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APOE*E2 allele delays age of onset in PSEN1 E280A

Alzheimer’s disease
JI Vélez1,2,12, F Lopera2,12, D Sepulveda-Falla2,3,12, HR Patel1, AS Johar1, A Chuah4, C Tobón2, D Rivera2, A Villegas2, Y Cai1, K Peng5,

R Arkell6, FX Castellanos7,8, SJ Andrews9, MF Silva Lara1, PK Creagh1, S Easteal9, J de Leon10, ML Wong11, J Licinio11,12,

CA Mastronardi1,11,12 and M Arcos-Burgos1,2,12

Alzheimer’s disease (AD) age of onset (ADAOO) varies greatly between individuals, with unique causal mutations suggesting the

role of modifying genetic and environmental interactions. We analyzed ~ 50 000 common and rare functional genomic variants

from 71 individuals of the ‘Paisa’ pedigree, the world’s largest pedigree segregating a severe form of early-onset AD, who were

affected carriers of the fully penetrant E280A mutation in the presenilin-1 (PSEN1) gene. Affected carriers with ages at the extremes

of the ADAOO distribution (30s–70s age range), and linear mixed-effects models were used to build single-locus regression models

outlining the ADAOO. We identified the rs7412 (APOE*E2 allele) as a whole exome-wide ADAOO modifier that delays ADAOO by

~ 12 years (β= 11.74, 95% confidence interval (CI): 8.07–15.41, P = 6.31 × 10− 8, PFDR= 2.48 × 10− 3). Subsequently, to evaluate

comprehensively the APOE (apolipoprotein E) haplotype variants (E1/E2/E3/E4), the markers rs7412 and rs429358 were genotyped

in 93 AD affected carriers of the E280A mutation. We found that the APOE*E2 allele, and not APOE*E4, modifies ADAOO in carriers of

the E280A mutation (β= 8.24, 95% CI: 4.45–12.01, P= 3.84 × 10− 5). Exploratory linear mixed-effects multilocus analysis suggested

that other functional variants harbored in genes involved in cell proliferation, protein degradation, apoptotic and immune

dysregulation processes (i.e., GPR20, TRIM22, FCRL5, AOAH, PINLYP, IFI16, RC3H1 and DFNA5) might interact with the APOE*E2 allele.

Interestingly, suggestive evidence as an ADAOO modifier was found for one of these variants (GPR20) in a set of patients with

sporadic AD from the Paisa genetic isolate. This is the first study demonstrating that the APOE*E2 allele modifies the natural history

of AD typified by the age of onset in E280A mutation carriers. To the best of our knowledge, this is the largest analyzed sample of

patients with a unique mutation sharing uniform environment. Formal replication of our results in other populations and in other

forms of AD will be crucial for prediction, follow-up and presumably developing new therapeutic strategies for patients either at risk

or affected by AD.
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INTRODUCTION

For the past three decades, we have studied the world’s
largest known pedigree in which a presenilin-1 (PSEN1) mutation
(p.Glu280Ala, E280A), often referred as the Paisa mutation,
dominantly cosegregates with early-onset of Alzheimer’s disease
(AD).1 This founder effect dates from the Spanish Conquistadors
colonizing Colombia during the early sixteenth century.1–4 Of the
more than 5000 individuals descended from the original founder,
we have enrolled 1784 in a comprehensive ongoing clinical
monitoring study. Of 1181 genotyped participants, 459 are
mutation carriers and 722 are non-carriers of the mutation.4

The importance of this pedigree is highlighted by the recent
decision of the National Institutes of Health (NIH) to launch the
first prevention trial for AD, with the Paisa PSEN1 pedigree as one

of the principal focuses. Along with the presence of exhaustive

and detailed comprehensive medical records of thousands of

individuals, this pedigree originated from a founder effect that

makes it a valuable resource for genetic research,2,5 and for the

development of biomarkers for predicting and following up the

natural history of AD.6

Although the median age of AD age of onset (ADAOO) in
patients with the E280A Paisa mutation is 49 years, the ADAOO

extends widely from the early 30s to the late 70s.4 We considered

that the high variability in ADAOO of this pedigree could include

patients with an extreme phenotype (i.e., group of signs or

symptoms departing from the disease’s natural history that would

manifest in patients with an extreme early or late ADAOO (e.g., 30s

vs 70s, respectively),7–9 supporting the hypothesis that the
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variance in ADAOO is influenced by major modifiers. Since
members of this pedigree share a relatively homogeneous
environment and culture, we hypothesized that these modifiers
of ADAOO could be genes shaping the natural history of cognitive
decline. Indeed, a previous analysis by our group using a genome-
wide association study approach found that genome-wide
intronic variants significantly associated as ADAOO modifiers.10

Other approaches using whole-genome sequencing have sug-
gested some rare variants as potential modifiers of the ADAOO in
this pedigree.5

To challenge the ADAOO variance, we scrutinized functional
variants distributed through the whole exome in 71 PSEN1 E280A
mutation carriers, all of them descendants from the original Paisa
pedigree founder. Subsequently, we evaluated some of these
functional variants in 93 PSEN1 E280A mutation carriers, and in a
set of patients with sporadic AD (sAD) from the Paisa genetic
isolate. Here, we disclose evidence that mutations harbored in
APOE (apolipoprotein E), a gene implicated in the susceptibility
and modification of AD risk, and additional new loci in GPR20,
TRIM22, FCRL5, AOAH, PINLYP, IFI16, RC3H1 and DFNA5, might
modify the ADAOO and therefore substantially change the
natural history of this condition. Furthermore, this oligogenic
model exhibits substantial sensitivity and specificity to predict
the ADAOO.

