∕dz must be continuous at the
apodization boundaries. These boundaries are therefore the
points at which the chirp rate in Eq. (22) equals the nominal
chirp rate. Explicitly, for a nominal profile Knom�z� and chirp
rate dKnom∕dz≡ Knom;z, zb;� and Kb;� are the solutions to the
following equations:

Knom;z�zb;�� � ϵsc�K� − Kb;��2; (24a)

Kb;� � Knom�zb;��: (24b)

Given the solution to Eq. (24), we can now specify the full form
of the grating:

Kg�z� �

8>><
>>:
K− � �ϵsc�z − zb;−� � �Kb;− − K−�−1�−1 for Kg�z� < Kb;−:

Knom�z� for Kb;− ≤ Kg�z� ≤ Kb;�:

K� � �ϵsc�z − zb;�� � �Kb;� − K��−1�−1 for Kg�z� > Kb;�:

(25)

Note that the equation for Kg�z� in the apodization regions
diverges with respect to z. Therefore, for a real grating, initial
and final values of Kg�z� must be chosen. In choosing these
values, we must bear in mind that the final values of
γ�ω�g�z�∕Δk1�z;ω� determine the fidelity of the apodization,
but only to the extent that the first order QPM contribution
(m � 1) dominates. The existence of other QPM orders means
that, eventually, increases in Δk no longer suppress spectral
ripple. In an extreme case of Kg�z� passing through phase-
matching for third-order QPM, for example, the spectral ripple
could actually be made worse. The limits on Kg�z� are thus
determined by a trade-off between apodization fidelity, fabrica-
tion constraints, higher-order-QPM contributions, and poten-
tially other issues as well. We expect that in most practical
cases, these issues will not substantially limit the performance
of the apodized device. Note also that, in a practical device, it
may be useful to reduce the chirp rate at the edges of the gra-
ting so that the range of Kg�z� is not sensitive to changes in
crystal length that occur during polishing. We discuss this
further in Subsection 8.B.

In Subsections 4.B and 4.C, we discuss two other apodiza-
tion techniques. In Subsection 4.D, we show example apodiza-
tion profiles and corresponding idler spectra (Fig. 2).

B. Duty Cycle Apodization
Another approach to suppressing spectral ripples is by apod-
izing g�z� instead of Δk1. In principle, changes in g�z� can be
implemented via changes in the QPM duty cycle D�z�. There-
fore, we refer to this approach as duty cycle apodization
(DCA). For this case, we can again assume a known, nominal
chirp function (e.g., a linear chirp), and substitute this func-
tion into Eq. (20). Analogously to Eq. (21), we find the follow-
ing differential equation for g�z�, suitable for a finite and
monotonic nominal chirp rate:

sg0
1
g

dg

dz
� min

ω

(
−sg0

1
Δk0�ω� − Kg�z�

dKg

dz

×

"
1 −

����������������������������������������������
1� ϵ2

�Δk0 − Kg�z��4
�dKg∕dz�2

s #)
; (26)

where sg0 � sgn�dg∕dz�. This equation can be used to deter-
mine g�z� in a similar way to the NLCA case discussed in
Subsection 4.A, but we omit the mathematical details here.

C. Deleted Domain Apodization
In lithographic poling, it is often challenging in practice to ob-
tain a custom duty cycle function, due to the dynamics of the
poling process [30], particularly for MgO:LiNbO3 poling [36].
Instead, the voltage waveform used for poling is usually chosen
to yield as close to a 50% duty cycle as possible. Such gratings
are also advantageous in order to suppress photorefractive
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effects [31], including recently identified pyroelectrically
induced beam distortions [32,33].

If duty cycle modulation is not possible, a continuously
varying first order QPM coefficient g�z� cannot be achieved.
An alternative approach is to use a discrete approximation to
the desired continuous g�z� profile, as demonstrated in [24].
In this scheme, QPM domains are “deleted” (not inverted) in
order to reduce the effective duty cycle of the grating, aver-
aged over many periods. Therefore, we call this approach de-
leted domain apodization (DDA). To express this approach
mathematically, we assume that the grating has N periods
with center positions zn and length ln�n � 1;…; N�, and either
50% (gn � 1) or 0% (gn � 0) duty cycle. The spatial profile of
the grating is then given by

d̄�z� � 1 −
X
n

2gnΠln∕2�z − zn�; (27)

where Πl�z� is the rectangle function (with width l and
center 0). The integral of �1 − d̄� should then be a good
approximation to the target profile g�z�:

X
n

gn

Z
z

zi

2Πln∕2�z0 − zn�dz0 ≈
Z

z

zi

g�z0�dz0: (28)

A simple way to obtain each gn from this approximate relation
is to initially assume gn � 1, and then reverse the sign of gn�1

whenever, for a position z ≈ zn � ln∕2, the left hand side of
Eq. (28) exceeds the right hand side.

D. Comparison and Discussion
In this subsection, we compare the three apodization tech-
niques described in Subsections 4.A–4.C (NLCA, DCA, and
DDA, respectively). We choose an example with the following
parameters. The grating center spatial frequency Kg0 �
3 × 102 mm−1 (≈21 μm period), nominal length Lnom �
10 mm, nominal bandwidth ΔkBW � 20 mm−1, and positive
chirp rate Δk0 � �ΔkBW∕Lnom � 2 mm−2. Apodization pro-
files are found via the preceding differential equations, and
we choose ϵ � 0.5 in each case (for ϵ > 1, the apodization
fidelity decreases). For the NLCA example, the range of
k-vectors, jKg�zf � − Kg�zi�j � 200 mm−1, and the apodized
grating length is L � zf − zi � 14 mm. For the DCA and DDA
examples, g�zf � � g�zi� � 0.052, and the apodized grating
length is L � zf − zi � 16 mm. The resulting idler spectrum
for phase mismatches in the vicinity of first order QPM is
shown in Fig. 2. The NLCA profile is found according to
Eq. (25); the DCA profile according to Eq. (26), and the
DDA example is determined from the DCA profile combined
with Eq. (28).

The NLCA and DCA cases show the best ripple suppres-
sion, while the DDA case still has a substantial ripple in this
example. The NLCA ripple is limited by the range of QPM peri-
ods and presence of higher order QPM terms. In cases where
precise control of the duty cycle is not possible over a wide
range of periods, even orders of the grating will contribute
as well, so second-order QPM contributions represent one
possible limiting factor for the NLCA approach. These issues
are difficult to quantify in general, so we have restricted the
example to a range of Kg�z� far from higher-order QPM. The
DCA ripple will be limited by the range of duty cycles that can
be fabricated reliably. This range is typically quite restricted,

and therefore the high performance of the DCA example may
not be achievable in practice. Furthermore, the length of the
apodization region will usually be longer for DCA compared
with NLCA.

