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Original Article

Apolipoprotein E4 mediates insulin
resistance-associated cerebrovascular
dysfunction and the post-prandial
response

Lance A Johnson1,2, Eileen Ruth Torres1, Sydney Weber
Boutros1, Esha Patel1, Tunde Akinyeke1, Nabil J Alkayed3,4 and
Jacob Raber1,5

Abstract

Metabolic dysfunction, commonly a result of diets high in saturated fats and sugar, is associated with impaired cognitive

function and an increased risk of age-related cognitive decline (ACD) and Alzheimer’s disease (AD). Compared to the E3

isoform of apolipoprotein (apoE), the E4 isoform is a major genetic risk factor for ACD, AD, and for developing cognitive

impairments following various environmental challenges, including dietary challenges such as a high-fat diet (HFD). Both

insulin resistance (IR) and E4 are associated with metabolic and vascular impairments. Deficits in cerebral metabolism and

cerebrovascular function have been proposed as initiating events leading to these impairments. In the current study, we

employed a model of human apoE targeted replacement mice and HFD-induced obesity to study the potential link

between E4 and IR, at rest and following a postprandial challenge. HFD-induced IR was associated with impaired

cognition, reduced cerebral blood volume and decreased glucose uptake. These effects were more profound in E4

than E3 mice. Furthermore, the cognitive, metabolic and cerebrovascular responses to an exogenous glucose load

showed an apoE isoform-dependent response, with E4, but not E3 mice, acutely benefiting from a spike in blood glucose.
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Introduction

The elderly population is expanding rapidly, and by 2050,
the percentage of the world population aged 65 years or
older will more than double to 1.6 billion individuals.1

Concurrently, diabetes has reached epidemic proportions
worldwide.2 Projected rates of diabetes over the next two
decades are staggering; a 165% increase in the number of
patients with diabetes, with the largest increase in individ-
uals over 75 years of age.3 Type 2 diabetes (T2D)
accounts for over 90% of all diabetes incidence and is
characterized by obesity and insulin resistance (IR).4

The major modifiable risk factor for T2D is obesity,
while the primary contributors to obesity are sedentary
lifestyle and caloric excess, particularly in the form of
‘‘Western’’ style diets high in saturated fat.5 Obesity,
IR, and T2D increase the risk of developing vascular
disease, including both atherosclerosis and vascular

dementia.4 Diabetes is also associated with an increased
incidence of Alzheimer’s Disease (AD),6–9 and it is
hypothesized that the two disorders are linked.10,11
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Apolipoprotein E (apoE) is associated with circulat-
ing lipoproteins, specifically very low-density lipopro-
teins (VLDL) and high-density lipoproteins (HDL).12

The APOE gene encodes for three isoforms in the
human population (E2, E3, and E4).12 Compared to
E3, E4 is associated with higher LDL cholesterol
levels and an increased risk of cardiovascular dis-
ease.13–14 E4 also dramatically increases the risk
for developing AD,15–17 and genome-wide association
studies confirm that E4 is the strongest genetic risk
factor for AD.18,19

Cerebrovascular impairment has been proposed as
an initiating event leading to neuronal degeneration,20

and both IR and E4 have been linked to vascular
impairments. Individuals with T2D show lower resting
blood flow in the brain and a reduced ability to main-
tain stable and sufficient cerebral blood flow (CBF)
compared to controls.21,22 The microvasculature
within peripheral tissues is particularly sensitive to insu-
lin, and this sensitivity is impaired by obesity and IR.23

Insulin has many important actions in the brain, and
brain IR has been proposed to contribute to the pro-
gression of AD.24 Furthermore, administration of
intranasal insulin results in enhanced cognition in
T2D patients that is related to regional vasoreactivity.22

Reduced CBF is seen in elderly E4 carriers relative to
non-carriers in multiple brain regions.25 Cognitively,
normal E4 individuals also show accelerated declines
in regional CBF during aging,26 and the association
between cognitive function and age-related changes in
CBF is modified by APOE genotype.27 In addition to
these differences in resting CBF, several studies have
shown differences in functional activation, as measured
by blood oxygen level dependent (BOLD), functional
magnetic resonance imaging (fMRI), in middle aged
and older E4 individuals.28 Importantly, E4-associated
alterations in brain physiology occur early in life and in
the absence of gross neuropathological changes and
preceding cognitive impairments.29 For instance, func-
tional differences in CBF are present as early as the
second decade of life, with E4 carriers showing lower
or higher activation in different regions of the temporal
gyrus during a nonverbal memory task relative to non-
carriers.30