MATERIALS AND METHODS

Patients

E280A pedigree. Detailed clinical assessment and ascertainment proce-
dures of this pedigree have been presented elsewhere.4,11–13 Briefly, we
have collected data from participants including clinical evaluations, family
history, comprehensive neurological and neuropsychological examina-
tions, functional MRI during face–name associative memory encoding and
novel viewing and control tasks, and structural magnetic resonance
imaging. Clinical, neurological and neuropsychological assessments at the
Group of Neurosciences AD Clinic used a Spanish version of the CERAD
(Consortium to Establish a Registry for Alzheimer’s Disease) evaluation
battery14 adapted for the cultural and linguistic characteristics specific to
this population4,11–13 (described in detail in the Supplementary Material).
Patients were defined as affected by mild cognitive impairment based on
the Petersen’s criteria and as AD if the DSM-IV (Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition) criteria were met.15,16 The
Ethics Committee of the University of Antioquia approved this study.
From the 459 E280A mutation carriers, we ascertained 71 patients from

the extremes of the ADAOO distribution (44 women (62%) and 27 men
(38%)) (Supplementary Figure 1a). The ADAOO (mean± s.d.) was 47.8 ± 5.8
years in these patients (Supplementary Figure 1a). Mean ADAOO did not
differ significantly by gender (female: 47.6 ± 6.1; male: 48.4 ± 5.5, P=0.55)
(Supplementary Figure 1b). A total of 43 patients (26 women (60%) and 17
men (40%)) had an ADAOO below 48 years.10 As intended, mean ADAOO
differed significantly between patients with ADAOO ⩾ 48 and o48 years
(44.2 ± 2.48 vs 53.5 ± 5.13, P= 1.49 × 10− 10). In those individuals with
available information (n= 57), years of education ranged from 0 to 19
years: four patients (7%) never attended school, 28 (49%) finished primary
school (grades 1–5), 21 (37%) finished high school (grades 6–11, inclusive)
and only 4 (7%) had tertiary education. Mean ADAOO did not
differ significantly across education groups (F3,53=2.721, P= 0.053)
(Supplementary Figures 1c and d).

Cohort of sporadic cases. We assembled an independent sample of 128
sporadic sAD cases recruited from the metropolitan area of Medellin,
Antioquia, Colombia, to test whether variants associated with ADAOO in
the E280A pedigree were also associated with ADAOO in this sample.
Although these individuals do not carry the PSEN1 E280A mutation, several
population genetic analyses have shown that the community inhabiting
this area has not been subject to microdifferentiation and shares the same
genetic background and genealogy as the population with the E280A
mutation.2,3 Therefore, our rational is that given this similar genetic
background, the genetic load modifying gene effects predisposing to AD is
common. As in the E280A pedigree, neurological and neuropsychological
assessments of these patients with sAD were conducted at the Group of

Neurosciences AD Clinic using the modified CERAD evaluation battery
(Supplementary Material).
Fifty-four patients, placed at the extremes of the ADAOO distribution (43

women (80%) and 11 men (20%)), were selected for this study from our
collection of 128 patients with sAD (Supplementary Figure 2a). We chose
them because the lower ADAOO in these patients had a similar distribution
to that of patients with the E280A mutation. Similarly, the upper limit was
defined to keep a similar distance between the average ADAOO and the
upper limit of the E280A cohort. The average ADAOO was 63.26 ± 6.94
years (Supplementary Figure 2a) in the 54 patients, with no statistically
significant differences by gender (females: 63.83 ± 6.29; males: 62.4 ± 6.06,
P= 0.52) (Supplementary Figure 2b) or education group when including
individuals with at least 1 year of education (F2,46= 2.61, P=0.08)
(Supplementary Figure 2c). The number of years of education ranged
from 0 to 18 years: 1 patient had no information, 1 (2%) never attended
school, 22 (42%) completed primary school, 23 (43%) completed high
school and 7 (13%) attended tertiary education (Supplementary Figure 2d).

Genotyping

Whole-exome genotyping. One hundred and eleven individuals (57 with
AD from the E280A pedigree and 54 individuals with sAD) were whole-
exome genotyped using Illumina HumanExome BeadChip-12v1_A. This
SNP-chip covers putative functional exonic variants selected from over
12 000 individual exome and whole-genome sequences, and consists of
~ 250 000 markers representing diverse populations (including European,
African, Chinese and Hispanic individuals), and a range of common
conditions such as type 2 diabetes, cancer, metabolic and psychiatric
disorders. In addition to pure exonic variation, the HumanExome
BeadChip-12v1_A (Illumina, San Diego, CA, USA) chip covers single-
nucleotide polymorphisms (SNPs) in splice sites, in stop variants, in
promoter regions and genome-wide association study tag markers, among
other potentially functional variation. Samples with calls below Illumina’s
expected 99% SNP call rates were excluded.

