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Abstract
Efficiently scheduling data-parallel computation jobs
over cloud-scale computing clusters is critical for job
performance, system throughput, and resource utiliza-
tion. It is becoming even more challenging with growing
cluster sizes and more complex workloads with diverse
characteristics. This paper presents Apollo, a highly
scalable and coordinated scheduling framework, which
has been deployed on production clusters at Microsoft
to schedule thousands of computations with millions of
tasks efficiently and effectively on tens of thousands of
machines daily. The framework performs scheduling de-
cisions in a distributed manner, utilizing global cluster
information via a loosely coordinated mechanism. Each
scheduling decision considers future resource availabil-
ity and optimizes various performance and system fac-
tors together in a single unified model. Apollo is ro-
bust, with means to cope with unexpected system dy-
namics, and can take advantage of idle system resources
gracefully while supplying guaranteed resources when
needed.

1 Introduction
MapReduce-like systems [7, 15] make data-parallel
computations easy to program and allow running jobs
that process terabytes of data on large clusters of com-
modity hardware. Each data-processing job consists of
a number of tasks with inter-task dependencies that de-
scribe execution order. A task is a basic unit of compu-
tation that is scheduled to execute on a server.

Efficient scheduling, which tracks task dependencies
and assigns tasks to servers for execution when ready,
is critical to the overall system performance and ser-
vice quality. The growing popularity and diversity of
data-parallel computation makes scheduling increasingly
challenging. For example, the production clusters that
we use for data-parallel computations are growing in
size, each with over 20,000 servers. A growing commu-
nity of thousands of users from many different organiza-

tions submit jobs to the clusters every day, resulting in a
peak rate of tens of thousands of scheduling requests per
second. The submitted jobs are diverse in nature, with a
variety of characteristics in terms of data volume to pro-
cess, complexity of computation logic, degree of paral-
lelism, and resource requirements. A scheduler must (i)
scale to make tens of thousands of scheduling decisions
per second on a cluster with tens of thousands of servers;
(ii) maintain fair sharing of resources among different
users and groups; and (iii) make high-quality scheduling
decisions that take into account factors such as data local-
ity, job characteristics, and server load, to minimize job
latencies while utilizing the resources in a cluster fully.

This paper presents the Apollo scheduling framework,
which has been fully deployed to schedule jobs in cloud-
scale production clusters at Microsoft, serving a variety
of on-line services. Scheduling billions of tasks daily
efficiently and effectively, Apollo addresses the schedul-
ing challenges in large-scale clusters with the following
technical contributions.

• To balance scalability and scheduling quality,
Apollo adopts a distributed and (loosely) coordi-
nated scheduling framework, in which indepen-
dent scheduling decisions are made in an optimistic
and coordinated manner by incorporating synchro-
nized cluster utilization information. Such a de-
sign strikes the right balance: it avoids the subop-
timal (and often conflicting) decisions by indepen-
dent schedulers of a completely decentralized archi-
tecture, while removing the scalability bottleneck
and single point of failure of a centralized design.

• To achieve high-quality scheduling decisions,
Apollo schedules each task on a server that min-
imizes the task completion time. The estimation
model incorporates a variety of factors and al-
lows a scheduler to perform a weighted decision,
rather than solely considering data locality or server
load. The data parallel nature of computation al-
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lows Apollo to refine the estimates of task execu-
tion time continuously based on observed runtime
statistics from similar tasks during job execution.

• To supply individual schedulers with cluster infor-
mation, Apollo introduces a lightweight hardware-
independent mechanism to advertise load on
servers. When combined with a local task queue on
each server, the mechanism provides a near-future
view of resource availability on all the servers,
which is used by the schedulers in decision making.

• To cope with unexpected cluster dynamics, subopti-
mal estimations, and other abnormal runtime behav-
iors, which are facts of life in large-scale clusters,
Apollo is made robust through a series of correc-
tion mechanisms that dynamically adjust and rec-
tify suboptimal decisions at runtime. We present a
unique deferred correction mechanism that allows
resolving conflicts between independent schedulers
only if they have a significant impact, and show that
such an approach works well in practice.