While DDA is not limited by duty cycle fabrication issues,
the DDA example exhibits poorer performance than DCA,
due to the non-negligible k-space bandwidth, compared to
the nominal grating k-vector. Consequently, the implicit
assumption of a small change in relative phase between the
idler and its driving polarization between the remaining unde-
leted domains does not hold. More specifically, to achieve a
low effective nonlinearity, there must be a large gap between
undeleted domains. Since all of the spectral components of
interest are phase mismatched in the apodization regions for
a chirped grating, this gap can correspond to a large relative
phase shift between the idler and its driving polarization. Such
large phase shifts likely prevent the interference that would,
for the case of a smooth duty cycle modulation, (almost) com-
pletely suppress the input and output eigenmodes (and hence
the spectral ripples). This issue is particularly important for
gratings with a broad k-space bandwidth, such as the example
shown in Fig. 2. On the other hand, for periodic QPM gratings,
such as those discussed in [24], the underlying assumption of a
slowly varying relative phase holds very well, and DDA is
effective in such cases.
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Fig. 2. Apodization examples for DFG, calculated numerically via
Eq. (1a), using the full d̄ � �1 grating structure. (a) Nonlinear chirp
apodization (NLCA), (b) duty cycle apodization (DCA), (c) deleted
domain apodization (DDA) with a domain profile determined from
the DCA example in (b). The parameters are given in the text.
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Since DCA is challenging in terms of fabrication and
DDA exhibits reduced performance, the NLCA approach will
be favorable in most chirped QPM-grating cases. These
conclusions are especially valid in more complicated inter-
actions involving high gain or pump depletion. An example of
the poorer performance of DDA compared with NLCA in a
high-gain interaction is shown in Section 5.

In each of the above apodization approaches, the absolute
scale of the amplitude ripple remaining in the apodized device
is determined by fabrication and QPM constraints, such as the
presence of higher-order QPM contributions, and is indepen-
dent of grating length. In contrast, the scale of the “zeroth-
order” term [a�0�i in Eq. (18)] increases with grating length
for a given bandwidth, since in a longer device the chirp rate
can be reduced. Therefore, the relative scale of the ripples is
reduced in longer devices. Note, however, that the range of
group delays associated with any remaining spectral ripples
is not reduced, and may increase.

5. OPTICAL PARAMETRIC AMPLIFICATION
We now turn our attention to high-gain and high-efficiency
devices. In this section, we consider chirped QPM OPA. Such
devices have several advantageous properties, including
the potential for high gain, almost arbitrary gain bandwidth,
tailorable gain and phase spectra, and high conversion effi-
ciency [1,4,5,7]. They have been used in a mid-infrared OPCPA
system, enabling broad bandwidth, high power, and high-
repetition rate operation [9,10].

A critical consideration in obtaining high-fidelity amplifica-
tion from these devices is apodization. Without apodization,
there is a pronounced ripple in gain and phase; this ripple
can be much more severe than in the linear cases (e.g., DFG),
due to the high gain involved. The presence of such a ripple
can be explained heuristically by the abrupt turn-on and turn-
off of nonlinear coupling between the signal and idler fields at
the edges of the device, in analogy to the simpler case of DFG.
Here, we build on the theoretical work presented in [1] to
show how optimal OPA apodization profiles can be con-
structed. Our approach is similar in spirit to the one presented
in Section 4 for DFG apodization.

A. Overview of Chirped QPM OPA
We first give a brief theoretical description of chirped QPM
OPA interactions, under the assumption of a cw (or quasi-
cw) pump wave, which is undepleted and much stronger than
the signal and idler waves (jaij ≪ japj and jasj ≪ japj). In this
case, the amplification of each signal spectral component
(and corresponding idler component) is governed by
Eqs. (10a) and (10b). By defining new envelopes bj according

to aj�z� � g�z�1∕2 exp�−iϕ1�z�∕2�bj�z� for j � i and j � s, the
following second-order equation can be obtained from
Eqs. (10a) and (10b) [1]:

d2bs

dz2
� Q�z�bs; (29)

where the “potential” Q�z� is given by

Q � −�γg�2 � 1
2
d

dz

�
g0

g

�
−
iΔk0

2
−
1
4

�
g0

g
− iΔk

�
2
; (30)

where f 0 � df∕dz for function f �z�. This potential is position
dependent (via g�z� and Kg�z�) and frequency dependent
(via γ�ω� and Δk0�ω�).

Equation (29), which is in standard form, is amenable to
complex Wentzel–Kramers–Brillouin (WKB) analysis. This
analysis yields several important results for device operation
[1]. In particular, for smoothly chirped gratings, the signal in-
tensity gain can be approximated according to

ln�Gs�ω�� ≈ 2
Z

zf

zi

Re

���������������������������������������������������������������������
�g�z�γ�ω��2 −

�
Δk0�ω� − Kg�z�

2

�
2

s
dz;

(31)

which, in the case of a constant grating chirp rate
(Δk0 � ∂Δk∕∂z) and a 50% duty cycle (g � 1), yields Gs �
exp�2πγ2∕jΔk0j� for spectral components within the gain band-
width. Equation (31) shows that gain occurs for each spectral
component ω over the spatial region for which the signal-idler
coupling, g�z�γ�ω�, is sufficiently large compared with the
phase mismatch, Δk�z;ω� � Δk0�ω� − Kg�z�. Outside this
spatial region, the signal and idler waves are oscillatory.
The points where the integrand in Eq. (31) is zero are called
turning points. The gain bandwidth can be determined from
Eq. (31) as the range of frequencies for which both turning
points lie within the grating. For the case of a linear grating
chirp, this bandwidth is given implicitly as the range of
frequencies ω whose phase mismatch Δk0�ω� lies within
the following range:

	
ω∶�Δk0�ω� − Kg0� ∈

�
−
jΔk0Lj

2
� 2γ�ω�;�jΔk0Lj

2
− 2γ�ω�

�

;

(32)

for center grating k-vector Kg0.
Outside the gain region, the waves are oscillatory versus

position, leading to fluctuations of the output waves versus
frequency, and consequently a ripple in the output spectrum
(since the oscillations of different spectral components have
different phase). These properties are illustrated in Fig. 3,
where we show the propagation of a single spectral compo-
nent. The figure shows both an unapodized and an apodized
case. Apodized and unapodized gain spectra are shown later,
in Fig. 4, after we have discussed an apodization scheme.

B. Apodization Constraint for Chirped QPM OPA
The oscillatory behavior shown in Fig. 3 can be understood as
interference associated with the two complex WKB global
asymptotic solutions of Eqs. (29) (see, for example, the appen-
dices of [1]). The role played by these global solutions in the
context of amplitude oscillations is twofold: first, the assumed
input conditions to the device (zero idler, finite signal) imply
that the signal consists of a complex linear superposition of
these two global solutions. Second, the global solutions them-
selves are oscillatory. Given such oscillations, frequency-
dependent changes in the phasematched point lead to oscil-
lations in the gain spectrum.

These spectral oscillations can be suppressed by sup-
pressing oscillations in the WKB solutions, which is achieved
by the condition jν�z�j ≫ 1 for z � zi and z � zf , where ν is
defined as
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ν�z�≡ Δk1�z�
2γg�z� : (33)

The jν�zi�j ≫ 1 condition ensures that the input conditions
correspond to one of the two global solutions (very small con-
tribution from the other solution) [Eqs. (C4) and (C5) of [1]].
The jν�zf �j ≫ 1 condition suppresses ripples on this global
solution [Eq. (C3) of [1]].

These conditions are also quite closely related to the idler
eigenmodes of Eq. (17). Indeed, for large phase mismatches,
Eqs. (10a and 10b) support two local signal-idler eigenmodes
whose amplitudes would be constant with respect to
position in the case of a constant and large phase mismatch
and constant duty cycle. These eigenmodes may be deter-
mined by substituting ai � ai0 exp�i R z

zi
ϕi�z0�dz0� and as �

as0 exp�i
R
z
zi
ϕs�z0�dz0� into Eqs. (10a and 10b), neglecting

derivatives of aj0�z�, and solving for ϕi�z�, ϕs�z�, and

jas0�z�∕ai0�z�j2. While these eigenmodes are not solutions
to Eqs. (10a and 10b) in the case of a varying phase mismatch,
they provide some insight into the more complicated dynam-
ics supported by the WKB solutions described above.