Cerebral metabolism is a primary determinant of
regional blood flow, and because metabolic rate and
CBF are coupled, changes in brain metabolism are
likely to affect CBF.31 AD is associated with a specific
pattern of regional glucose hypometabolism,32,33 and
glucose metabolism decreases during normal aging,
particularly aerobic glycolysis.34 Interestingly, a
consistent pattern of brain glucose hypometabolism –
similar to that seen in AD – has been noted in elderly
individuals with E4.35,36 Even cognitively normal E4
carriers demonstrate this pattern of glucose

hypometabolism,37,38 and these metabolic deficits
are present decades in advance of AD onset in E4
individuals.39

Despite the evidence linking IR and E4, very few
studies have focused on examining the potential neuro-
biological pathways that lie at the intersection of these
two critical risk factors. In the periphery, however,
there are established effects of E4 on metabolism that
may indirectly affect the brain.40 Recent studies suggest
that these peripheral metabolic effects may affect cog-
nitive function in E4 individuals by influencing glucose
tolerance or modulating the response to a dietary chal-
lenge.41–43 In addition to the chronic effects of glucose
dysregulation, as in IR, acute changes in glucose con-
centrations are also known to affect cognitive function,
and these acute effects can also be apoE isoform-depen-
dent.43 Therefore, in the current study, we employed a
model of human apoE-targeted replacement mice and
HFD-induced obesity to study the potential link
between E4 and IR, at rest and following a postpran-
dial challenge.

Methods

Experimental animals and diet

Female homozygous human E3- and E4-targeted
replacement mice44,45 were fed an HFD ad libitum
(60% kcal from fat, Research Diets D12492) or an ingre-
dient-matched LFD (10% kcal from fat, D12450B)
beginning at 9 months of age. Prior to administration
of the HFD or LFD, mice consumed a standard chow
diet ad libitum (PicoLab Rodent Diet 20, #5053; PMI
Nutrition International, St. Louis, MO). All measures
were conducted following six months of specialized
diet (15 months of age). All procedures complied with
the National Institutes of Health Guide for the Care and
Use of Laboratory Animals and with IACUC approval
at Oregon Health & Sciences University (OHSU), and
were in compliance with ARRIVE (Animal Research:
Reporting in Vivo Experiments) guidelines.

Metabolic and biochemical measurements

For the glucose tolerance test, mice were administered an
oral gavage of glucose solution (2mg/g body weight).
For the insulin tolerance test, mice were intravenously
injected with 0.75 U/kg of human insulin (Gibco).
Blood glucose was measured using a glucometer
(One Touch Ultra) at indicated time points. For resting
glucose uptake, mice were injected following a 4-h
fast with 0.75mCi of 2-[1,2-3H (N)]-deoxy-d-glucose
(Perkin Elmer) diluted in glucose solution (2mg/d
body weight) via the tail vein. For glucose uptake
during the water maze test (see below), mice were
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administered an oral gavage (8ml/g body weight) of
2-[1,2-3H (N)]-deoxy-d-glucose (0.06mCi/g body
weight) diluted in glucose solution (2mg/g body
weight) 14min prior to a 1-min long memory trial (see
Cognitive Testing for details). Tissue glucose uptake was
adjusted to plasma values to adjust for variations in
injection volumes and dietary absorption. Fifteen
minutes after injection or gavage, mice were intraperito-
neally administered a lethal dose of ketamine–xylazine–
acepromazine cocktail (0.01ml/g of 25mg/ml ketamine
(Sigma), 0.625mg/ml acepromazine (Vetus Animal
Health), 3.125mg/ml xylazine (Sigma)). To flush out
remaining blood, mice were intracardially perfused
with 20ml of 0.9% phosphate-buffered saline (PBS)
and tissue was collected. Approximately 100mg of
tissue was homogenized in 4ml of PBS. Brain and skel-
etal muscle homogenates were transferred to a scintilla-
tion vial, 1ml of Optiphase scintillation fluid (Perkin
Elmer) was added, and samples were measured on a
liquid scintillation counter (Beckman).