• To drive high cluster utilization while maintaining
low job latencies, Apollo introduces opportunistic
scheduling, which effectively creates two classes of
tasks: regular tasks and opportunistic tasks. Apollo
ensures low latency for regular tasks, while using
the opportunistic tasks for high utilization to fill in
the slack left by regular tasks. Apollo further uses a
token based mechanism to manage capacity and to
avoid overloading the system by limiting the total
number of regular tasks.

• To ensure no service disruption or performance re-
gression when we roll out Apollo to replace a previ-
ous scheduler deployed in production, we designed
Apollo to support staged rollout to production clus-
ters and validation at scale. Those constraints have
received little attention in research, but are never-
theless crucial in practice and we share our experi-
ences in achieving those demanding goals.

We observe that Apollo schedules over 20,000 tasks
per second in a production cluster with over 20,000 ma-
chines. It also delivers high scheduling quality, with 95%
of regular tasks experiencing a queuing delay of under
1 second, while achieving consistently high (over 80%)
and balanced CPU utilization across the cluster.

The rest of the paper is organized as follows. Sec-
tion 2 presents a high-level overview of our distributed
computing infrastructure and the query workload that
Apollo supports. Section 3 presents an architectural
overview, explains the coordinated scheduling in detail,
and describes the correction mechanisms. We describe

Figure 1: A sample SCOPE execution graph.
our engineering experiences in developing and deploy-
ing Apollo to our cloud infrastructure in Section 4. A
thorough evaluation is presented in Section 5. We review
related work in Section 6 and conclude in Section 7.

2 Scheduling at Production Scale
Apollo serves as the underlying scheduling framework
for Microsoft’s distributed computation platform, which
supports large-scale data analysis for a variety of busi-
ness needs. A typical cluster contains tens of thousands
of commodity servers, interconnected by an oversub-
scribed network. A distributed file system stores data in
partitions that are distributed and replicated, similar to
GFS [12] and HDFS [3]. All computation jobs are writ-
ten using SCOPE [32], a SQL-like high-level scripting
language, augmented with user-defined processing logic.
The optimizer transforms a job into a physical execution
plan represented as a directed acyclic graph (DAG), with
tasks, each representing a basic computation unit, as ver-
tices and the data flows between tasks as edges. Tasks
that perform the same computation on different parti-
tions of the same inputs are logically grouped together
in stages. The number of tasks per stage indicates the
degree of parallelism (DOP).

Figure 1 shows a sample execution graph in SCOPE,
greatly simplified from an important production job that
collects user click information and derives insights for
advertisement effectiveness. Conceptually, the job per-
forms a join between an unstructured user log and a
structured input that is pre-partitioned by the join key.
The plan first partitions the unstructured input using the
partitioning scheme from the other input: stages S1 and
S2 respectively partition the data and aggregate each par-
tition. A partitioned join is then performed in stage S4.
The DOP is set to 312 for S1 based on the input data vol-
ume, set to 10 for S5, and set to 150 for S2, S3, and S4.

2.1 Capacity Management and Tokens
In order to ensure fairness and predictability of perfor-
mance, the system uses a token-based mechanism to al-
locate capacity to jobs. Each token is defined as the right
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Figure 2: Heterogeneous workload.

to execute a regular task, consuming up to a predefined
amount of CPU and memory, on a machine in the cluster.
For example, if a job has an allocation of 100 tokens, this
means it can run 100 tasks, each of which consumes up
to a predefined maximum amount of CPU and memory.

A virtual cluster is created for each user group for se-
curity and resource sharing reasons. Each virtual clus-
ter is assigned a certain amount of capacity in terms of
number of tokens, and maintains a queue of all submitted
jobs. A job submission contains the target virtual clus-
ter, the necessary credentials, and the required number
of tokens for execution. Virtual cluster management uti-
lizes various admission control policies and decides how
and when to assign its allocated tokens to submitted jobs.
Jobs that do not get their required tokens will be queued
in the virtual cluster. The system also supports a wide
range of capabilities, such as job priorities, suspension,
upgrades, and cancellations.