For large phase mismatches, one of these two eigenmodes
has a small signal component, while the other has a small idler

component. The rate of signal-phase accumulation, φs�z�,
differs between these two eigenmodes, leading to amplitude
oscillations unless the signal and idler fields correspond to
only one of the eigenmodes. In the limit where ν�zi�−1 � 0, the
input conditions (zero idler) are matched to one of the two
eigenmodes, thereby suppressing ripples near the start of the
grating [region zi ≤ z ≪ zpm of the apodized example in Fig. 3]
since the magnitude of this eigenmode varies slowly as ν is
decreased, but does not vary over the fast Δk−1 length scale
associated with the local phase mismatch Δk. Note that the
different length-scales in phase-mismatched TWM inter-
actions have been analyzed using multiple-scale analysis
in [37].
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Fig. 3. Propagation example for OPA in a linearly chirped QPM gra-
ting, showing the signal and idler as a function of normalized position.
The gain factor λR � 2.2. The position has been normalized to the
dephasing length, Ldeph � 2γ∕jΔk0j. The normalized grating length is
given by L∕Ldeph � 8. The phasematching point zpm is located at
the middle of the grating. The dashed lines show the evolution of
the signal and idler in a apodized grating with the same parameters;
oscillations in ai�z� and as�z� near z � zi and z � zf are suppressed in
this case. For this example, we apodize via the chirp rate and duty
cycle simultaneously to reveal the idler evolution under idealized in-
put conditions; (b) shows the fields on a linear scale to better indicate
how the oscillations are suppressed near the output of the grating in
the apodized case, but not the unapodized case; the signal and idler
magnitudes are indistinguishable on this linear scale due to the high
gain involved.
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Fig. 4. Chirped-QPM OPA apodization examples. (a) Grating
k-vector profile for a NLCA example, (b) normalized grating chirp rate
corresponding to (a), and (c) signal gain spectrum. The dashed lines in
(b) show min��Δk1∕γ0�2�ϵ, with minimization performed with respect
to signal wavelength (restricted to the target gain bandwidth that
spans the 1450–1650 nm range). This figure indicates that the optimal
normalized chirp rate in the apodization region approximately satis-
fies jΔk0j � min�Δk21�ϵ. The dashed lines in (c) indicate analytical es-
timates of the fluctuations in the gain due to the finite value of jγ0∕Δk1j
at the ends of the grating, as described in the text. The gain spectra
for DCA and corresponding DDA examples are also shown in (c), for
comparison.
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After the amplification region (z ≫ zpm), the fields can
be thought of as consisting of a linear combination of the
two local eigenmodes. In the limit where ν�zf �−1 � 0, the
signal-component of one of the two eigenmodes is brought
to zero at the end of the grating, thereby suppressing signal-
amplitude oscillations [region zpm ≪ z ≤ zf of the apodized
example in Fig. 3].

The jν�zi�j−1 � 0 and jν�zf �j−1 � 0 conditions can be
achieved, in principle, by extending the nominal grating chirp
profile to infinity. In practice, this condition can be achieved
(with high fidelity) by apodization. In performing such apod-
ization, jν�z�j in Eq. (33) should be increased slowly enough
that the local WKB solutions remain accurate; if ν�z� is
changed too rapidly, there will be coupling between the two
asymptotic solutions of Eqs. (10), again leading to interfer-
ence. As such, a sufficient criterion is to maintain the validity
of the WKB approximation within the apodization regions.
This condition corresponds, for an individual spectral compo-
nent ω, to the following inequality [38]:

���� dQdz 1

Q3∕2

���� ≤ ϵ; (34)

for “small” ϵ. This condition should be maintained for all spec-
tral components of interest [i.e., all within the amplification
bandwidth associated with Eq. (31)].

C. Nonlinear Chirp Apodization for OPA
In this subsection we use Eq. (34) to determine apodization
profiles for undepleted-pump, chirped QPM OPAs. As before,
we start from a nominal grating design, such as a linear chirp
profile. Apodization regions are then appended to this nominal
design, with the grating k-vector and duty cycle properly
matched at the joining points. With Eq. (34), these apodization
regions can be made as short as possible. This condition will
help with meeting any maximum grating length constraints. In
the context of OPAs, an even greater benefit is that optimized
apodization profiles will ensure that parasitic effects, such as
pump SHG and other unwanted processes, can be avoided or
suppressed in the apodization regions by having a chirp rate
that is as high as possible within as short a length as possible.

Equation (34) yields an implicit differential equation in z

which, as stated, is difficult to solve. A much simpler equation
is obtained by writing g�z� and the chirp rate Kz ≡ dKg∕dz as
functions of Kg, and integrating versus Kg. This approach is
possible because we assume thatKg�z� is monotonic, and g�z�
is monotonic within each individual apodization region. For
notational convenience, in the following analysis we suppress
the g subscript on Kg. We mainly consider NLCA rather than
DCA or DDA for the reasons discussed in Subsection 4.D,
and therefore assume that g�z� is constant versus position.
For simplicity, we also assume that γ�ω� � γ0 is frequency-
independent, although in practice this assumption is not
necessary.

With the above assumptions, the following equation can be
obtained from Eqs. (30) and (34):

�
dKz

dK

�
2
≤ min

Δk0

	
4ϵ2

K2
z

����
�
Δk
2

�
2
− γ20 � i

Kz

2

����3 − Δk2



≡min
Δk0

ff �Δk0; K;Kz�g; (35)

where Δk�z;ω� � Δk0�ω� − K�z�. The minimization in
Eq. (35) with respect to Δk0�ω� is performed over the desired
amplification bandwidth of the device. The function f has
been introduced as a shorthand to identify the dependence
of the inequality on Δk0 (and hence on optical frequency).

Close to the turning points satisfying Δk0 − K � �2γ0,
f �Δk0; K;Kz� is negative (unless ϵ is chosen to be too large,
e.g., ϵ ≫ 1), which means that jdQ∕dzj > ϵjQ3∕2j. If we move
far enough from these turning points (toward the edges of the
nominal grating profile) then equality is obtained. We wish to
find a pair of grating k-vectors at which to begin the apodiza-
tion region; these are denoted Kapod;s and Kapod;e for the start-
regions and end-regions of the grating, respectively. These will
be the k-space points at which inequality in Eq. (35) is satisfied
for the whole spectral range of interest. The minimization in
Eq. (35) will correspond to either the minimum or maximum
value of Δk0�ω� across this spectral range. Beyond these
k-vectors, it is possible to chirp the grating more rapidly while
still satisfying Eq. (34). We therefore assume that the inverse
grating profile, z�K�, corresponds to a nominal chirp profile
znom�K� for K between Kapod;s and Kapod;e, and is determined
via Eq. (35) outside this region.

Based on the above discussion, we first determine Kapod;s

and Kapod;e by solving the following pair of equations:

min
Δk0

ff �Δk0; Kapod;j ; Kz;nom�g �
�
dKz;nom

dK

�
2
; (36a)

min
Δk0

�jΔk0 − Kapod;jj� ≥ 2γ0; (36b)

for j � s and j � e, where subscript “nom” denotes the nomi-
nal grating profile. For a linearly chirped grating, Kz;nom�K� is
constant. Eq. (36a) arises from Eq. (35), while Eq. (36b) en-
sures that the Kapod;j lie outside the amplification region for
all of the spectral components involved.