Whole-exome capture. We performed whole-exome capture on 14
individuals with AD from the E280A pedigree. Genomic DNA was extracted
from peripheral blood from all patients and processed by the Australian
Genome Facility (Melbourne, VIC, Australia). DNA libraries were constructed
from 1 μg of genomic DNA using an Illumina TruSeq Genomic DNA Library
Kit (Illumina, San Diego, CA, USA), and libraries were multiplexed with six
samples pooled together (500 ng each). Exons were enriched from 3 μg of
pooled library DNA using an Illumina TruSeq Exome Enrichment Kit
(Illumina, San Diego, CA, USA), and ran on a 100 base pair paired-end run
on an Illumina HiSeq 2000 sequencer (Illumina). A total of 201 071 genomic
regions (sampled at ~ 50× coverage) were surveyed using the whole-
exome capture platform.
Sequencing image data were processed in real time using Illumina’s

Real-Time Analysis Software and converted to FASTQ files using the
CASAVA pipeline (Illumina). The entire workflow of data curation and
analysis for variant calling was developed by the Genome Discovery Unit at
The Australian National University, and consists of the following key
components: (i) quality assessment; (ii) read alignment; (iii) local
realignment around the known and novel indel regions to refine indel
boundaries; (iv) recalibration of base qualities; (v) variant calling; and
(vi) assigning quality scores to variants. The resulting FASTQ files were
further processed for variant analysis using Golden Helix’s

®

SNP variation
suite (SVS) 8.3.0 (Golden Helix, Bozeman, MT, USA).

Genetic, statistical and bioinformatics analyses

Quality control, filtering and classification of functional variants. After
importing the genetic data to Golden Helix’s SVS 8.3.0, a single genetic
data file was constructed by merging common and uncommon exonic
variants from both the whole-exome genotyping and whole-exome
capture platforms. Genotypes for 71 individuals from the E280A pedigree
were obtained and quality control subsequently performed using the
following criteria: (i) deviations from Hardy–Weinberg equilibrium with
P-values o0.05/m (where m is the number of markers included for
analysis); (ii) a minimum genotype call rate of 90%; (iii) presence of two
alleles (i.e., we excluded monoallelic markers, and markers that were
present in more than two alleles). Markers not meeting any of these criteria
were excluded from analyses. Genotype and allelic frequencies were
estimated by maximum likelihood. Following previous recommendations,17
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variants with a minor allele frequency (MAF)⩾ 0.01 were classified as
common and as rare otherwise.
Exonic variants with potential functional effect were determined using

the functional prediction information available in the dbNSFP_NS_Func-
tional_Predictions GRCh_37 annotation track.18 This filter uses SIFT,
PolyPhen-2, Mutation Taster, Gerp++ and PhyloP19–21 and is fully
implemented in the Golden Helix SVS 8.3.0 Variant Classification module.
This module was also used to examine interactions between variants and
gene transcripts to classify variants based on their potential effect on
genes. Variants were classified according to their position in a gene
transcript. In addition, variants in coding exons were further classified
according to their effect on the gene’s protein sequence.

Genome-wide association study analysis of common and rare variants. We
studied the association of common exonic functional variants (CEFVs) to
ADAOO using single- and multilocus additive, dominant and recessive
linear mixed-effect models (LMEMs)22 with up to 10 steps in the backward/
forward optimization algorithm. The advantage of these models is the
inclusion of both fixed (genotype markers, sex and years of education) and
random effects (family or population structure), the later to account for
potential inbreeding by including a kinship matrix (i.e., the identity-by-
descent matrix, which in our case was estimated between all pairs of
individuals using markers excluded from the final analysis after linkage
disequilibrium pruning). A single-locus LMEM assumes that all loci have a
small effect on the trait, whereas a multilocus LMEM assumes that several
loci have a large effect on the trait.22 Both types of models are
implemented in SVS 8.3.0. The optimal model was selected using a
comprehensive exploration of multiple criteria including the Extended
Bayes Information Criteria, the Modified Bayes Information Criteria and the
Multiple Posterior Probability of Association. After the estimation process
using the forward/backward algorithm is finished, the coefficients
β̂1; β̂2; ¼ ; β̂m were extracted and a hypothesis test of the form H0,i: βi ¼
0 vs H1,i: βi ≠0 was performed for the ith CEFVs to obtain the corresponding
P-value (i= 1,2,…,m). Thus, the collection P1, P2,…,Pm of P-values were
subsequently corrected for multiple testing using the false discovery rate
(FDR),23 and a method based on extreme-values theory.24 Because the
tests of hypothesis being performed are of the same type, this correction is
to be performed on the resulting m P-values only.23 Using a type I error
probability of 5%, any FDR-corrected P-value ⩽ 3.62× 10− 2 is considered
statistically significant. This threshold was derived after correcting all m
P-values using the p.adjust function in R.25 Similarly, any raw P-value
⩽ 1.26 × 10− 6 is statistically significant after Bonferroni’s correction. For the
exploratory analysis, only CEFVs located in genes modifying ADAOO in the
E280A pedigree were included for association analysis in the cohort of
sporadic cases using LMEMs.
For the analysis of rare exonic functional variants (REFVs), regression-

and permutation-based kernel-based adaptive cluster methods were
used.26 Kernel-based adaptive cluster, implemented in SVS 8.3.0, catalogs
rare variant data within each of a number of regions into multimarker
genotypes, and, as variants are rare, only a relatively few different
multimarker genotypes are found in any given region. A special test
is subsequently applied to determine their association with the
(case–control) phenotype, weighting each multimarker genotype by how
often that genotype was expected to occur according to both the data and
the null hypothesis that there is no association between that genotype and
the case–control status of the sample.26 Thus, genotypes with high sample
risks are given higher weights that can potentially separate causal from
non-causal genotypes. Further, a one-sided test was applied because of
the weighting procedure and the P-values were estimated using 10 000
permutations. Individuals with ADAOO ⩾ 48 years were defined as cases
and as controls otherwise. This cutoff value was selected based on
previous studies of the ADAOO in the E280A pedigree.4,10

