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Abstract Apolipoprotein (apo) E was initially described as a

lipid transport protein and major ligand for low density lipo-

protein (LDL) receptors with a role in cholesterol metabolism

and cardiovascular disease. It has since emerged as a major

risk factor (causative gene) for Alzheimer’s disease and other

neurodegenerative disorders. Detailed understanding of the

structural features of the three isoforms (apoE2, apoE3, and

apoE4), which differ by only a single amino acid interchange,

has elucidated their unique functions. ApoE2 and apoE4 in-

crease the risk for heart disease: apoE2 increases atherogenic

lipoprotein levels (it binds poorly to LDL receptors), and

apoE4 increases LDL levels (it binds preferentially to triglyc-

eride-rich, very low density lipoproteins, leading to downreg-

ulation of LDL receptors). ApoE4 also increases the risk for

neurodegenerative diseases, decreases their age of onset, or

alters their progression. ApoE4 likely causes neurodegenera-

tion secondary to its abnormal structure, caused by an inter-

action between its carboxyl- and amino-terminal domains,

called domain interaction. When neurons are stressed or in-

jured, they synthesize apoE to redistribute cholesterol for neu-

ronal repair or remodeling. However, because of its altered

structure, neuronal apoE4 undergoes neuron-specific proteol-

ysis, generating neurotoxic fragments (12–29 kDa) that es-

cape the secretory pathway and cause mitochondrial

dysfunction and cytoskeletal alterations, including tau phos-

phorylation. ApoE4-associated pathology can be prevented by

small-molecule structure correctors that block domain interac-

tion by converting apoE4 to a molecule that resembles apoE3

both structurally and functionally. Structure correctors are a

potential therapeutic approach to reduce apoE4 pathology in

both cardiovascular and neurological disorders.
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Early characterization of plasma lipoproteins highlighted the

importance of their components, referred to as apolipoproteins,

in controlling lipoprotein metabolism and cholesterol homeo-

stasis [1]. Apolipoprotein (apo) Ewas late to be recognized as a

critical protein constituent of lipoproteins [2]. First described in

the early 1970s as a minor apolipoprotein in very low density

lipoproteins (VLDL), apoE was subsequently identified as a

major apolipoprotein in cholesterol-rich VLDL (β-VLDL) in

cholesterol-fed animals [2–8] and found to be enriched in a

subclass of high density lipoproteins (HDL; HDL1, HDLc)

[8, 9]. Originally referred to as the arginine-rich apoprotein

[2], the protein became known as apoE in 1982 [10].

ApoE has three common alleles encoded by the apoE

gene on chromosome 19 [2]. These alleles occur at different

frequencies in humans (ε2, 5–10 %; ε3, 65–70 %; and ε4,

15–20 %) and give rise to three homozygous (apoE2/2,

apoE3/3, and apoE4/4) and three heterozygous (apoE3/2,

apoE4/2, and apoE4/3) phenotypes. The structural basis for

the three isoforms occurs through amino acid interchanges

(single base changes in the apoE gene) at residues 112 and

158: apoE2 has cysteines at both sites, apoE4 has arginines,

and apoE3 has cysteine (Cys)-112 and arginine (Arg)-158

[2, 11, 12]. All other animals, including the great apes, have
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a single isoform that has arginines at the residues equivalent

to 112 and 158 [12, 13].

Plasma apoE is synthesized primarily by liver hepatocytes,

which account for ~75 % of the body’s apoE production. In

normolipidemic subjects, the plasma concentration of apoE is

approximately 4–8 mg/dl. The second most common organ

synthesizing apoE is the brain, where it is produced primarily

by astrocytes, but also by oligodendrocytes, microglia, and

neurons, especially injured or stressed neurons [see refs.

14–16 for more discussion]. In the brain, apoE is synthesized

in situ and does not cross the blood brain barrier from the

peripheral circulation [17]. Various cells throughout the body,

including macrophages, also synthesize apoE [2, 11].