It is convenient to define the k-space domain of the nominal
grating:

dom�Knom� � fK :min
j
�Kapod;j� ≤ K ≤ max

j
�Kapod;j�g: (37)

We now use Kapod;j to find the entire grating profile by first
solving the following equations for K�z� and Kz�K�:

K�z� � Knom�z�; K ∈ dom�Knom�; (38a)

dKz

dK
� sKz

min
Δk0

�
���
f

p
�; K ∉ dom�Knom�; (38b)

where sKz
� sgn�dKz;nom∕dK�, and with the initial conditions

for Eq. (38b) given by

Kz�Kapod;j� � Kz;nom�Kapod;j�: (39)

Equations (38a) and (38b) yield Kz�K� over the entire
grating spatial frequency profile. We can thus determine
z�K� by
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z�K� �
Z

Kf

Ki

Kz�K�−1dK; (40)

and then invert this function to find Kg�z�.
An example implementation of this design procedure is

shown in Fig. 4. For this example, we select a specific exper-
imental configuration. We assume anMgO:LiNbO3 OPA device
at 150 °C, designed to amplify signal components between
1450 and 1650 nm using a narrow-bandwidth 1064 nm
pump. The corresponding range of idler wavelengths is
3000–4000 nm. For illustration purposes, we assume a nondis-
persive coupling coefficient γ, with γ�ω� � γ0. We choose a
gain coefficient λR;p � γ20∕jΔk0j � 2.2. The range of phase
mismatches corresponding to the signal bandwidth is
ΔkBW ≈ 16.6 mm−1. This value originates from the material
phase mismatches of Δk � 219.7 and 203.1 mm−1 for signal
wavelengths of 1450 and 1650 nm, respectively. According
to Eq. (31), a linear chirp rate Δk0 and nominal grating length
Lnom satisfying jΔk0Lnomj � ΔkBW � 4γ0 are required in order
to fully amplify this bandwidth. Therefore, given values of
Lnom, ΔkBW, and λR;p, the values of γ0 and jΔk0j can be deter-
mined. Here, we choose Lnom � 10 mm, which yields γ0 ≈
2.4 mm−1 and Δk0 � �2.62 mm−2.

To construct an apodization profile, we assume a positive
chirp rate (Δk0 > 0), a symmetric grating profile, set ϵ � 1, and
solve Eq. (38). It is useful to introduce a parameter δ to
describe the range of grating k-vectors,

����Kg�zf � − Kg�zi�
2γ

���� ≤ δ; (41)

where we choose δ � 45 for the present example. This value
is chosen to yield large values of jνj defined in Eq. (33) at
the ends of the device, while still remaining far from
higher-order QPM. For our example, Kg�zi� ≈ 319.5 mm−1

and Kg�zf � ≈ 103.3 mm−1.
The k-vector profile is shown in Fig. 4(a). In Fig. 4(b), the

grating chirp rate is compared to Δk2, illustrating that optimal
normalized chirp rate is approximately proportional to the
square of the minimum phase mismatch. The output gain spec-
trum as a function of wavelength is shown in Fig. 4(c). We
show DCA and DDA examples for comparison to the NLCA
case. For each of these simulations, we assume the full grating
structure (d̄ � �1) and integrate Eqs. (1) numerically, for each
spectral component, within each successive QPM domain.

The finite value of δ−1 defined above as well as higher-order
QPM contributions result in a ripple in the gain for the NLCA
example. Under the assumption of a first order QPM interac-
tion, the ripple is such that j ln�Gs� − 2πλR;pj ≤ 4δ−1 for
frequencies within the amplification region [1]. In a real gra-
ting, there are also small contributions from the other orders
of the QPM grating. The dashed black lines in Fig. 4 are
bounds on the gain ripple found by analytically summing
all such contributions, showing excellent agreement with the
full numerical NLCA simulations. The gain spectra for the
DCA and DDA examples are also included. The DCA example
was specified heuristically, with an amplitude profile deter-
mined via hyperbolic tangent functions; it shows comparable
performance to NLCA, but requires large modulation of the
QPM duty cycle. The DDA example was derived from the DCA
example, and shows a significant reduction in apodization

quality compared with both DCA and NLCA. For these DCA
and DDA examples, the chirp rate is linear. Note that with no
apodization, the ripple is huge, with gain varying by a factor of
4 across the passband (from ≈0.5 × 106 to ≈2 × 106).

6. ADIABATIC FREQUENCY CONVERSION
We next consider adiabatic frequency conversion (AFC). This
type of interaction can occur in chirped QPM gratings when
the coupling between the three waves is sufficiently strong,
and enables high pump conversion efficiency across a very
broad range of phase mismatches and intensities. In this sec-
tion, we first show how AFC can be analyzed and understood
in general TWM configurations. In Section 7, we develop an
apodization procedure for AFC devices via an approach sim-
ilar to the DFG and OPA cases considered above.

In AFC, instead of reaching a maximum at a certain input
intensity, the pump depletion can increase monotonically with
respect to the input intensity of either the pump or signal wave,
or both [7,8]. Rather than back-convert after the point of maxi-
mum pump depletion, the fields adiabatically follow a local
nonlinear eigenmode that evolves with the grating period. If
the grating is sufficiently chirped, then at the input to the
device, the relevant eigenmode corresponds to zero idler (i.e.,
to the input conditions),while at theoutput this eigenmodecor-
responds to zero pump (the desired output condition of full
pump depletion). This adiabatic following process is possible
provided that the coupling rate γ between the fields is strong
enough (at a given chirp rate Δk0), or if the chirp rate is slow
enough (at a given coupling rate). The required coupling rate
also depends on the input conditions, as we will discuss.

Before considering AFC and nonlinear eigenmodes in more
detail, we discuss in Subsection 6.A a reformulation of
Eqs. (10) based on [28], in which TWM interactions are de-
scribed geometrically. This geometric analysis provides many
insights into the structure of various TWM processes, espe-
cially AFC, as we will show.

A. Geometric Analysis of Three-Wave Mixing
Interactions
In [28], the geometrical analysis was motivated by the
Hamiltonian structure of the TWM equations. Furthermore,
[28] considered general QPM interactions, corresponding to
d̄ � �1. Here, we briefly recapitulate the formulation given
in more detail in [28], and give the modifications required
for first order QPM interactions.

First, reduced field variables X , Y , and Z can be defined
according to

X � iY � aiasa
�
pe

iϕ1�z�

Z � japj2; (42)

The phase of X � iY specifies the relative phase between the
envelopes aj and their driving polarizations in the CWEs
[Eqs. (10)], and hence the direction of energy transfer. The
remaining variable Z specifies the pump photon flux. These
variables can be treated as specifying a real-valued “position”
vector W in an abstract 3-space, defined as

W � �X; Y; Z�T : (43)

During propagation,W evolves according to the evolving com-
plex envelopes aj , but is constrained to lie on a surface whose
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shape is determined by the input conditions. This surface is
given by the implicit relation φ � 0, where

φ � X2 � Y 2 − Z�Z − K ip��Z − Ksp�; (44)

and where the constants K ip and K sp are Manley–Rowe invar-
iants, given by

Kjp � jajj2 � japj2; (45)

for j � i and j � s. With the envelope definitions and
input conditions considered here, with zero input idler,
K sp � 1 and K ip � jap�zi�j2 ≤ 1. It is convenient to introduce
a parameter ρ describing the ratio of input photon fluxes:
ρ≡ jas�zi�∕ap�zi�j2. For cases with an input signal that
is much larger than the pump (ρ ≫ 1, and hence
0 ≤ Z ≤ Kip ≪ 1), φ � 0 is (approximately) a sphere. For
other input conditions (ρ ≫∕ 1), the conserved surface
φ � 0 is not spherical, but remains closed and convex [28].