Once a job starts to execute with required tokens, it is
a scheduler’s responsibility to execute its optimized exe-
cution plan by assigning tasks to servers while respecting
token allocation, enforcing task dependencies, and pro-
viding fault tolerance.

2.2 The Essence of Job Scheduling
Scheduling a job involves the following responsibilities:
(i) ready list: maintain a list of tasks that are ready to
be scheduled: initially, the list includes those leaf tasks
that operate on the original inputs (e.g., tasks in stages S1
and S3 in Figure 1); (ii) task priority: sort the ready list
appropriately; (iii) capacity management: manage the
capacity assigned to the job and decide when to sched-
ule a task based on the capacity management policy; (iv)
task scheduling: decide where to schedule a task and dis-
patch it to the selected server; (v) failure recovery: mon-

itor scheduled tasks, initiate recovery actions when tasks
fail, and mark the job failed if recovery is not possible;
(vi) task completion: when a task completes, check its
dependent tasks in the execution graph and move them
to the ready list if all the tasks that they depend on have
completed; (vii) job completion: repeat the whole pro-
cess until all tasks in the job are completed.

2.3 Production Workload Characteristics

The characteristics of our target production workloads
greatly influence the Apollo design. Our computation
clusters run more than 100,000 jobs on a daily basis. At
any point in time, there are hundreds of jobs running con-
currently. Those jobs vary drastically in almost every di-
mension, to meet a wide range of business scenarios and
requirements. For example, large jobs process terabytes
to petabytes of data, contain sophisticated business logic
with a few dozen complex joins, aggregations, and user-
defined functions, have hundreds of stages, contain over
a million tasks in the execution plan, and may take hours
to finish. On the other hand, small jobs process giga-
bytes of data and can finish in seconds. In SCOPE, dif-
ferent jobs are also assigned with different amounts of
resources. The workload evolves constantly as the sup-
porting business changes over time. This workload di-
versity poses tremendous challenges for the underlying
scheduling framework to deal with efficiently and effec-
tively. We describe several job characteristics in our pro-
duction environment to illustrate the diverse and dynamic
nature of the computation workload.

In SCOPE, the DOP for a stage in a job is chosen based
on the amount of data to process and the complexity of
each computation. Even within a single job, the DOP
changes for different stages as the data volume changes
over the job’s lifetime. Figure 2(a) shows the distribution
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of stage DOP in our production environment. It varies
from a single digit to a few tens of thousands. Almost
40% of stages have a DOP of less than 100, account-
ing for less than 2% of the total workload. More than
98% of tasks are part of stages with DOP of more than
100. These large stage sizes allow a scheduler to draw
statistics from some tasks to infer behavior of other tasks
in the same stage, which Apollo leverages to make in-
formed and better decisions. Job sizes vary widely from
a single vertex to millions of vertices per job graph. As il-
lustrated in Figure 2(b), the amount of data processed per
job ranges from gigabytes to tens of petabytes. Task exe-
cution times range from less than 100ms to a few hours,
as shown in Figure 2(c). 50% of tasks run for less than
10 seconds and are sensitive to scheduling latency. Some
tasks require external files such as executables, config-
urations, and lookup tables for their execution, thus in-
curring initialization costs. In some cases, such exter-
nal files required for execution are bigger than the actual
input to be processed, which means locality should be
based on where those files are cached rather than input
location. Collectively, such a large number of jobs create
a high scheduling-request rate, with peaks above 100,000
requests per second, as shown in Figure 2(d).

The very dynamic and diverse characteristics of our
computing workloads and cluster environments impose
several challenges for the scheduling framework, includ-
ing scalability, efficiency, robustness, and resource usage
balance. The Apollo scheduling framework has been de-
signed and shown to address these challenges over large
production clusters at Microsoft.

3 The Apollo Framework
To support the scale and scheduling rate required for the
production workload, Apollo adopts a distributed and
coordinated architecture, where the scheduling of each
job is performed independently and incorporates aggre-
gated global cluster load information.