Genomic/clinical-based predictive framework with ARPA. We used
advanced recursive partitioning approach (ARPA) to construct a predictive
decision tree-based model of AD status (ADAOO o48 and ⩾ 48 years) in
our patients with PSEN1 E280A AD using functional genetic variants and
other clinical factors.6,27,28 Gender, years of education and CEFVs identified
as ADAOO modifiers were used as predictors. ARPA offers fast solutions to
reveal hidden complex substructures and provides non-biased statistical
analyses of high dimensional seemingly unrelated data, and is widely used
in predictive analyses as it accounts for nonlinear hidden interactions
better than alternative methods and is independent of the type of data
and of the data distribution type.29 ARPA was applied using the
Classification and Regression Tree (CART), Random Forest (RF) and TreeNet

modules implemented in the Salford Predictive Modeller software suite
(Salford Systems, San Diego, CA, USA).
CART is a nonparametric approach whereby a series of recursive

subdivisions separate the data by dichotomization.30 The aim is to identify,
at each partition step, the best predictive variable and its best
corresponding splitting value while optimizing a splitting criterion. As a
result, the data set is successfully split into increasingly homogeneous
subgroups.30 We used a battery of different statistical criteria as splitting
rules (including the Gini index, Entropy and Twoing) to determine the
splitting rule mostly decreasing the relative cost of the tree while
increasing the prediction accuracy of target variable categories. The best
split at each dichotomous node was chosen by either a measure of
between-node dissimilarity or an iterative hypothesis testing of all possible
splits to find the most homogeneous split (lowest impurity).30 Similarly, we
used a wide range of empirical prior probabilities to model numerous
scenarios recreating the distribution of the targeted variable categories in
the population.30 Subsequently, each terminal node was assigned to a
class outcome. To avoid overfitting in the CART predictive model, and to
ensure that the final splits were well substantiated, tree pruning was
applied. During this procedure, predictor variables that were close
competitors (surrogate predictors with comparable overall classification
error to the optimal predictors) were pruned to eliminate redundant
commonalities among variables, thus the most parsimonious tree had the
lowest misclassification rate for an individual not included in the original
data.30 The final CART predictive model was selected based on the
performance measures presented in Supplementary Table 4.
RF was conjointly applied with a bagging strategy to identify exactly the

most important set of variables predicting AD status.31 Unlike CART, RF
uses a limited number of variables to derive each node while creating
hundreds to thousands of trees, and has proven to be immune to
overfitting.31 In the RF strategy, variables that appeared repeatedly in trees
as predictors were identified, and the misclassification rate was recorded.
Finally, TreeNet was used as a complement to CART and RF strategies
because it reaches levels of accuracy that are usually not attainable by
either of the other two.32 This algorithm generates thousands of small
decision trees built in a sequential error-correcting process that converge
to an accurate model.32 Cross-validation training with all data and then
indirectly testing with all the data was performed to derive honest
assessments of the derived models and have a better view of their
performance on future unseen data (i.e., review the stability of results
across multiple subsets).30 To do so, the data were randomly divided, with
replacement, into 10 separate partitions (folds). The used TreeNet
(Boosting) decreases both the bias and the variance of the learning
process, resulting in statistics that are immune to either inflation or
overfitting. As described in the Results section, TreeNet corroborated the
results of CART in both the learning and test data sets with slightly higher
performance measures. This indicates a substantial predictive power of our
ARPA-based CART predictive framework for identifying E280A mutation
carriers with early and late ADAOO.

Pathway and network analyses. To identify key physiological pathways
and networks involving genes harboring those variants disclosed by the
common variant analysis, and to evaluate overrepresentation of common
either ontogenetic or cellular processes, we performed network and
pathway enrichment analyses with MetaCore

®

version 6.20 build 66481
(Thomson Reuters, New York, NY, USA). Genes with potential functional
effect were examined with the ‘Analyse Network’, ‘Process Networks’,
‘Shortest Paths’ and ‘Direct Interactions’ algorithms. This collection of
analyses provides a heuristic interpretation of maps and networks and rich
ontologies for diseases based on the biological role of candidate genes.
The presence of artifacts in statistical analyses (which can arise from genes
in the database that may be in the same network but have no functional
connection or interaction with any gene from our filtered list) was
minimized by only including nodes with direct physical interactions
between the encoded proteins in the database (known as the high
trust set).

RESULTS

Quality control and genetic population structure

After quality control, assembling and filtering process, a total of
49 191 common and rare variants with potential functional effects
remained for genetic analyses (Figure 1a). We estimated genetic
stratification (population subdivision) using the Fst statistic of S

Age of onset modifier mutations in PSEN1 E280A Alzheimer’s disease

JI Vélez et al

918

Molecular Psychiatry (2016), 916 – 924 © 2016 Macmillan Publishers Limited



Wright. The estimated Fst value for these cohorts was of 0.0187
(there is formal consensus that Fst values 40.17 are correlated
with microdifferentiation). Further, we estimated the kinship
coefficient of relatedness. Pairs of fAD and sAD cases with
Fst values 40.025 were discarded.

CEFVs modifying ADAOO

From the 39 753 CEFVs (Figure 1a), on average, ~ 2.83 CEFVs
located within each gene (Supplementary Figure 4), we identified
the rs7412, APOE*E2 allele as a whole-exome-wide ADAOO
modifier using a single-locus LMEM. This marker delays ADAOO
by ~ 12 years (β= 11.74, 95% CI: 8.07–15.41, P = 6.31 × 10− 8,
PFDR= 2.48 × 10− 3) (Table 1a).