Structure and function of apoE isoforms

ApoE, a 34-kDa protein of 299 amino acids with a single

glycosylation site at threonine-194 [18], has two structural

domains separated by a hinge region. The amino-terminal

domain (amino acids 1–191) contains the low density lipopro-

tein (LDL) receptor binding region (amino acids 136–150)

[11, 19, 20]. The carboxyl-terminal domain (amino acids

~225–299) contains the lipid binding region (amino acids

~240–260) [11, 13]. The tertiary structure of the amino-

terminal domains of apoE4, apoE3, and apoE2, solved by x-

ray crystallography, consists of four helices arranged in anti-

parallel fashion [13]. The carboxyl-terminal domain has am-

phipathic α-helices that bind to lipids (Fig. 1a).

ApoE3 and apoE4 bind to the LDL receptor with similar

affinity (~20-fold greater than that of apoB100, the other LDL

receptor ligand). The key amino acids for receptor binding

were identified by site-directed mutagenesis and by the exis-

tence of naturally occurring receptor-defective human muta-

tions in type III hyperlipoproteinemic patients [11]. ApoE

plays a major role in regulating cholesterol homeostasis by

mediating the uptake of VLDL, intermediate density lipopro-

teins, and chylomicron remnants [2, 11, 12, 21]. ApoE2, how-

ever, defectively binds to the LDL receptor (~2 % of normal

activity), because it has a cysteine at residue 158 rather than an

arginine, as in apoE3 and apoE4. As shown by x-ray crystal-

lography of the amino-terminal domain, Cys-158 prevents

normal receptor binding by altering the conformation of the

side chains in the critical basic residues in the 136–150 region.

In apoE3, Arg-158 forms a salt bridge with aspartic acid–154;

however, in apoE4, with Cys-158, this salt bridge is disrupted,

and aspartic acid–154 interacts with Arg-150, altering the en-

tire receptor binding region [11, 19, 20, 22].

ApoE4 has an arginine at residue 112 (Arg-112). This pro-

duces a property of apoE4 referred to as domain interaction, in

which Arg-112 causes the side chain of Arg-61 to extend

away from the amino-terminal domain [23, 24], enabling it

to interact ionically with glutamic acid (Glu)–255 in the
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Fig. 1 Structures of apoE3 and apoE4. a ApoE4 displays domain

interaction caused by an ionic interaction between Arg-61 and Glu-255.

This structural feature of apoE4 (apoE4 > apoE3 > apoE2) alters its

function in cardiovascular and neurological disorders. b Small-molecule

apoE4 structure correctors block domain interaction and convert apoE4 to

an apoE3-like molecule structurally and functionally. c Injury of neurons

induces apoE expression. When neurons are stressed or injured, they

synthesize apoE to function in lipid redistribution for neuronal repair

and remodeling. In this model, apoE4 is recognized as structurally

abnormal and undergoes proteolytic cleavage, generating several

neurotoxic fragments (12–29 kDa) that escape the secretory pathway,

enter the cytosol, and cause mitochondrial dysfunction and tau

phosphorylation (Tau-PO4), ultimately causing cell death. ApoE4SC,

apoE4 structure corrector. Modified from ref. 38. Copyright 2012

American Chemical Society
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carboxyl-terminal domain (Fig. 1a). Domain interaction is less

likely to occur in apoE3 or apoE2, because in these isoforms,

with Cys-112, the side chain of Arg-61 is more tucked into the

helical domain of the amino terminus [11, 24]. Domain inter-

action is unlikely to be an all-or-none property. Protein struc-

ture is dynamic, and it is likely that there is a gradient in the

propensity of apoE to display domain interaction

(apoE4>apoE3>apoE2).

ApoE and cardiovascular disease

ApoE2 Because it binds defectively to LDL receptors,

apoE2 homozygos i t y can p r ec i p i t a t e t ype I I I

hyperlipoproteinemia [2, 11, 21, 22]. This disorder oc-

curs only when another condition—diabetes, obesity, hy-

pothyroidism, or estrogen deficiency—leads to overpro-

duction of VLDL or fewer LDL receptors, overwhelming

the limited ability of apoE2 to mediate the clearance of

triglyceride- and cholesterol-rich β-VLDL. Other domi-

nant and recessive mutations in apoE that affect residues

in or around the receptor binding region also cause type

III hyperlipoproteinemia [2, 11, 22]. The defective recep-

tor binding can precipitate hyperlipidemia in the context

of other genetic or environmental factors and increase the

risk for atherosclerosis, as the β-VLDL that accumulate

in the plasma are highly atherogenic and cause cholester-

ol accumulation, especially in peripheral arteries.