3.1 Architectural Overview
Figure 3 provides an overview of Apollo’s architecture.
A Job Manager (JM), also called a scheduler, is assigned
to manage the life cycle of each job. The global cluster
load information used by each JM is provided through
the cooperation of two additional entities in the Apollo
framework: a Resource Monitor (RM) for each cluster
and a Process Node (PN) on each server. A PN pro-
cess running on each server is responsible for managing
the local resources on that server and performing local
scheduling, while the RM aggregates load information
from PNs across the cluster continuously, providing a
global view of the cluster status for each JM to make
informed scheduling decisions.

While treated as a single logical entity, the RM can

Figure 3: Apollo architectural overview.
be implemented physically in different configurations
with different mechanisms, as it essentially addresses the
well-studied problem of monitoring dynamically chang-
ing state of a collection of distributed resources at a large
scale. For example, it can use a tree hierarchy [20] or
a directory service with an eventually consistent gossip
protocol [8, 26]. Apollo’s architecture can accommodate
any of such configurations. We implemented the RM in a
master-slave configuration using Paxos [18]. The RM is
never on the performance critical path: Apollo can con-
tinue to make scheduling decisions (at a degraded qual-
ity) even when the RM is temporarily unavailable, for
example, during a transient master-slave switch due to a
machine failure. In addition, once a task is scheduled to a
PN, the JM obtains up-to-date load information directly
from the PN via frequent status updates.

To better predict resource utilization in the near future
and to optimize scheduling quality, each PN maintains a
local queue of tasks assigned to the server and advertises
its future resource availability in the form of a wait-time
matrix inferred from the queue (Section 3.2). Apollo
thereby adopts an estimation-based approach to making
task scheduling decisions. Specifically, Apollo considers
the wait-time matrices, aggregated by the RM, together
with the individual characteristics of tasks to be sched-
uled, such as the location of inputs (Section 3.3). How-
ever, cluster dynamics pose many challenges in practice;
for example, the wait-time matrices might be stale, es-
timates might be suboptimal, and the cluster environ-
ment might sometimes be unpredictable. Apollo there-
fore incorporates correction mechanisms for robustness
and dynamically adjusts scheduling decisions at runtime
(Section 3.4). Finally, there is an inherent tension be-
tween providing guaranteed resources to jobs (e.g., to
ensure SLAs) and achieving high cluster utilization, be-
cause both the load on a cluster and the resource needs
of a job fluctuate constantly. Apollo resolves this tension
through opportunistic scheduling, which creates second-
class tasks to use idle resources (Section 3.5).
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3.2 PN Queue and Wait-Time Matrix
The PN on each server manages a queue of tasks as-
signed to the server in order to provide projections on
future resource availability. When a JM schedules a task
on a server, it sends a task-creation request with (i) fine
grained resource requirement (CPU cores and memory),
(ii) estimated runtime, and (iii) a list of files required to
run the task (e.g., executables and configuration files).
Once a task creation request is received, the PN copies
the required files to a local directory using a peer-to-peer
data transfer framework combined with a local cache.
The PN monitors CPU and memory usage, considers the
resource requirements of tasks in the queue, and executes
them when the capacity is available. It maximizes re-
source utilization by executing as many tasks as possi-
ble, subject to the CPU and memory requirements of in-
dividual tasks. The PN queue is mostly FIFO, but can be
reordered. For example, a later task requiring a smaller
amount of resources can fill a gap without affecting the
expected start time of others.

The use of task queues enables schedulers to dispatch
tasks to the PNs proactively based on future resource
availability, instead of based on instantaneous availabil-
ity. As illustrated later in Section 3.3, Apollo considers
task wait time (for sufficient resources to be available)
and other task characteristics holistically to optimize task
scheduling. The use of task queues also masks task ini-
tialization cost by copying the files before execution ca-
pacity is available, thereby avoiding idle gaps between
tasks. Such a direct-dispatch mechanism provides the
efficiency needed particularly by small tasks, for which
any protocol to negotiate incurs significant overhead.