Cognitive testing

Spatial learning and memory were assessed using
the water maze test. The water maze consisted of a
circular pool (diameter 140 cm), filled with opaque
water (white chalk added, 24�C) divided conceptually
into four quadrants. Mice were given two sessions per
day (separated by three hours) consisting of two trials
each (separated by 5min), over the course of five days
(two days ‘‘Visible Platform’’ followed by three days
‘‘Hidden Platform’’). Mice were first trained to locate
an escape platform submerged below the surface of the
water, by the use of a cue during the ‘‘Visible Platform’’
trials. Mice were removed from the pool after locating
the platform and remaining on it for 3 s. Mice were
inserted in the maze at varying locations during each
trial to avoid procedural bias, and during the Visible
Platform trials, the location of the platform was moved
for each session between the four quadrants to avoid
procedural biases in task learning. Subsequent to the
‘‘Visible Platform’’ trials, mice were trained to locate
the platform hidden beneath opaque water during
the ‘‘Hidden Platform’’ trials, which required the mice
to rely on extra-maze cues for spatial reference and
orientation. Extra-maze cues consisted of four large
(50� 50 cm) cues of different shapes and color combin-
ations, positioned at the borders of the four quadrants.
The platform was not rotated during the Hidden
Platform trials, remaining in the same location in the
‘‘Target’’ quadrant. Spatial memory retention was
assessed 72 h following the final ‘‘Hidden Platform’’
training session. The submerged platform was removed
and spatial memory retention assessed during these
‘‘Probe’’ trials by calculating the cumulative distance

to the target and the time spent searching in each quad-
rant. For assessing effects of acute glucose supplemen-
tation on cognitive function, mice were given an oral
gavage of glucose solution (2mg/g body weight) 15min
prior to testing during the 72 h probe trial.

Cerebral blood volume measurement

To measure vascular perfusion (volume of blood-
perfused vessels, referred to as cerebral blood volume
(CBV)) in vivo, we employed optical microangiography
(OMAG), as previously described.46,47 Briefly, mice
were anesthetized with ketamine (50mg/kg) and body
temperature was maintained at 37� 0.5�C using a
warm water pad. The skin over the skull was reflected,
the cortex illuminated through the intact skull at
1310 nm, and the resulting backscattered and reference
light detected to produce spectral interferograms. CBV
was measured in three branch areas of the middle cere-
bral artery (MCA) at positions centered approximately
0.0 to �1.0mm caudal to bregma, and 1.0 to 2.0mm
lateral from the midline suture through the skull. For
measures of the effects of glucose supplementation on
CBV, the third area was measured at 0min, and again
at 15min, post intravenous injection of 250ml of a
0.25mg/ml glucose solution. Vessel diameters were mea-
sured for each branching segment of the MCA within
the 1mm3 scan area, and pixel intensity histograms were
generated using Amira software (FEI) at the Multiscale
Microscopy Core (MMC) with technical support from
the OHSU-FEI Living Lab and the OHSU Center for
Spatial Systems Biomedicine (OCSSB).

Statistical analyses

Data are expressed as mean� standard error. Multiple
groups and/or multiple time points were analyzed using
analysis of variance (ANOVA) (groups¼E3 LFD, E4
LFD, E3 HFD, E4 HFD) using Graph Pad Prism soft-
ware (San Diego, CA), or repeated measures ANOVA
(time� groups) using SPSS software (Chicago, IL).
Statistically significant correlations were determined
using an error probability level of p< 0.05 corrected
by a false discovery rate (FDR) analysis (Benjamini
Hochberg method).