The evolution of W is given by

dW
d�γz� � ∇H ×∇φ; (46)

where ∇ � �∂∕∂X; ∂∕∂Y; ∂∕∂Z�T , and where the local
Hamiltonian H, which is discussed in more detail in [28],
can be expressed as

H � gX � Δk
2γ

�Z − �K ip � K sp��: (47)

This local Hamiltonian is position-dependent in the case of a
chirped QPM grating. Eq. (46) implies thatW is constrained to
remain on the implicit surface φ � 0, since the “force” acting
on W is perpendicular to the local surface normal ∇φ.

B. Solution for Uniform QPM Gratings
The geometrical approach of [28], an important result of
which is reproduced in Eq. (46), greatly simplifies the inter-
pretation of many TWM problems. For example, during
propagation in a uniformly phasematched medium, W is
constrained to lie on the intersection between a plane
(H � constant) and a convex surface (φ � 0), and hence
on a ring (or a single point). The distance required to fully tra-
verse the ring is the period associated with the Jacobi-elliptic
analytical solutions of the there-wave mixing problem, de-
rived in [39]. Much of the complicated structure of these
analytical solutions can thus be visualized with this geomet-
rical construction.

Furthermore, Eq. (46) reveals the existence of the local
nonlinear eigenmodes discussed above. The existence of such
eigenmodes is well known [35], but the geometric description
provides a particularly convenient framework for their study,
and the interpretation of their role in spatially nonuniform
structures, such as chirped gratings.

These eigenmodes, which we denote as Wm, satisfy
dW∕dz � 0, and hence correspond to the two points for
which ∇H is normal to the surface φ � 0 (the points where
∇φ is in the same direction as�∇H). Because φ � 0 is closed
and convex, there are two and only two such points. These
eigenmodes can also be viewed as generalizations of the

eigenmodes we discussed in Subsections 3.A and 5.B for
the specific cases of DFG and OPA, respectively.

To illustrate the nonlinear eigenmodes and the evolution of
W, we show in Fig. (5) a propagation example for a uniformly
phasematched device. In this example, the black arrow points
in the direction of ∇H; its location has been chosen so that
the point where it touches the conserved surface φ � 0 cor-
responds to a nonlinear eigenmode. Since the medium is
uniform (constant g and Δk1, and other QPM orders are ne-
glected), this eigenmode is fixed, and hence represents a true
eigenmode of the TWM interaction. In a chirped device, the
direction of ∇H, and hence the local nonlinear eigenmode
Wm, would be swept from the top to the bottom of φ � 0
as ν � Δk1∕�2γg� [see Eq. (33)] is swept from �ν ≫ 1
to ∓ν ≫ 1.

C. Solution for Chirped QPM Gratings
We next consider the AFC solutions supported by chirped
QPM gratings, for which the reduced field vector W�z� can
follow the nonlinear eigenmodes Wm�z�. Since Wm �
�Xm Ym Zm �T are points where∇H ×∇φ � 0, they can be
found, for any given value of ν, by solving the following set of
equations:
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Fig. 5. (a) Solution to an example TWM problem, visualized with the
geometric description of [28] [and Eq. (46) in particular]. The param-
eters for this example are K ip � jap�zi�j2 � 0.9, g � 1 (50% duty
cycle), and Δk1∕γ � 1. The surface shown is φ � 0, and the curve
(blue) represents the trajectory of W. Since Δk1 and g are both con-
stant in this example, the curve lies on a plane H � constant. W is
initially at the top of the surface (Z ≡ japj2 � K ip � 0.9), and the di-
rection of W (with increasing z) is shown by the blue arrow on the
curve. The direction of ∇H is also shown (black arrow). The point
where this arrow touches the surface is a nonlinear eigenmode asso-
ciated with the chosen parameters (i.e., a point where ∇H is in the
direction of the surface normal to φ � 0, ∇φ). In this unchirped
example, the field vector W orbits around the fixed eigenmode Wm.
In (b), the photon fluxes jaj j2 are shown for comparison. One period
of these fluxes corresponds to a complete traversal of the blue curve
in (a); position is normalized to γ, defined in Eq. (11).
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φ � 0; (48a)

∂φ
∂Z

� ν
∂φ
∂X

; (48b)

Y � 0; (48c)

where Eq. (48a) ensures that the eigenmode is consistent with
the input conditions, and Eqs. (48b) and (48c) follow from the
forms of ∇H and ∇φ.

Because φ � 0 is convex for all input conditions, the ei-
genmodes always evolve through chirped QPM gratings in a
similar way. The relevant nonlinear eigenmode initially corre-
sponds to low idler energy, and is swept smoothly (by chang-
ing g and Δk1) to one corresponding to low pump energy.
If the sweep rate is slow enough (conditions for which are
discussed in Subsection 7.A), the fields follow this eigenmode,
and as a result most of the pump energy is transferred to
the signal and idler waves. To parameterize the solutions

for linearly chirped gratings, we introduce normalized
coupling factors λR � γ2∕jΔk0j, λR;p � �1� ρ�−1γ2∕jΔk0j, and
λR;s � �1� 1∕ρ�−1γ2∕jΔk0j. For an undepleted-pump OPA
(ρ → 0), the signal gain is given by jas�zf �∕as�zi�j2 �
exp�2πλR;p� [1]. For a constant-signal DFG or SFG interaction
(ρ → ∞), the pump depletion is given by jap�zf �∕ap�zi�j2 �
exp�−2πλR;s� [8].

To illustrate the AFC process, we show in Fig. 6 the trajec-
tory of the reduced field vector W (solid lines) and the local
nonlinear eigenmode Wm (dashed lines) for four example
cases, with the following parameters: (b) λR;s � 1 and
Kip � 10−3, (c) λR;s � 2 and Kip � 10−3, (e) λR;p � 2 and
Kip � 0.9, and (f) λR;p � 10 and K ip � 0.9. The structure of
φ � 0 is shown in Figs. 6(a) and 6(d) for the input conditions
Kip � 10−3 (0.1% of input photons in the pump, 99.9% in the
signal) and K ip � 0.9 (90% of input photons in the pump, 10%
in the signal), respectively.