The PN also provides feedback to the JM to help im-
prove accuracy of task runtime estimation. Initially, the
JM uses conservative estimates provided by the query
optimizer [32] based on the operators in a task and the
amount of data to be processed. Tasks in the same stage
perform the same computation over different datasets.
Their runtime characteristics are similar and the statis-
tics from the executions of the earlier tasks can help im-
prove runtime estimates for the later ones. Once a task
starts running, the PN monitors its overall resource us-
age and responds to the corresponding JM’s status update
requests with information such as memory usage, CPU
time, execution time (wall clock time), and I/O through-
put. The JM then uses this information along with other
factors such as operator characteristics and input size to
refine resource usage and predict expected runtime for
tasks from the same stage.

The PN further exposes the load on the current server
to be aggregated by its RM. Its representation of the
load information should ideally convey a projection of
the future resource availability, mask the heterogeneity
of servers in our data centers (e.g., servers with 64GB

of memory and 128GB of memory have different capac-
ities), and be concise enough to allow frequent updates.
Apollo’s solution is a wait-time matrix, with each cell
corresponding to the expected wait time for a task that
requires a certain amount of CPU and memory. Figure 3
contains a matrix example: the value 10 in cell 〈12 GB,
4 cores〉 denotes that a task that needs 4 CPU cores and
12GB of memory has to wait 10 seconds in this PN be-
fore it can get its resource quota to execute. The PN
maintains a matrix of expected wait times for any hypo-
thetical future task with various resource quotas, based
on the currently running and queued tasks. The algo-
rithm simulates local task execution and evaluates how
long a future task with a given CPU/memory requirement
would wait on this PN to be executed. The PN updates
this matrix frequently by considering the actual resource
situation and the latest task runtime and resource esti-
mates. Finally, the PN sends this matrix, along with a
timestamp, to every JM that has running or queued tasks
in this PN. It also sends the matrix to the RM using a
heartbeat mechanism.

3.3 Estimation-Based Scheduling
A JM has to decide which server to schedule a particu-
lar task to using the wait-time matrices in the aggregated
view provided by the RM and the individual characteris-
tics of the task to be scheduled. Apollo has to consider a
variety of (often conflicting) factors that affect the qual-
ity of scheduling decisions and does so in a single unified
model using an estimation-based approach.

Server Wait I/O Wait+I/O
A 0s 63.13s 63.13s
B 0s 63.5s 63.5s
C 40s 32.50s 72.50s
D 5s 51.25s 56.25s

(a) Server map. (b) Scheduling alternatives.

Figure 4: A task scheduling example.

We use an example to illustrate the importance of con-
sidering various factors all together, as well as the ben-
efit of having a local queue on each server. Figure 4(a)
shows a simplified server map with two racks, each with
four servers, connected via a hierarchically structured
network. Assume data can be read from local disks at
160MB/s, from within the same rack at 100MB/s, and
from a different rack at 80MB/s. Consider scheduling
a task with two inputs (one 100MB stored on server A
and the other 5GB stored on server C) whose runtime is
dominated by I/O. Figure 4(b) shows the four scheduling
choices, where servers A and B are immediately avail-
able, while server C has the best data locality. Yet, D
is the optimal choice among those four choices. This
can be recognized only when we consider data locality
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and wait time together. This example also illustrates the
value of local queues: without a local queue on each
server, any scheduling mechanism that checks for im-
mediate resource availability would settle on the non-
optimal choice of server A or B.

Apollo therefore considers various factors holistically
and performs scheduling by estimating task completion
time. First, we estimate the task completion time if there
is no failure, denoted by Esucc, using the formula

Esucc = I +W +R (1)

I denotes the initialization time for fetching the needed
files for the task, which could be 0 if those files are
cached locally. The expected wait time, denoted as W ,
comes from a lookup in the wait-time matrix of the tar-
get server with the task resource requirement. The task
runtime, denoted as R, consists of both I/O time and CPU
time. The I/O time is computed as the input size divided
by the expected I/O throughput. The I/O could be from
local memory, disks, or network at various bandwidths.
Overall, estimation of R initially incorporates informa-
tion from the optimizer and is refined with runtime statis-
tics from the tasks in the same stage.