Results

E4 HFD mice gain less weight than E3 HFD mice but
show similar degree of IR

While HFD led to increased body weight and adipose
tissue in both E3 and E4 mice, E4 HFD mice gained
less weight and less adipose tissue than E3 HFD mice
(Figure 1(a) and (b)). HFD also led to elevated fasting
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plasma glucose concentrations and deficits in glucose
tolerance and insulin sensitivity, with a similar degree
of impairment observed in E3 and E4 HFD mice
(Figure 1(c) to (e)). LFD-fed E3 and E4 mice did not
differ in any of the measured markers of peripheral
metabolism (Figure 1(a) to (e)).

E4 and HFD reduce CBV

A potential physiological link between HFD-induced
and E4-associated cognitive dysfunction is the regula-
tion of CBF. To determine whether the observed cog-
nitive impairments are associated with alterations
in cerebrovascular function, we quantified CBV, a
measure of vascular perfusion. Using OMAG, we mea-
sured CBV within pial vessel branches of the MCA
(Figure 2(a) and (b)). Total CBV showed a significant
effect of diet and genotype (p¼ 0.002 and p¼ 0.026,
respectively, two-way ANOVA), with E4 HFD mice
having the lowest rates of CBV (Figure 2(c)). HFD
mice showed lower CBV in microvessels (<10 mM
diameter) and small-sized vessels (20–40 mM diameter),

with E4 HFD mice showing the lowest CBV within
vessels of these diameters (Figure 2(d)). The changes
in CBV appear unrelated to differences in vessel morph-
ology, with all groups showing a similar number of
blood vessels, total vessel length, and degree of branch-
ing (Suppl Figure 1(a) to (c)).

A bolus of glucose improves spatial memory in E4
HFD mice

Previous studies demonstrated measurable changes in
cognitive performance following acute meal interven-
tions, including a variable response to low versus high
glycemic index (GI) meals.48 Recent work suggests that
these acute dietary effects are modulated by apoE iso-
form, with E4þ, but not E4�, individuals displaying
cognitive gains immediately following a high GI
meal.43 Therefore, we next asked whether E4 mice
would similarly benefit more than E3 mice from a post-
prandial spike in pure glucose (GI¼ 100; standard
value). To assess cognitive function, we measured spatial
memory retention in the water maze. Fifteen minutes

Figure 1. E4 HFD mice gain less weight than E3 HFD mice but show similar degree of insulin resistance. (a) E4 mice gain less weight

when fed an HFD than E3 mice fed an HFD. n¼ 5–9. (b) E4 HFD mice accumulate less visceral adipose tissue than E3 HFD mice

following six months of HFD (n¼ 5–9). (c) HFD leads to hyperglycemia in E3 and E4 mice. Blood glucose was measured following a 4-h

fast. n¼ 20–26. (d) Glucose intolerance is exaggerated in HFD mice. Mice were administered an oral gavage of glucose following a 4-

hour fast. n¼ 11–14. (e) Insulin sensitivity is diminished in HFD mice. Insulin was injected following a 4-h fast and blood glucose was

measured. n¼ 9–10. (a, d–e, ** p< 0.01, E3 vs. E4; # p< 0.05, ## p< 0.01, HFD vs. LFD; repeated measures ANOVA) (b–c, **

p< 0.01, E3 vs. E4; # p< 0.05, ## p< 0.01, HFD vs. LFD; two-way ANOVA followed by t-test).
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prior to a 72-h memory probe trial, mice were given a
gavage of either glucose or saline. In saline-gavaged
HFD mice, spatial memory retention was impaired in
both E3 and E4 mice, as shown by a lack of spatial bias
and a lack of spending more time in the target quadrant
than any other quadrant (Figure 3(a), open bars).
However, in HFD mice orally administered glucose
prior to the memory probe, the cognitive effects differed
depending on APOE genotype despite similar increases
in blood glucose concentrations (Suppl Figure 2(a)).
Compared to E3 LFD mice given a gavage of saline,
E3 LFD mice given a gavage of glucose showed signifi-
cant impairments in spatial memory retention, as mea-
sured by time spent searching in the target quadrant
(Figure 3(a)) and cumulative distance from the target
(Figure 3(b)). Conversely, E4 HFD mice showed sig-
nificant improvement in spatial memory retention fol-
lowing an oral gavage of glucose (Figure 3(a) and (b)).