Effect of APOE*E2/E4 alleles on ADAOO

Given that rs7412 (APOE) is an ADAOO modifier in our patients
with PSEN1 E280A AD, we genotyped the rs429358 (APOE) marker
to subsequently determine the effect of the APOE haplotype
variants, defined by the E1/E2/E3/E4 alleles (see Figure 1b), on
ADAOO. A total of 93 individuals were genotyped. On average, the
presence of the APOE*E2 delayed the ADAOO by 8.24 years (95%
CI: 4.45–12.01, P= 3.84 × 10− 5) when compared with its absence
(Figures 1c and d).

A multilocus LMEM with nine steps in the backward/forward
optimization algorithm was selected as the optimal model
best explaining the ADAOO variance (490% in total;
Supplementary Figure 3a). Nine mutations harbored in APOE
(rs7412, P= 5.44 × 10− 35), GPR20 (rs36092215, P= 3.36 × 10− 26),
TRIM22 (rs12364019, P= 8.78 × 10− 19), FCRL5 (rs16838748,
P= 8.79 × 10− 14), AOAH (rs12701506, P= 7.26 × 10− 12), PINLYP
(rs2682585, P= 2.55 × 10− 10), IFI16 (rs62621173, P= 1.54 × 10− 9),
RC3H1 (rs10798302, P= 3.80 × 10− 8) and DFNA5 (rs754554,
P= 8.32 × 10− 6) were significantly associated as ADAOO modifiers
(Table 1a and Supplementary Figure 3b and c). Variant
rs12701506, located in the AOAH gene, is an intronic SNP
anchored in a site encoding a strong enhancer (State-5) according
to the chromatin state segmentation from ChiP-seq data. On the
other hand, variant rs10798302 is located in an intergenic region
close to the RC3H1 gene, and is anchored in a CpG Island, DNaseI
Hypersensitivity Uniform Peak according to the ENCODE/Analysis.

Exploratory analysis in a cohort of patients with sAD

From the 247 874 exonic variants available for genetic analysis in
the sAD cohort, 17 variants were located within the genes
significantly associated with ADAOO in the E280A cohort. A
multilocus LMEM minimizing the Modified Bayes Information
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Criteria and Extended Bayes Information Criteria criteria and
maximizing the Multiple Posterior Probability of Association
criterion was selected. A CEFV harbored in GPR20 (rs34591516,
P= 2.34 × 10− 3) was found to modify ADAOO in our cohort of
patients with sAD (Table 1b). This modifier effect was subse-
quently confirmed using a single-locus LMEM (β=− 21.68,
s.e.β= 6.96, P= 3.1 × 10–3, PFDR= 0.058).

Rare exonic functional variants modifying ADAOO

A total of 9438 functional rare variants were available after quality
control, assembly and filtering process. Regression-based kernel-
based adaptive cluster analysis disclosed nominal associations
between transcripts in the PDZD2 (P = 1.80 × 10− 2) and ATM
(P= 2.4 × 10− 2) genes, as well as a borderline nominal associa-
tion with transcripts in C10orf12 (P = 5.0 × 10− 2) (Supplementary
Table 1a). Permutation-based kernel-based adaptive cluster
confirmed the associations in PDZD2 (P= 1.40 × 10− 2) and ATM
(P= 1.40 × 10− 2), and revealed a borderline nominal association
between rare variants within SDK2 (P = 5.29 × 10− 2) and ADAOO
(Supplementary Table 1b). These results were corroborated by
using optimized Sequence Kernel Association Test (Supple-
mentary Table 1c).

ARPA-based clinical diagnostic tool

A three-level tree with six terminal nodes was derived by CART, to
identify E280A mutation carriers with late ADAOO (⩾48 years) and
early ADAOO (o48 years). Validation of this predictive model via
RF and TreeNet produces comparable results (see below). Splitting

nodes involved years of education and variants rs2682585
(PINLYP), rs7412 (APOE), rs16838748 (FCRL5) and rs62621173
(IFI16) (Figure 2a).
The presence of two copies of the A allele in rs2682585

identifies 50% of the E280A carriers with late ADAOO (node 4,
n= 24). In the second split, E280A carriers with the A/A genotype
in rs2682585 and six or fewer years of education were mostly
identified as having late ADAOO (node 5, n= 20, 64.5%), whereas
attending 6 or more years of education classified them as having
early ADAOO (node 6, n= 13, 76.5%). In the third split, the
presence of the C/C genotype in rs62621173 classified most of the
E280A carriers with late ADAOO (terminal node 5, n= 20, 74.1%),
whereas the presence of the C/T genotype in rs62621173
classified all of the E280A carriers with early ADAOO (terminal
node 4, n= 4, 100%) (Figure 2a).
Subsequently, individuals having one or two copies of the G

allele in rs2682585 were mostly identified as having early ADAOO
(node 2, n= 23, 82.6%) (Figure 2a, left). In split 4, these number of
copies of the G allele in rs2682585 and the C/C genotype in rs7412
(APOE) correctly classified all E280A carriers with early ADAOO
(node 3, n= 20), whereas the T/C genotype discriminated 75% of
those individuals with late ADAOO, suggesting a potential
gene × gene interactions between PINLYP and APOE to modify
the delaying effect of the APOE*E2 allele on the ADAOO in PSEN1
E280A mutation carriers (Figure 1d). Finally, split 5 identified the
remaining individual with late ADAOO based on the G/T genotype
in rs16838748 (FCRL5) (Figure 2a, bottom).
The variable importance and receiver operating characteristic