For both choices of K ip, the adiabatic following process re-
quires a large coupling factor λR; for smaller λR, a ripple in the
components ofW [solid lines in Figs. 6(b), 6(c), 6(e), and 6(f)]
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Fig. 6. Propagation of field vector W and eigenmode vector Wm [the solid and dashed lines, respectively, in (b), (c), (e), and (f)], illustrating the
adiabatic following process arising from Eq. (46). The left column is for K ip ≡ jap�zi�j2 � 10−3 (strong input signal), while the right column is for
K ip � 0.9 (strong input pump). The first row [(a) and (d)] are cuts through the surface φ � 0 in the plane Y � 0, corresponding to these two input
conditions. The second and third rows show the evolution of the field vectors (versus coordinate ζ � γz) under these input conditions, for two
different coupling factors: λR;s � �1; 2� for (b) and (c), respectively, and λR;p � �2; 10� for (e) and (f), respectively. In (b), (c), (e) and (f), the x curve
is on the bottom, y in the middle, and z on the top.
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around Wm (dashed lines) is introduced. Such ripples occur
when the chirp rate is too rapid for the fields to follow the
local eigenmode; they are thus indications of nonadiabaticity.
For the strong-signal case (K ip � 10−3), the amplitude of these
ripples scales as exp�−2πλR;s�; for the strong-pump case
(K ip � 0.9) the behavior is more complicated, but a fast decay
of the ripple amplitude with respect to λR;p is still obtained at
large λR;p. At larger values of the coupling factors, the fieldsW
can be seen in Fig. 6 to follow the local eigenmode Wm more
closely (the ripple amplitude is reduced).

A ripple in W�z� also occurs if the fields are not
launched properly into the input eigenmode, i.e., if jν�zi�j is
not large enough: unless jν�zi�j−1 � 0, the input conditions
(jai�zi�j � 0) are different from that of the input eigenmode
(jaij ≠ 0). These ripples are not noticeable in Fig. 6 because
we have introduced an apodization profile to ensure that
jν�zi�j and jν�zf �j are very large.

7. ADIABATIC FREQUENCY CONVERSION:
APODIZATION
A. Adiabaticity Condition Based on Geometric Picture
The AFC solutions illustrated in Subsection 6.C are obtained
for all input conditions provided that the grating is sufficiently
chirped, and the chirp rate is sufficiently slow. In order to
make use of these solutions in a practical setting, it is impor-
tant to determine how rapidly the grating can be chirped while
still maintaining adiabaticity. In this section, we determine a
heuristic constraint for the QPM chirp rate. If this constraint is
satisfied, then the adiabatic following process can occur (with
a certain fidelity).

As ν is varied (by changing Δk1, g or both), the local eigen-
mode Wm changes, but always remains in the X–Z plane
(since Ym � 0). When the reduced field vector W is in the
X–Z plane, each of the envelopes aj is �π∕2 radians out of
phase with its driving term in Eq. (10), which implies that
djajj∕dz � 0; this is why Wm lies in the X–Z plane. Further
physical insight into the meaning of this X–Z plane can be
gained by considering an unchirped device:W passes through
the X–Z plane at points where the direction of energy flow
changes (e.g., at points where the pump is fully depleted, just
before the onset of back-conversion).

In order for adiabatic following to occur, the reduced var-
iable Z must keep up with the corresponding component Zm

of the local eigenmode, and hence it is necessary that

dZ

dz
≈
dZm

dz
: (49)

To satisfy this condition, W must be sufficiently separated
from the X–Z plane: from the form of dW∕dz [Eq. (46)],
dZ∕d�γz� � 2gY , and therefore the required magnitude of Y
increases with dZm∕dz, while dZm∕dz increases with the
chirp rate.

Since φ � 0 is convex, an angle θ∥ in the X–Z plane asso-
ciated with the local eigenmode can be defined according to

tan�θ∥� �
∂φ∕∂Z
∂φ∕∂X

����
W�Wm

� ν; (50)

To see why the latter equality holds, recall that ν � Δk∕�2γg�,
Ym � 0, and that the eigenmodes Wm are points for which

∇φ � � ∂φ∕∂X ∂φ∕∂Y ∂φ∕∂Z � is parallel or antiparallel to
∇H � � g 0 Δk∕�2γ� �. Based on the curvature of φ � 0,
an angle θ⊥ associated with the value of Y can be defined
according to

Y � R⊥�Wm� sin�θ⊥�; (51)

where R⊥ is the local radius of curvature (RoC) of the surface
in the direction perpendicular to the X–Z plane. In order for
the interaction to be adiabatic, we expect that the condition
jθ⊥j ≪ 1 must be satisfied in addition to dZ∕dz ≈ dZm∕dz,
since in the limit of an infinitely slow chirp rate, Y → 0 and
hence θ⊥ → 0. Additionally, this angular condition implies
a small relative separation of the fields from the local
eigenmode, in analogy to conventional adiabatic following
processes [40].

With the conditions jθ⊥j ≪ 1 and dZ∕dz � dZm∕dz, it is
possible to obtain a heuristic constraint on the chirp rate re-
quired for the adiabatic following process that in turn can be
used to construct apodization profiles. To obtain this con-
straint, first consider the local curvatures of φ � 0. Formulas
for the curvatures of surfaces specified by implicit equations
are given in [41]. We denote the in-plane (X–Z plane) curva-
ture as k∥ (RoC R∥ � −k−1∥ ), and the curvature in the orthogo-
nal direction as k⊥ (RoC R⊥ � −k−1

⊥
). After some algebra it

can be shown that, at Wm, these curvatures are given by

k∥ � −
2

j∇φj
Ḡ�Zm� � ν2

1� ν2
; (52a)

k⊥ � −
2

j∇φj ; (52b)

where the parameter Ḡ�Z� is given by

Ḡ�Z� � 1� K ip − 3Z: (53)

Given sgn�ν�zi��, the relevant local eigenmode and hence
k∥ and k⊥ are functions of only ν.

An expression for the evolution of the local eigenmode is
also required. With Eqs. (48a) and (48c), Xm can be expressed
in terms of Zm. Substituting this result into Eq. (48b), an
implicit equation for Zm is obtained, of the form f �Zm�ν�; ν� �
0 for function f . By taking the derivative of this f � 0 equation
with respect to ν, it can be shown that

dZm

dν
� −sgn

�
dν

dz

� j∇φj
2�Ḡ�Zm� � ν2��1� ν2�1∕2 ; (54)

where the sgn prefactor assumes ν�ζ� is monotonic. With
the above relations and the condition dZm∕dz � dZ∕dz, the
inequality jθ⊥j ≪ 1 can be expressed as

���� d

d�γz�

�
Δk
2γg

����� ≪ 2gq�ν�; (55)

where the function q�ν� is defined as

q�ν� � �1� ν2�1∕2�Ḡ�Zm�ν�� � ν2�: (56)
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Equation (55) is the required adiabaticity condition that we
will use to determine AFC apodization profiles. The right hand
side is a function only of ν, and hence of Δk1 and g. It is
interesting to note that, if we define a new propagation coor-

dinate Ξ � R
z
zi

���������������������������������������������
�2γg�z0��2 � Δk1�z0�2

p
dz0, then Eq. (55) can be

expressed in an intuitive, purely geometrical form:

���� dθ∥dΞ

���� ≪ k∥

k⊥
. (57)

The form of Ξ arises from Eq. (46): the rate of change of Wm

has an overall scaling with j∇Hj �
�����������������������������������
�γg�2 � �Δk∕2�2

p
.

We have also found that the fidelity of Eq. (55) is consis-
tent with the values of the output pump depletion predicted
by numerical simulations of the CWEs for well-apodized gra-
tings operating in the highly nonlinear, highly saturated re-
gime, as a function of the coupling factor λR � γ2∕jΔk0j that
we defined in Subsection 6.C. Such consistency helps to
support the use of Eq. (55) as an adiabaticity criterion
for constructing apodization profiles and for estimating
how slow the chirp must be in order for adiabatic following
to occur.