Additionally, when compared to their saline-treated
counterparts, E3 mice receiving a glucose gavage
prior to the memory probe searched further from
the target location over the course of the memory
probe trial, while E4 mice receiving a glucose gavage
searched substantially closer to the platform location
(Figure 3(c)). Together, these data demonstrate that a
bolus of glucose differentially affects acute cognitive
performance based on APOE genotype, with E3 mice
suffering, and E4 mice benefitting, from a spike in diet-
ary glucose.

A bolus of glucose increases CBV in E4 HFD mice

To determine whether the postprandial changes in
spatial memory retention were associated with cerebro-
vascular function, we measured CBV in E3 and E4 mice
before and 15min after an injection of a glucose solu-
tion (Figure 4(a)). While all groups showed similar
increases in blood glucose concentrations following
injection (Suppl Figure 2(b)), only E4 HFD mice
demonstrated a significant CBV response to the acute
hyperglycemia. There was a significant genotype effect
on post-glucose CBV (p¼ 0.028, ANOVA) and a trend
towards genotype�diet interaction (p¼ 0.0526, two-
way ANOVA), with E4 mice showing larger increases.
Total CBV was significantly increased in E4 HFD
mice compared to E3 HFD mice (p¼ 0.018, t-test)
(Figure 4(b)), and these increases were observed
across small vessels of varying diameters (Figure 4(c)).

E4 and HFD decrease brain glucose uptake at rest
and during a memory task

We next asked whether the cognitive benefits observed
in E4 HFD mice following a bolus of glucose were
associated with an increase in tissue glucose uptake.
To answer this, mice were administered radiolabeled
2-deoxyglucose (2DG) at rest, or prior to a memory
test, and glucose uptake in the two primary organs
expected to be activated during the water maze –
brain and skeletal muscle – was assessed. While there
was no significant effect of APOE or diet on resting
glucose uptake in skeletal muscle, E4 was associated
with reduced brain glucose uptake at rest (p¼ 0.0274,
two-way ANOVA) (Figure 5(a) and (b)). To determine
glucose uptake during a cognitive challenge, mice were
given an oral gavage of 3H-2DG 14min prior to a water
maze probe and tissue uptake was assessed immediately
following the 1-min long memory test. Glucose uptake
during the cognitive challenge was significantly reduced
by both E4 and HFD in brain and skeletal muscle
(APOE, p¼ 0.0466 brain, p< 0.01 muscle; Diet
p< 0.01, both tissues; two-way ANOVA) (Figure 5(c)
and (d)). Together, these data show that E4 and HFD

Figure 2. E4 and HFD reduce cerebral blood volume, a meas-

ure of vascular perfusion. (a–b) Diagram of vascular beds imaged

and representative image of cerebral blood volume (CBV) and

measures of vessel diameter. CBV was measured within pial

vessel branches of the middle cerebral artery (MCA) using

optical microangiography. CBV was measured within three dis-

tinct 1 mm3 scan regions (boxed areas, 1–3) for each mouse, and

vessel diameter determined and CBV was quantified. (c) Total

CBV (each mouse¼ average of three scans). n¼ 7–8. (d)

Histogram of CBV across small vessels of varying diameters.

*p< 0.05, E3 vs. E4; #p< 0.05, HFD vs. LFD; two-way ANOVA

followed by t-test.
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are associated with lower brain glucose uptake, and that
these effects are magnified during a cognitive challenge.

Discussion

Increasing evidence suggests that cognitive impairments
as a result of both IR and E4 share common
pathological features and involve similar changes in
metabolism and cerebrovascular function. For
instance, there is overlap between the cerebrovascular
pathologies observed in diabetic patients and in indi-
viduals with E4,49 and both IR and possession of E4
have been independently associated with inefficient
brain glucose hypometabolism and reduced cerebral
blood flow.25–27,50,51 Furthermore, these two factors
may interact to impair cognition and promote neuro-
degeneration.7,52–54 In the current study, we further
examined this potential interaction, and whether the
effects are mediated via cerebrovascular function and
can be modified by changes in postprandial glucose.