ApoE4 ApoE4 increases plasma LDL levels and the risk for

atherosclerosis [11, 12, 25]. The lipoprotein-binding prefer-

ence of apoE4 to large (30–80 nm), triglyceride-rich VLDL,

is associated with elevated LDL levels. (ApoE3 and apoE2

preferentially bind to small, 9–16-nm spherical HDL particles

enriched in phospholipids and surface proteins, primarily

apoAI.) The enrichment of VLDL with apoE4 accelerates

their clearance from the plasma by receptor-mediated endocy-

tosis in the liver; as a result, LDL receptors are downregulated,

and plasma LDL levels increase [26–28]. Hepatic clearance of

apoE-enriched lipoproteins involves LDL receptors and LDL

receptor-related proteins (members of the LDL receptor fam-

ily) and heparan sulfate proteoglycans—all of which interact

with high affinity with apoE [for review, see refs. 29, 30].

How does the amino acid difference at residue 112 in

the amino-terminal domain—arginine in apoE4 and cys-

teine in apoE3 and apoE2—alter the lipoprotein prefer-

ence of apoE4 when lipid binding is mediated by resi-

dues 240–260 in the carboxyl-terminal domain? The

reason is the structural effect of domain interaction.

When domain interaction is disrupted with small mole-

cules that prevent the Arg-61–Glu-255 ionic interaction

or by site-directed mutagenesis (Arg-61 to threonine),

apoE4’s binding preference shifts from VLDL to small-

er, phospholipid-rich HDL [23, 24, 31]. In fact, apoE4

domain interaction is associated with decreased

phospholipid-binding capacity [32]. Domain interaction

may stabilize an extended helical structure involving

the amino- and carboxyl-terminal domains of apoE4

[33–35], allowing it to interact with larger VLDL and

accommodating interaction with lipoprotein particles

with less curvature.

ApoE4 and neurological disease

ApoE4 is the major genetic risk factor (or causative

gene) for Alzheimer’s disease (AD) and other neurolog-

ical disorders, including poor clinical outcomes after

traumatic brain injury, or stroke, frontotemporal demen-

tia, Down syndrome, certain patients with Parkinson’s

disease, and Lewy body disease [for review, see refs.

12, 36–38]. ApoE4 dramatically affects AD, and 65–

80 % of all AD patients carry at least one apoE4 allele.

ApoE4 increases the risk of developing AD by 4-fold

(one allele) to 14-fold (two alleles) compared with

apoE3/3 homozygosity, and it decreases the age of onset

by 8 years for each apoE4 allele (onset by mid-1960s

with two alleles). Importantly, apoE4 alleles are not

rare: ~25 % of people worldwide have at least one

apoE4 allele.

Multiple factors acting through various pathways cause

cognitive decline and neurodegeneration. Several mecha-

nisms have been proposed, but the so-called amyloid

hypothesis has received the most attention [for review,

see refs. 39–41]. Rare mutations in the gene for the

human amyloid precursor protein and the enzymes

(secretases) that generate elevated levels of the amyloid

beta (Aβ) peptide are related to the development of early-

onset AD [42–44]. These genetic variants explain 1–2 %

of AD cases; the majority of AD is sporadic. Mouse

models of AD in which these variants are markedly

overexpressed display some of the pathological features

of AD, including increased Aβ and amyloid plaques,

augmented tau phosphorylation, loss of synaptic

connections, and impaired learning and memory, but not

the significant neurodegeneration seen in AD [37, 43, 45,

46]. Aβ accumulation is considered neurotoxic.

Mechanisms for apoE4’s involvement in the amyloid path-

way There is no consensus concerning the mechanisms

by which apoE4 affects the amyloid pathway [39–41].