Further insight can be gained by considering the region
around jνj ≈ 1. In the undepleted-pump limit (in which adia-
batic following does not occur), the signal is amplified in
the region where jνj < 1 [1]. Since this limit can be described
accurately by the complexWKBmethod, the points jνj � 1 are
referred to as turning points. For small signal input compared
to the pump (small ρ), the turning point closest to the input
side of the grating is also an important point in the adiabatic
following process: as K ip is increased toward unity (ρ → 0),
the ratio k∥∕k⊥ → 0 near this turning point, and hence, in or-
der to maintain adiabaticity, the chirp rate must be very slow,
based on Eq. (57). Physically, the signal must experience a
large enough gain to begin depleting the pump over a small
region near jνj � 1 in order to follow the eigenmode. The geo-
metrical explanation for this requirement, provided by
Eq. (57), is that the rate at which the eigenmode is swept
in the X–Z plane, and hence the required value of Y , scales
with k−1∥ , while the deviation of the angle θ⊥ from zero scales
(for a given value of Y) with k⊥.

B. AFC Apodization Procedure
We will design apodization profiles such that adiabaticity is
maintained, as in previous sections. As before, we also assume
that there is a known nominal grating profile to which we
append apodization regions. For the reasons discussed in
Subsection 4.D, we consider NLCA and not DCA or DDA,
and therefore assume g � 1. If a range of spectral components
are present, then ν and Wm depend on both frequency and
position. Based on Eq. (55) and assuming g � 1, we can obtain
the following equation for the grating chirp rate within the
apodization regions:

���� dKg

dz

���� � 2ϵγ2 min
ω

�q�ν�z;ω���; (58)

where ν�z;ω� � �Δk0�ω� − Kg�z��∕�2γ�ω�� is defined in
Eq. (33), q�ν� is defined in Eq. (56), and minimization is per-
formed over the spectral range of interest. When q�ν� is small,

a slow grating chirp rate is required. We show in Fig. 7 the
form of q�ν�−1 for several values of ρ: for small ρ, the minimum
of q becomes very small, necessitating a very slow chirp
rate.

Based on Fig. 7 and for a positive QPM chirp rate, the mini-
mum of q is between ν � −1 (obtained for the high-gain OPA
limit) and ν � 0 (for the strong-signal, weak-pump DFG limit).
Consider positions z for which ν�z;ω� is outside of this
interval at the edges of the nominal grating profile for all
frequencies ω of interest. At these positions, q�ν� is smallest
for the spectral component(s) for which jνj is smallest. The
apodization regions will begin at points for which this condi-
tion holds.

In this section, we will use subscripts − and� to denote the
input and output apodization regions, respectively. For a given
value of ϵ, we wish to find apodization boundaries zi;� for
which ν�zi;�;ω� lies outside the interval described above
for all ω in the spectral range of interest, and for which
Eq. (58) is satisfied for the nominal grating profile. The
spectral components for which jνj is smallest at these apod-
ization boundaries are denoted ω�, and hence satisfy
jν�zi;�;ω��j � minω�jν�zi;��;ω�j. The corresponding values
of ν are given by νi;� � ν�zi;�;ω��. Thus for z � zi;� and
Kg�z� � Knom�z�, Eq. (58) is satisfied, and the relevant
frequency is ω � ω�.

We now introduce position-dependent but frequency-
independent variables derived from ν according to

ν��z� �
Δk0�ω�� − Kg�z�

2γg�z� ; (59)

that satisfy ν��zi;�� � νi;�. ν��z� are substituted into Eq. (58)
to yield a differential equation,

����dν�dz
���� � ϵγq�ν��; (60)

that can be solved straightforwardly by numerically integrat-
ing with respect to ν�. Given ν��z�, the grating profile Kg�z� is
determined via Eq. (59).

C. AFC Apodization Example
In this subsection, we apply the procedure described in
Subsection 7.B to construct an apodization profile for an
AFC device. We choose ρ � 0.2, corresponding to a case
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Fig. 7. q�ν�−1 [q defined in Eq. (56), ν defined in Eq. (33)], shown for
several values of ρ, assuming a positively chirped grating. For small ρ,
the maximum of q−1 occurs near the first turning point (jνj � 1) and
diverges as ρ → 0.
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with a strong pump and moderate-strength signal, in order to
illustrate that AFC, and our apodization approach, is effective
even when substantial signal gain occurs. We choose a nomi-
nally linear grating chirp profile, with λR � γ2∕jΔk0j � 5,
and select ϵ � 1∕�2λR� so that the apodization regions are
‘as adiabatic’ as the nominal profile. As in previous sections,
we select a nominal grating profile sufficient to support a
bandwidth from 1450 to 1650 nm with a 1064 nm pump wave-
length, assume a MgO:LiNbO3 device and, in this case, fix
γ � γ0 � 3.5 × 103. The apodization regions are found by solv-
ing Eq. (60), as described above, for chosen initial and final
values Kg�zi� and Kg�zf �, respectively.

The simulation is shown in Fig. 8. The pump depletion as a
function of signal wavelength is shown in Fig. 8(a) for apo-
dized (NLCA) and unapodized cases. For the apodized case,
a very high pump depletion is maintained over the entire
target spectrum. In the unapodized case, only a moderate ef-
ficiency is predicted, and there are substantial fluctuations in
efficiency over the target spectrum. The apodized grating
profile is shown in Fig. 8(b), indicating that the apodization
regions take up only a relatively small fraction of the device’s
total length, as in our preceding examples. In practice, achiev-
ing high conversion efficiencies will involve a trade-off involv-
ing achievable input parameters, amplification of quantum
noise, and suppression of unwanted parasitic effects, such as
pump SHG [42]. In particular, to achieve a high conversion
efficiency at moderate coupling factor λR, the ratio of signal
and pump photon fluxes at the input the device, ρ, should not
be too small. This trade-off between λR, ρ, and efficiency was
considered in [7].

8. DISCUSSION AND CONCLUSIONS
A. Summary
In this paper, we have considered apodization of chirped QPM
gratings in detail. Without apodization, such devices exhibit a
substantial ripple in spectral amplitude and phase, which is
highly disadvantageous to many applications.

We studied most of the main operation regimes of interest.
These regimes include the linear regimes of DFG, SFG, SHG,
OR, etc., inwhich only the generatedwave is changing substan-
tially; the case of high-gain OPA, in which there is only minor
pump depletion; and the case of AFC, in which all of the
waves change substantially but remain close to the position-
dependent and frequency-dependent nonlinear eigenmode of
the TWMprocess throughout the device. In eachof these cases,
the structure of the eigenmodes of the unchirped QPM interac-
tion play an important role. We showed, for all of these oper-
ating regimes, how apodization profiles can be constructed
systematically in order to reach performance limited only by
inherent discretization associated with the QPM grating struc-
ture. We did not consider SHG with non-negligible pump
depletion, but the geometrical analysis of Sections 6 and 7
could be applied to that case aswell, and hencewe expect adia-
batic SHG to occur in properly apodized QPM gratings. Wewill
consider this SHG case and its applications in future work.