(ROC) curves for the CART, RF and TreeNet strategies are shown in

Table 1a. Results of the association analysis for ADAOO in 71 patients with PSEN1 E280A Alzheimer’s disease

Chr SNPa Position Gene Marker information Single-locus linear mixed-effects model

Ref/Alt MAF CR Change β (s.e.β) P-value PFDR

19 Rs7412 45 412 079 APOE C/T 0.044 1.000 p.Arg176Cys 11.74 (1.84) 6.31× 10−8 2.48×10−3

Chr SNPa Position Gene Marker information Multilocus linear mixed-effects model

Ref/Alt MAF CR Change β (s.e.β) P-value PFDR

19 Rs7412 45 412 079 APOE C/T 0.044 1.000 p.Arg176Cys 17.45 (0.48) 5.44 ×10−35 2.13×10−30

8 Rs36092215 142 367 246 GPR20 G/A 0.036 0.982 p.Arg260Cys 12.12 (0.54) 3.36 ×10−26 6.58×10−22

11 Rs12364019 5 730 343 TRIM22 G/A 0.018 1.000 p.Arg321Lys − 11.64 (0.79) 8.78 × 10− 19 1.15 × 10− 14

1 Rs16838748 157 508 997 FCRL5 G/T 0.018 1.000 p.Asn427Lys 7.14 (0.68) 8.79 ×10−14 8.61×10−10

7 Rs12701506 36 566 020 AOAH G/A 0.096 1.000 b
− 2.75 (0.30) 7.26 × 10− 12 5.69× 10− 8

19 Rs2682585 44 081 288 PINLYP A/G 0.219 1.000 p.His6Arg − 1.68 (0.21) 2.55 × 10− 10 1.67× 10− 6

1 Rs62621173 159 021 506 IFI16 C/T 0.07 1.000 p.Ser512Phe − 2.80 (0.37) 1.54 × 10− 9 8.63× 10− 6

1 Rs10798302 173 987 798 RC3H1
c A/G 0.158 1.000 d 1.76 (0.27) 3.80× 10−8 1.86×10−4

7 Rs754554 24 758 818 DFNA5 G/T 0.132 1.000 p.Pro142Thr − 1.39 (0.28) 8.32 × 10− 6 3.62× 10− 2

Abbreviations: β, regression coefficient; Chr, chromosome; CR, call rate; FDR, false discovery rate; MAF, minimum allele frequency; PSEN1, presenilin-1; Ref/Alt,

reference/alternate allele; s.e.β, standard error of β; SNP, single-nucleotide polymorphism. aUCSC GRCh37/hg19 coordinates. bChromatin state segmentation

strong enhancer state-5 from ChiP-seq data. cNearest gene. dCpG islands, DNaseI hypersensitivity uniform peak from ENCODE/Analysis. No associations

between genetic variants and sex were found (Supplementary Table 5). Bold variants decelerate AOO.

Table 1b. Findings in 54 patients with sporadic Alzheimer’s disease

Chr SNPa Position Gene Marker information Multilocus linear mixed-effects modelb

Ref/Alt MAF CR Change β (s.e.β) P-value PFDR

8 Rs34591516 142 367 087 GPR20 C/T 0.037 1.000 p.Gly313Ser − 22.05 (6.87) 2.34× 10− 3 4.44× 10− 2

Abbreviations: AOO, age of onset; β, regression coefficient; Chr, chromosome; CR, call rate; FDR, false discovery rate; LMEM, linear mixed-effect model;

MAF, minimum allele frequency; Ref/Alt, reference/alternate allele; s.e.β, standard error of β; SNP, single-nucleotide polymorphism. aUCSC GRCh37/hg19 coordi-

nates. bThis modifier effect was subsequently confirmed using a single-locus LMEM (β=− 21.68, s.e.β= 6.96, P= 3.1 × 10–3, PFDR= 0.058).
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Figure 2b. Although similar results were obtained with all
strategies, CART included fewer variables than RF and TreeNet.
Overall, these results show that (i) the top 5 variables included
in the final model are comparable among strategies; and (ii) years
of education and the genotype in rs2682585 (PINLYP) and
rs7412 (APOE) provide the most consistent set of variables for
differentiating patients by ADAOO.
Figure 2c displays the performance measures for the testing

and learning data sets (see Supplementary Tables 4a and b for
more details). For the learning data set, CART estimated an area
under the curve of 84.9 (95% CI = 75.7–92.6), classification rate of
84.5 (95% CI = 76.1–91.5), sensitivity of 85.8 (95% CI = 71.4–96.8),
specificity of 83.8 (95% CI = 72.1–93.9) and precision of 90.1 (95%
CI = 80.0–97.7), with overlapping 95% CI for the learning data set
based on 10-fold cross-validation (Figure 2c). TreeNet corrobo-
rated these results in both the learning and test data sets with
slightly higher performance measures than those produced by
CART. On the other hand, RF in the testing data set produced
similar point estimates for sensitivity and precision, and over-
lapping CIs to those from CART and TreeNet for other
performance measures. Altogether, these measures indicate
substantial predictive power of these genetic variants along with
years of school attendance for identifying E280A mutation carriers
with early and late ADAOO when combined in an ARPA-based
CART predictive framework (Figure 2a).
We also have used the age of onset as an interval variable and

prediction for the best fitting generalized boosting regression

model was attempted. We found very similar patterns of variant
inclusion and prediction when using the ADAOO as a continuous
variable instead of one dichotomized into binary classes (see
Supplementary Figure 7).