Several lines of evidence suggest that apoE4 accelerates
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Aβ deposition to form amyloid plaques [47]. Others

suggest that apoE4 is deficient in Aβ clearance [48,

49]. Some studies show that apoE3 binds Aβ to a

greater extent than apoE4 and mediates the uptake and

degradation of Aβ by receptor-mediated endocytosis in

the brain, whereas apoE4 is less efficient in Aβ clear-

ance and is associated with increased Aβ levels

[39–41]. Others have shown that Aβ does not interact

with apoE at all and suggest that, by an unknown

mechanism, apoE4 competes with an Aβ clearance

mechanism and thus increases Aβ levels [50].

Lipidation of apoE-containing lipoproteins in the brain has

been postulated to modulate amyloid deposition and Aβ clear-

ance by delivering Aβ to microglia and astrocytes for degra-

dation or to the blood brain barrier for transport out of the

brain [39, 40, 51, 52]. ApoE mediates lipoprotein interaction

with various members of the LDL receptor family involved in

these processes [39, 40]. Lipidation of apoE in the brain oc-

curs through the activity of specific ATP-binding cassette

transporters (ABC), including ABCA1 [53] and possibly

ABCA7 [54], ABCG1 [55, 56], and ABCG4 [56], which are

expressed in the brain. ApoE4 levels [57, 58] and the degree

of apoE4 lipidation [32] are decreased in the brain compared

with apoE3 and apoE2, and this has been correlated with AD

risk. Overexpression of ABCA1 in an AD mouse model re-

duces amyloid deposition and improves Aβ clearance [59].

Alternatively, decreased ABCA1 expression reduced apoE

levels and lipidation and increased amyloid deposition [60,

61]. However, the importance of ABCA1 activity in the hu-

man brain remains unknown, and existing data are conflicting.

Recently, a population-based study demonstrated that a loss-

of-functionmutation in ABCA1was associated with low plas-

ma levels of apoE (no data on brain apoE levels) and increased

risk of AD [62]. On the other hand, lipidation of apoE- and

apoAI-containing lipoproteins in the brain may act indepen-

dently of Aβ metabolism by protecting the integrity of the

blood brain barrier and maintaining normal cerebrovascular

function [63]. Whether modulation of brain lipoprotein

lipidation represents a viable therapeutic approach remains

to be determined.

Regardless of the reason, apoE4 carriers have increased

numbers of amyloid plaques in their brains [37, 39, 64].

However, the plaque accumulation commences early in life,

before cognitive impairment is evident, and does not entirely

correlate with AD; about one-third of individuals with high

levels of amyloid plaques are cognitively normal. AD in

apoE4 carriers correlates better with the accumulation of phos-

phorylated tau in the hippocampus, which is critically impor-

tant in cognition [65]. ApoE4 enhances tau phosphorylation

and neurofibrillary tangle formation.

ApoE’s direct effects on neuropathology independent of

Aβ Studies from the Gladstone Institutes showed that

apoE4 acts directly and independently of Aβ on a par-

allel path leading to neuropathology [12, 36–38]. By

itself, apoE4 has many detrimental effects on neuronal

cells in vitro and in vivo—including mitochondrial dys-

function due to decreased levels and activities of vari-

ous electron transport enzymes and ATP synthase [66,

67]; increased tau phosphorylation and the formation of

intracellular inclusions resembling neurofibrillary tangles

[68, 69]; impairment in mitochondrial motility [67], in-

tracellular trafficking of apoE [70], neurite outgrowth

[67, 71], and synaptogenesis [72]; accelerated neuropa-

thology involving loss of GABAergic hippocampal in-

terneurons [69]; and impaired learning and memory in

apoE4 mouse models [69, 73–75]. These detrimental

effects are reversed when apoE4 domain interaction is

blocked by site-directed mutagenesis (Arg-61 to

threonine) or by small molecules that Bcorrect^ the

structure of apoE4 [for review, see refs. 36–38].