We considered different types of apodization, including non-
linear chirp apodization (NLCA), QPM duty cycle apodization
(DCA), and deleted-domain apodization (DDA). In principle,
comparable performance is achieved by NLCA and DCA.
However, DCA is challenging in terms ofQPM fabrication since
all the domains typically must be created in a single poling
event, and the dynamics governing the domain sizes are com-
plicated and difficult to control. Furthermore, DCA typically
requires a somewhat larger apodization region. The DDA ap-
proach exhibits substantially reduced performance, that we
showed for the casesofDFGandOPA.WhileDDA iswell suited
to long, unchirped QPM devices, it exhibits poorer perfor-
mance for chirped QPM devices due to the broad spatial
frequency bandwidth of the grating. For the above reasons,
we believe that NLCA will usually be the best method of apod-
izing all types of chirped QPM devices. This conclusion is con-
sistent with our experimental findings [10]. Furthermore,
NLCA has the potential to be the least susceptible to photore-
fractive damage related issues due to its 50%duty cycle [31–33].

In designing apodization profiles, we made sure to maintain
the nominal or desired profile of the device for the spectral
range of interest. This approach means that nominal grating
profiles supporting favorable properties, such as a broad
bandwidth or an engineered group delay spectrum, can first
be designed [4] and then apodization regions can be appended
systematically in order to achieve the desired performance
with optimal fidelity. For the case of AFC, this involved con-
structing a systematic approach to visualizing such devices
based on the elegant geometrical description of TWM proc-
esses introduced in [28]. Our analysis showed how to both
understand and design general AFC devices, even when sub-
stantial signal gain and pump depletion are involved simulta-
neously. The geometrical description also shows clearly why
it is difficult to achieve high gain and efficiency simultane-
ously in AFC devices.

When simulating the QPM designs presented, we used full
nonlinear CWEs of the actual discrete QPM grating structures,
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Fig. 8. AFC apodization example, with ρ � 0.2 and λR � 5. The re-
maining parameters are given in the text. (a) Pump depletion versus
signal wavelength for apodized and unapodized cases, (b) grating
profile Kg�z�.
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without restricting our analysis to the first order QPM
approximation. These simulations thus established that the
first order QPM approximation is indeed very accurate, even
for the more complicated cases of OPA and AFC.

B. QPM Fabrication Considerations
In simulations not shown, we tested the dependence of the
devices on the fabrication resolution by “snapping” all of
the domain boundaries to a fixed grid of a chosen spacing.
We found for the examples presented here (center period
≈30 μm) that even for a grid spacing of up to 1 μm, there is
almost no change in device performance. This result means
that the typical fabrication grids of 0.1 μm used in lithographic
poling are more than sufficient, even for devices with a
shorter range of QPM periods. It should be noted, however,
that unavoidable random duty cycle (RDC) errors in the QPM
grating can enhance the efficiency of unwanted parasitic
effects and should not be ignored [42,43].

We emphasize that our procedure for constructing the QPM
grating from a designed phase and duty cycle profile, given in
Eq. (3), in general makes the device insensitive to the discrete
nature of the QPM domains, since it ensures that the higher
spatial frequencies of the grating are always separated by an
integer number of “carrier frequencies” of the grating, and
therefore have minimal overlap with the first Fourier order.

For fabricating apodized gratings, it is important to note
that there is typically some uncertainty in the actual crystal
length due to variations in the amount of material lost during
polishing. Unless care is taken, these fluctuations could end
up removing the most highly phase mismatched parts of the
device, since the grating period is increased very rapidly over
a short distance at the edges of the grating. One way to resolve
this issue is by having an unpoled gap between the ends of the
crystal and the ends of the designed grating. However, such
unpoled regions will introduce an additional spectral ripple
and can be very disadvantageous in the context of photore-
fractive effects, as mentioned above [31–33]. Instead, one
could make simple modifications to the apodization proce-
dures presented here to ensure a slow chirp rate at the edges
of the grating (i.e., the chirp rate is first increased rapidly, then
decreased again near the edges of the grating, while still sat-
isfying the required inequalities and maintaining a monotonic
Kg�z� profile). In this way, the range of spatial frequencies
present on the device can be made insensitive to the polishing
process.

If there is a single poling event, and if it can be assumed that
the domains are independent of each other and their position
on the wafer, then the local duty cycle will be determined by
the local period. This period dependence of the duty cycle
could, in principle, be accounted for in the design, at least
to the extent that it is known. One could express the duty
cycle D as a function of grating k-vector Kg, and substitute
the resulting form g�Kg�z�� into the inequalities we discussed.
Since these subtleties are determined mainly by QPM fabrica-
tion issues rather than QPM device physics, we did not discuss
them in detail here, but they could be accounted for with
minor extensions of the methods presented.

C. Spatiotemporal Apodization
In this paper, we have not considered solitons and solitary
waves either in the spatial or temporal domain [44]. AFC

offers the potential for high conversion efficiency across
a nonuniform spatial and temporal profile, but parasitic
processes associated with overdriving the center of the
beams present a potential limitation of this approach. There-
fore, some applications could benefit significantly from
approaches, such as adiabatic soliton evolution [45]. Since
many of our results draw on concepts of local eigenmodes,
they are likely to apply to such interactions as well, but analy-
sis of these cases is beyond the scope of this paper. Instead,
based on practical considerations, we have used plane wave
models in order to obtain results that are not reliant on or
strongly constrained by diffractive effects. Nonetheless, care
should be taken in order to avoid excessive excitation of
three-wave modulation instabilities that can be associated
with three-wave nonlinear eigenmodes [44]; these and other
spatial effects relevant to the design of highly nonlinear
chirped QPM devices will be the subject of future work.

An alternative way of viewing such spatiotemporal effects
is as a means of QPM apodization. That is, to have beams or
pulses that are initially nonoverlapping in space or time, re-
spectively, and fully walk across each other’s spatial or tem-
poral profiles as they propagate through the nonlinear crystal.
In this way, components generated by mixing between these
two beams/pulses will be apodized, since the interaction is
smoothly turned on and off via walk-off. In principle, one
could also use beams that diffract strongly within the crystal
so that the intensities are low at the input and output ends and
increase slowly toward the focus.

A drawback of such schemes is that they could strongly
influence the desired interaction, or change it entirely. We
have found, for example, that excessive group velocity
walk-off can lead to additional spectral ripples in nonlinear
chirped QPM interactions, such as AFC. Furthermore, walk-
off based schemes will necessitate significantly longer crys-
tals at a given optical intensity, and hence will exacerbate
any unwanted parasitic effects that scale with the device
length. Therefore, while spatiotemporal apodization schemes
may find use in some contexts, we have not considered them
in detail here.

One case that is of interest and can be suitably engineered
is waveguide-coupling-based apodization, as discussed in [24].
Having the two input waves initially in different waveguides
and then adiabatically coupled to each other is analogous,
in this context, to a smooth modulation of g�z� from ≈0 to
≈1, and therefore may be of continued interest for wave-
guide-based apodization, particularly since DDA, the pre-
ferred approach from [24] for apodizing periodic gratings,
is less suited to chirped QPM devices. For example, one could
imagine combining a NLCA scheme with a waveguide-
coupling-based amplitude apodization to further suppress
spectral ripples beyond the limits imposed here by the
discrete nature of the QPM grating.

D. Conclusions
The difficulty in fabricating duty-cycle-modulated QPM gra-
tings, combined with the high versatility of chirped QPM gra-
tings, means that such devices will continue to play a central
role in QPM technology. In addition to efficient frequency
conversion, our apodization techniques could be applied to
efficiently excite nonlinear eigenmodes at a chosen finite
phase mismatch; for example, in the context of cascaded χ�2�
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interactions. The systematic study of device operation and
apodization we have presented here should therefore be of
critical importance to the continued development of QPM
technology and its applications.
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