Here, we show that both E4 and HFD-induced IR
reduce CBV and glucose uptake, primarily in an addi-
tive fashion. However, the cognitive, metabolic and
cerebrovascular responses to an exogenous glucose
load varied considerably depending on APOE geno-
type, with E4, but not E3 mice, acutely benefiting
from a spike in blood glucose.

ACD and AD share several key risk factors with
cerebrovascular disease, such as hypertension, cerebral
hypoperfusion, diabetes, hypercholesterolemia, and E4
carriage.55 Establishing the role of cerebrovascular dys-
function in ACD and AD has become even more
important following recent studies that suggest a
majority of clinically diagnosed AD is mixed pathology
or vascular disease.56 APOE genotype itself has clear
effects on several risk factors for dementia noted above,
such as obesity,57–61 hypercholesterolemia,13,14 and per-
ipheral vascular disease.62–64 Increasing in vivo and
in vitro evidence also points to multiple cerebrovascular
effects of APOE in the brain.65–70

Figure 3. A bolus of glucose improves spatial memory in E4 HFD mice. (a) A glucose gavage differentially affects acute cognitive

performance based on APOE genotype. Spatial memory retention was measured as the percent time spent searching in the target

quadrant a 72-h probe trial. (Quadrants: T: target; R: right; L: left; O: opposite). n¼ 7–13. (* p< 0.05, ** p< 0.01, Target compared to

all other targets, ANOVA followed by t-tests). (b) E3 LFD mice show impaired memory retention in the water maze following a

glucose gavage, while E4 HFD shows improved memory retention. Spatial memory was analyzed by calculating the cumulative distance

to the target, a measure of search accuracy during the 72-h memory probe trial. n¼ 7–13. (* p< 0.05, t-test). (c) Change in cumulative

distance to the target platform location compared to genotype- and diet-matched mice gavaged with saline. The mean change in

cumulative distance was calculated for each group (mean of the glucose gavage group minus the mean of the saline gavage group).

Compared to saline-treated E3 mice, E3 LFD and E3 HFD mice receiving a glucose gavage prior to the memory probe searched

further from the target location over the course of the memory probe trial, suggesting a relative impairment in spatial memory.

Conversely, E4 LFD and E4 HFD mice receiving a glucose gavage searched closer to the target location, suggesting a relative

improvement in spatial memory. (* p< 0.05 compared to all other targets, ANOVA).
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Cerebral blood flow (CBF) is decreased in ACD and
in AD patients.71,72 However, it remains unclear
whether cerebral hypoperfusion drives the neurodegen-
erative process, or whether these deficits simply reflect
diminished demand as a result of aging and/or neuro-
degeneration. In the case of E4, both lower25,26,30 and
higher27,73 CBF have been observed in individuals with
E4, with results differing depending on the age of the
carriers.25 Still, some research suggests that hypoperfu-
sion precedes, and possibly contributes to, the onset of
dementia,74 and in fact decreased resting CBF is
observed in E4þ individuals as young as their early
twenties.30 Given that cognitive function relies on an
efficient and responsive vascular system, it has been
further speculated that the accelerated ACD and AD
pathogenesis associated with E4 may result from its
harmful effects on the cerebrovasculature.75

In the current study, we assessed CBV, a measure of
vascular perfusion, using OMAG, which allows for
in vivo, 3D, volumetric quantification of blood-
perfused vessels with capillary resolution.47 While his-
torically CBF was believed to be regulated strictly at

the level of penetrating arterioles, it has recently been
shown that capillaries are first to respond via neuron-
pericyte signaling,76 and results suggest that human
imaging studies relying on BOLD may largely reflect
capillary function.77 Our group also recently high-
lighted the importance of cerebral microvessel function
in vivo, linking microvascular perfusion and cognitive
performance in a mouse model of diet-induced obesity
and IR.46 Similarly, in the current study, we observed a
significant decrease in CBV in HFD fed mice. Here, we
also observed a significant decrease in CBV in E4, com-
pared to E3 mice, in the absence of overt changes in
vessel morphology. These results are contrary to that
observed by Bell et al.65 showing E4-associated reduc-
tions in microvascular length. This discrepancy could
be due to experimental methods; using OMAG, we can
only visualize vessels with an active flow component
(i.e. moving red blood cells (RBCs)), and therefore
non-patent vessels would not be visualized and counted
using our methodology. Future experiments aimed at
carefully detailing potential structural differences in an