Pathway enrichment analysis

The pathway, network and enrichment analysis (using the 'Shortest
Paths’ algorithm) disclosed statistically significant involve-
ment of APOE, TRIM22, IFI16, RC3H1 and DFAN genes, interacting
with PSEN1 in important physiological pathways, and gene
ontology (GO) processes of apoptosis and immunological
response, as well as in diseases such as AD (P= 3.34× 10− 5),
early-onset AD (P=1.68 × 10− 2), delirium, dementia, amnestic and
cognitive disorders (P=3.13×10−5), frontotemporal lobar dementia
and degeneration (P=4.3×10−4), and neurodegenerative diseases
(P= 5.85 × 10− 4) (Figure 3 and Supplementary Table 2).

DISCUSSION

Given the modest outcomes of the common disease-common
allele hypothesis,33 new genomic approaches are needed in
complex genetic disorders. Recently, a comprehensive alternative
approach has emerged, which assesses genetic risk in terms of
nonlinear interactions among genetic variants of major effect
(i.e., functional mutations).27,34–38 For this approach, the identifica-
tion of extreme phenotypes in patients ascertained either from

Figure 2. (a) Classification tree for predicting late- (LO) and early-onset (EO) Alzheimer’s disease in E280A mutation carriers. Numbers in gray
represent the split number, and N the sample size within each node. (b) Variable importance (left) and receiver operating characteristic (ROC)
curve (right) for the Classification and Regression Tree (CART), Random Forest and TreeNet strategies. (c) Performance measures for the
learning (blue) and test (pink) data sets for each model (b, right panel). AUC, area under the curve; CI, confidence interval; CR,
classification rate.
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extended and multigenerational pedigrees or homogeneous
cohorts from genetic isolates is recommended.2,10,39,40

In this manuscript, we demonstrate the effectiveness of this
strategy by identifying an oligogenic model comprised of
functional variants of major effect harbored in the APOE, GPR20,
TRIM22, FCRL5, AOAH, PINLYP, IFI16, RC3H1 and DFNA5 genes.
Despite the relatively small sample size of our cohort, we have
demonstrated the predictive efficiency of this model (Figure 2c) to
delineate the ADAOO in E280A mutation carriers when clinical and
demographic data are used in an ARPA-based classification tree.
Thus, it is very unlikely that this tree might be the result of
overfitting as using other techniques such as RF and TreeNet,
which are immune to unbalanced group sizes, resulting in the
same qualitative solution. Given the excellent performance of this
tree in terms of sensitivity, specificity and precision (Figure 2c), we
believe that this predictive framework can be used not only for
predicting the ADAOO in the E280A pedigree but also for
monitoring patients with AD at follow-up visits in future clinical
trials. Having previously shown that imaging approaches such as
1HMRI could predict the onset of symptoms in the same
pedigree,6 the next step would be to combine genomic, imaging
and clinical data in an integrative predictive framework.
The characterization of APOE variants as one of the main drivers

of the ADAOO model deserves further consideration. Indeed,
preliminary analyses of this cohort were in apparent conflict with
our current results. The first study using data from 31 E280A
mutation carriers of the Paisa pedigree found nonsignificant
effects of APOE variants on the ADAOO.41 The second study
expanded the number of patients with the E280A mutation to 52
and found that carriers of the APOE ε4 allele were more likely to
develop AD at an earlier age than non-carriers (hazard ratio = 2.07;
95% CI = 1.07–3.99; Po0.03), and that the APOE*E2 allele had a
modest statistically nonsignificant ADAOO decelerator effect.42 By
increasing the sample size to 93 patients with AD carrying the
E280A mutation, we now show that individuals carrying the
APOE*E2 allele develop AD at a later age. We also found that
individuals carrying the APOE*E4 allele displayed a nonsignificant
trend to develop AD at an early age. Our calculations show that
this sample size is sufficient to detect a small-to-large effect size
with 490% power for a type I error probability of 5% (Supple-
mentary Figures 5 and 6).

The resulting network from the pathway and enrichment
analysis shown in Figure 3 also includes the ESR1, SP1, CASP1
and UBC genes, and the p53 tumor suppressor protein, all of
which interact with some of our ADAOO modifier genes. In
particular, p53 is activated by IFI16, and positively regulates both
DFAN5 and TRIM22. A mutation of either of these genes may affect
this pathway and result in the upregulation of p53 in AD.43

CASP1, an essential component of NLPR3 inflammasomes,
encodes a cysteine protease that is largely overexpressed in
brains of patients with AD.44 One of the key biological functions of
CASP1 is the cleavage of prointerleukin-1β (IL-1β) into the mature
biological active cytokine, which is largely overexpressed in brains
of patients with AD.44 Preclinical studies support the concept that
CASP1-directed increase of IL-1β can augment the deposition of
β-amyloid within the brain to worsen Alzheimer’s symptoms.44

Thus, it has been recently hypothesized that the NLRP3
inflammasome could be a potential target to treat AD.44

Interestingly, IFI16, the product of the ADAOO accelerator gene
IFI16 identified in our study, binds and positively coactivates
CASP1, which could trigger the inflammatory cascade to worsen
Alzheimer’s symptoms.45 On the other hand, IFI16 interacts with
and inhibits SP1 interaction to its cognate binding sites on DNA.46