Generation of apoE4 neurotoxic fragments ApoE4 is

highly susceptible to neuron-specific proteolysis, which

generates 12–29-kDa neurotoxic fragments [68, 76, 77]

(Fig. 1c). In response to injury or stress, neurons syn-

thesize apoE, presumably to facilitate the rapid transport

of cholesterol and other lipids for membrane repair and

remodeling. Neuronal apoE synthesis is highly regulated

by neuron-specific mRNA splicing [78]. We hypothesize

that domain interaction causes apoE4 to be Bsensed^ by

the cell as abnormal, targeting it for proteolytic cleavage

in the endoplasmic reticulum or Golgi apparatus. ApoE3

is much less susceptible to this proteolysis, which does

not occur in astrocytes or hepatocytes that also produce

apoE. The initial cleavage removes the carboxyl-

terminal 27–30 amino acids, generating a toxic 29-kDa

fragment; subsequent proteolysis results in amino-

terminal cleavage, generating 12–20-kDa fragments,

some of which are also toxic.

These fragments escape the secretory pathway and

enter the cytosol, where they stimulate tau phosphoryla-

tion and interact with mitochondria, causing mitochon-

drial dysfunction and neurodegeneration [36–38]

(Fig. 1c). Fragments containing the receptor binding re-

gion (residues 136–150) and the lipid binding region

(residues 240–260) are the minimal structure of apoE

responsible for translocation, mitochondrial localization,

and neurotoxicity [79]. The receptor binding region be-

haves like a protein translocation domain, as in viral

proteins (region of a protein enriched in arginines and
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lysines that facilitates translocation of a protein across a

membrane). The hydrophobicity of the lipid binding re-

gion mediates the interaction of the fragments with mi-

tochondria and subsequent neurotoxicity. The critical

residues in these regions of apoE have been identified

by site-directed mutagenesis. In the brain, the apoE

fragments are much more abundant in patients with

AD than in age-matched, nondemented controls [76,

80]. The fragments also occur in the brains of mice

expressing apoE4 in neurons.

Identifying structure correctors to block apoE4 domain

interaction Small-molecule structure correctors that block

the ionic interaction of Arg-61 and Glu-255 in apoE4

(Fig. 1b) have been identified with a cellular fluorescence

resonance energy transfer (FRET) assay in which the amino-

terminal domain of apoE4 is labeled with green fluorescent

protein and the carboxyl-terminal domain is labeled with

Escherichia coli dihydrofolate reductase. The FRET assay

measures the ability of an active structure corrector to prevent

the FRET emission signal that occurs in apoE4 when the

amino- and carboxyl-terminal domains are in close proximity

[67]. Testing apoE4 structure correctors with this assay re-

vealed downstream functional effects in neurons. For exam-

ple, active structure correctors restore mitochondrial cyto-

chrome c oxidase levels, which are depleted in apoE4-

expressing cultured neurons [67]. Structure–activity relation-

ships have been established for such compounds at low

nanomolar levels.

Retarding apoE4-associated neuropathology in vivo in

mice Overexpression of apoE4 in transgenic mice or expres-

sion of apoE4 in targeted-replacement mice causes central

nervous system pathology, including increased tau phosphor-

ylation, loss of interneurons, and impaired learning and mem-

ory [69, 73–75]. A prototypical apoE4 structure corrector, PY-

101, has been used in the apoE4 transgenic mice as a proof-of-

concept that blocking apoE4 domain interaction can reverse

the detrimental effects associated with apoE4 [38]. After in-

traperitoneal or subcutaneous administration of PY-101 (30–

50 mg/kg body weight for 10 consecutive days), apoE4 frag-

ment levels in the brain and hippocampus decreased by 20–

25 %, and mitochondrial cytochrome c oxidase levels in-

creased by 50–55 %. Preclinical studies are in process, and

potent small molecules with drug-like properties have been

identified. Thus, apoE4 is a promising drug target for

apoE4-associated neuropathology in AD and other disorders.

As an additive or ancillary therapy, apoE structure correctors

might also help reduce plasma LDL levels and risk for coro-

nary artery disease.

Approach

Cardiovascular disease

Neurological diseases
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