Figure 5. E4 and HFD decrease brain glucose uptake at rest

and during a cognitive task. (a–b) Resting glucose uptake in brain

(a) and skeletal muscle (b). Following a 4-h fast, tissue uptake of
3H-2-deoxyglucose was measured 15 min following an i.v. injec-

tion of glucose solution. n¼ 13–19. (c–d) Glucose uptake in brain

(c) and skeletal muscle (d) during a cognitive challenge. Following

a 4-h fast, mice were administered an oral gavage of glucose

solution containing 3H-2-deoxyglucose and 14 min later were

subjected to a 1-min long water maze memory probe. n¼ 4–9.

(*p< 0.05, ^p¼ 0.06, E3 vs. E4; ## p< 0.01, HFD vs. LFD; two-

way ANOVA followed by t-test).

Figure 4. A bolus of glucose increases CBV in E4 HFD mice.

(a) CBV was measured in E3 and E4 mice using OMAG at 0 and

15 min after an injection of a glucose solution. (b–c) Glucose

increases CBV in E4 HFD mice. (b) Percent increase in total

CBV following the glucose injection. (c) CBV at 0 and 15 min

post-glucose injection across small vessels of varying diameters.

n¼ 6–7. (* p< 0.05, two-way ANOVA followed by t-test).
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apoE model – across age and according to diet or meta-
bolic status – would be valuable. Finally, E4 HFD mice
were the only group to show a CBV response to an
acute increase in blood glucose. This group was also
the only group to significantly improve in cognitive per-
formance following a bolus of glucose. However, glu-
cose uptake during the cognitive challenge in E4 HFD
mice remained significantly lower than E3 HFD or
LFD mice, which may speak to a potential uncoupling
of CBF and glucose uptake. Perhaps the increase in
CBV in E4 HFD mice following a glucose gavage,
in the absence of increased glucose uptake, reflects an
inability of E4 cells to take up glucose in the face of
pro-uptake signaling. In other words, perhaps neural
activity is able to stimulate CBV in E4 mice, but a
dearth of glucose transporter expression or impaired
function limits glucose uptake. The exact mechanism
behind this potential apoE-specific glucose uptake and
CBF uncoupling, however, remains unknown, and war-
rants future studies.

Evidence from other in vivo studies also highlights
CBF as a potential link between E4 and impaired
cognition. For example, using a flow-sensitive MRI
technique, Wiesmann et al.70 recently showed that
18-month-old E4 mice had reduced CBF compared to
WT mice. Similarly, Lin et al.68 showed that E4 mice
have reduced CBF compared to WT mice using MRI.
Furthermore, they showed CBF improvements in E4
mice following treatment with rapamycin, a pleiotropic
compound with various metabolic effects, and provided
evidence that the blood–brain barrier (BBB) is involved
in mediating the effects of E4 on CBF.68 BBB dysfunc-
tion can lead to microvascular impairments, and thus
represents a plausible neurovascular pathway leading
to neurodegeneration and AD.78 Interestingly, APOE
genotype has recently been associated with BBB func-
tion in multiple studies, with E4 leading to increased
BBB permeability, reductions in cerebral vasculariza-
tion, thinner vessel walls and reduced CBF.65,66

Importantly, vascular defects have been observed as
early as two weeks of age in E4 mice,65 well preceding
the neuronal and synaptic dysfunction that is observed
in these mice at later ages. These early-life BBB defects
highlight an important variable between studies,
namely the age at which the measurements were con-
ducted. Age is an important contributor to cerebral
metabolic and vascular function, and APOE may
modify these age-related changes.27,34,71 For instance,
changes in the relationship between cognitive function
and CBF during normal aging are modified by APOE
genotype.27 While our own study demonstrated
E4-associated cerebrovascular deficits at 15 months of
age, Bell et al.65showed reduced CBF in E4 mice at 9
months of age, Wiesmann et al.70 at 18-months of age,

and Lin et al.68 at 1, 2, 4 and 7 months of age. While the
various imaging modalities employed makes compari-
sons difficult, taken together, these studies show that
E4-associated reductions in CBF are present across the
lifespan in mice. Finally, reductions in microvascular
length and decreased brain capillary density have been
reported in several animal models of AD,79–81 again
stressing the overlap of AD and cerebrovascular disease
risk factors such as E4 and IR.