It is noteworthy that SP1, a transcription factor that regulates the
expression of several amyloid and tau-related genes,47 has been
found to be abnormally expressed in the frontal cortex and
hippocampus of patients with AD.48 Hence, mutations in IFI16
could result in the exacerbation of the activation of the
inflammatory cascade orchestrated by CASP1, and/or the
increased transcriptional activity of SP1 controlling the expression
of key genes that are involved in the pathogenesis of AD. Our
pathway and enrichment analysis also suggests that IFI16 activates
ESR1, which in turn leads to the positive regulation of APOE
whilst SP1 positively regulates APOE and PSEN1 (although
these mechanisms are not yet well understood). In search for
therapeutic targets, our data support that ESR1, SP1 and CASP1
could be important alternatives. Additional relevant GO processes
involving at least two of the ADAOO modifier genes reported here
are presented in Supplementary Table 3.
TRIM22 is an E3 ubiquitin ligase that is a member of the

tripartite motif (TRIM) family, which includes three zinc-binding
domains, a RING finger, a B-box type 1 and a B-box type 2, and a
coiled-coil region. Although there are no reports relating TRIM22
with AD, TRIM11, another member of this family, was shown to
bind to and destabilize humanin, a neuroprotective peptide that
suppresses AD-related neurotoxicity.49 Interestingly, RC3H1 also
encodes a protein that has an amino-terminal RING-1 zinc-finger,
which is characteristic to that of the E3 ubiquitin ligase family.50 In
the pathway enrichment analysis (Figure 3), it is predicted that
both TRIM22 and RC3H1 bind to UBC, which in turn bind to PSEN1
to cause inhibitory effects. In previous studies it has been shown
that presenilin proteins can be ubiquitinated.51,52 Moreover, there
is evidence suggesting that presenilin ubiquitination can cause
reduction of endoproteolisis, which in turn reduces the formation
of two fragments (presenilin N- and C-terminal fragments) that are
essential for the γ-secretase activity.51 Thus, mutations in these
genes may affect PSEN1 ubiquitination, thereby potentially
leading to protein degradation and favoring β-amyloid and
hyperphosphorylated Tau deposition.
GPR20 was not modeled in the pathway enrichment analysis

shown in Figure 3. GPR20 belongs to the family of the G-protein-
coupled receptors, which participate in intracellular second
messenger systems triggered by different hormones and neuro-
transmitters, and amyloid β.53–55 GPR20 is expressed in AD brain.56

Three novel variants modifying the ADAOO are located in
FCRL5, AOAH and PINLYP. Despite not being modeled in the
pathway enrichment analysis and the lack of reported evidence of
their possible relationship with AD, these genes encode key
products having relevant functions within the immune system,

DFAN5 

ESR1 

IFI16 

SP1 

APOE 
PSEN1 

UBC 

TRIM22 

p53 

CASP1 

RC3H1 

Figure 3. Resulting network involving genes harboring Alzheimer’s
disease age of onset (ADAOO) modifier mutations (red dot) in
presenilin-1 (PSEN1) E280A Alzheimer’s disease. Here, the 'Shortest
Path’ algorithm was used. B, binding; C, cleavage; gray, unspecified;
green, positive/activation; red, negative/inhibition; TR, transcription/
regulation.
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which seems to influence several neurodegenerative and mental
diseases.57,58 FCRL5 encodes Fc receptor-like 5 that regulates B-cell
antigen receptor signaling.59 Even though the expression of FCRL5
within the brain has not yet been reported, other Fc receptors
were found to be expressed in microglia, the brain-resident
macrophages.60 AOAH encodes acyloxycyl hydrolase, which is an
enzyme expressed in antigen-presenting cells that deacylates
and inactivates endotoxin.61 Finally, PINLYP encodes phospholi-
pase A2 inhibitor and LY6/PLAUR domain containing. Although
there is no much functional evidence reported about this gene
product, it is well known that phospholipase A2 releases
arachidonic acid, which is a substrate used for the synthesis of
potent proinflammatory factors such as prostaglandins. Thus, it
can be hypothesized that phospholipase A2 inhibition caused by
the PINLYP product could favor an anti-inflammatory effect.
Limitations of this study include the fact that the oligogenic

model was derived from a very unique form of fAD, and therefore
it might only be applicable to carriers of the PSEN1 mutation.
However, the identification of one of these associated variants in
patients with sAD shows a common gene effect predisposing to
AD to that in the E280A pedigree, and suggests that these variants
could be real major players modifying the natural history of the
illness. The analysis of other AD cohorts from around the world
would be the next focus of our research.
In summary, we have defined major mutations modifying

ADAOO in members of a multigenerational extended family
carrying the PSEN1 E280A mutation. One of the modifier genes
reported herein was also associated with the ADAOO in sporadic
cases from the general population. This suggests that the ADAOO
modifier effect is not unique to the Paisa pedigree; it may be a
general finding applicable to other forms of AD. Of major
importance is the highlighting of the APOE*E2 allele as an ADAOO
decelerator. This finding is consistent with recent research,62 and
suggests that PSEN1 and APOE may interact to modify ADAOO in
these patients. Furthermore, using a subset of these variants, we
constructed an accurate predictive framework to characterize AD
patients in terms of early or late onset that can be used as a
diagnostic tool during clinical assessment. Finally, the pathway
enrichment analysis suggests that cell proliferation, protein
degradation, apoptotic and dysregulation of immune processes
are implicated in the variable onset of AD.
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