While possession of E4 is a clear genetic risk factor
for AD, environmental influences also contribute to
disease risk and progression. In particular, ‘Western
style diets’, high in saturated fats and high GI foods,
show a consistent association with increased AD path-
ology.82–86 Rodent studies also support the idea that
high saturated fat diets and high GI diets lead to cog-
nitive dysfunction, insulin dysregulation, increase
inflammation, and exacerbate levels and accumulation
of the hallmark neurotoxic AD protein amyloid-b
(Ab).53,87–89 Additionally, APOE genotype appears to
modify the effects of diet on AD risk, as well as the
response to various diet interventions.90 For instance,
epidemiological studies generally suggest that diets high
in saturated fat and simple sugars increase the risk of
AD, but less so in individuals with E4,91–94 while inter-
vention trials involving ketogenic diets and omega-3
fatty acid supplementation show muted benefits in
E4þ participants.48,83,95 This gene-diet interaction is
seen in mice as well, with diet-induced obesity differen-
tially affecting E4 and E3 mice in terms of tau phos-
phorylation,96 as well as glial activation and amyloid
deposition.97 Additionally, a recent study by our group
showed that compared to mice with E3, mice expressing
E4 are particularly sensitive to HFD-associated cogni-
tive impairments.53 In addition to an exacerbation of
cognitive impairment in E4 mice fed a HFD, we also
highlighted multiple changes in metabolic pathways
either directly or indirectly tied to glucose metabolism.53

Finally, diet-induced IR may induce a bioenergetic shift
away from glucose as the primary cerebral fuel source to
alternative sources of energy such as fatty acids 98,99 – a
bioenergetic shift that we and others recently suggested
may be an inherent feature of E4.58,60

Despite the epidemiological evidence suggesting that
APOE genotype modifies the effects of diet on AD risk,
long-term diet interventions are challenging to conduct
and interpret. Therefore, studies designed to examine
acute cerebral responses to specific diets and/or supple-
ments may provide a clearer path to identifying the
mechanisms which underlie APOE-diet interactions.
Acute, single meal interventions are able to produce
measurable cognitive effects,48 and while the results
are oftentimes equivocal, the effects of acute hypergly-
cemia on mood and cognition have been relatively well
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studied. In elderly subjects, the majority of studies show
improvements in episodic memory following a glucose
load, while other cognitive domains such as working
memory, semantic memory and visual memory, show-
ing less frequent evidence.100 The effects of acute hyper-
glycemia in people with IR or diabetes are likewise
ambiguous, with both detrimental and beneficial effects
on mood and cognition being reported.101

Hanson et al.43 recently took an acute dietary
approach in a clinical research study in which subjects
with varying APOE genotype were administered acute
dietary challenges, and their metabolic and cognitive
responses measured. Interestingly, cognitively normal
subjects carrying E4 showed higher memory scores fol-
lowing a meal with a high GI and high in saturated fat
(HIGH meal), while subjects who did not have E4 had
lower memory scores as compared to genotype-
matched controls.43 Additionally, cognitively impaired
individuals with E4 had enhanced executive function
following the HIGH meal, while cognitively normal
E4-subjects showed reduced executive function.43

Similarly, we report here that mice expressing E4, but
not those with E3, showed improvements in cognitive
performance, as well as increases in CBV, following
acute administration of a high GI load (glucose,
GI¼ 100). Taken together, our studies suggest that a
spike in blood glucose from a high GI meal is acutely
beneficial for cognitive performance in E4þ, but not
E4-, individuals, and that the observed improvements
may be mediated by increased cerebral blood flow.
Increased efforts are warranted to assess the effect of
IR in E4 carriers, particularly mechanistic studies to
clarify the relationship between APOE genotype, cere-
bral glucose metabolism, CBF, and their interactive
effects on cognitive function.
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