Second, we consider the probability of task failure to
calculate the final completion time estimate, denoted by
C. Hardware failures, maintenance, repairs, and software
deployments are inevitable in a real large-scale environ-
ment. To mitigate their impact, the RM also gathers in-
formation on upcoming and past maintenance scheduled
on every server. Together, a success probability Psucc is
derived and considered to calculate C, as shown below. A
penalty constant Kf ail , determined empirically, is used to
model the cost of server failure on the completion time.

C = PsuccEsucc +Kfail(1−Psucc)Esucc (2)

Task Priorities. Besides completion time estimation, the
task-execution order also matters for overall job latency.
For example, for the job graph in Figure 1, the tasks in
S1 run for 1 minute on average, the tasks in S2 run for an
average of 2 minutes, with potential partition-skew in-
duced stragglers running up to 10 minutes, and the tasks
in S3 run for 30 seconds on average. As a result, effi-
ciently executing S1 and S2 surely appears more critical
to achieve the fastest runtime. Therefore, the scheduler
should prioritize resources to S1 and S2 before consider-
ing S3. Within S2, the scheduler should start the vertex
with the largest input as early as possible, because it is
the most likely to be on the critical path of the job.

A static task priority is annotated per stage by the op-
timizer through analyzing the job DAG and calculating
the potential critical path of the job execution. Tasks
within a stage are prioritized based on the input size.
Apollo schedules tasks and allocates their resources in a

Figure 5: A matching example.

descending order of their priorities. Since a job contains
a finite number of tasks, the starvation of a task with low
static priority is impossible, because eventually it will be
the only task left to execute, and will be executed.
Stable Matching. For efficiency, Apollo schedules tasks
with similar priorities in batches and turns the problem of
task scheduling into that of matching between tasks and
servers. For each task, we could search all the servers in
a cluster for the best match. The approach becomes pro-
hibitively expensive on a large cluster. Instead, Apollo
limits the search space for a task to a candidate set of
servers, including (i) a set of servers on which inputs of
significant sizes are located (ii) a set of servers in the
same rack as those from the first group (iii) two servers
randomly picked from a set of lightly-loaded servers; the
list is curated in the background.

A greedy algorithm can be applied for each task se-
quentially, choosing the server with the earliest estimated
completion time at each step. However, the outcome of
the greedy algorithm is sensitive to the order in which
tasks are matched and often leads to suboptimal deci-
sions. Figure 5 shows an example with a batch of three
tasks being scheduled. Assume both Task1 and Task2
read data from server A while Task3 reads from server B,
as shown with dotted lines. Each server has capacity to
start one task. The greedy matcher first matches Task1 to
server A, then matches Task2 to server B because Task1
is already scheduled on A, and finally Task3 to server C,
as shown with solid lines. A better match would have
assigned Task3 to server B for better locality.

Apollo therefore adopts a variant of the stable match-
ing algorithm [10] to match tasks with servers. For each
task in a batch, Apollo finds the server with the earliest
estimated completion time as a proposal for that task. A
server accepts a proposal from a task if that is the only
proposal assigned. A conflict arises when more than one
task proposes to the same server. In this case, the server
picks the task whose completion time saving is the great-
est if it is assigned to the server. The tasks not picked
withdraw their proposals and enter the next iteration that
tries to match the remaining tasks and servers. The algo-
rithm iterates until all tasks have been assigned, or until
it reaches the maximum number of iterations. As shown
in Figure 5, the stable matcher matches Task2 to C and
Task3 to B, which effectively leverages locality and re-
sults in better job performance.
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The scheduler then sorts all the matched pairs based
on their quality to decide the dispatch order. A match is
considered with a higher quality if its task has a lower
server wait time. The scheduler iterates over the sorted
matches and dispatches in order until it is out of the allo-
cated capacity. If opportunistic scheduling (Section 3.5)
is enabled, the scheduler continues to dispatch the tasks
until the opportunistic scheduling limit.

To simplify the matching algorithm for a tradeoff be-
tween efficiency and quality, Apollo assigns only one
task to each server in a single batch, because otherwise
Apollo has to update the wait-time matrix for a server
to take into account the newly assigned task, which in-
creases the complexity of the algorithm. This simplifica-
tion might lead to a suboptimal match for a task in a case
where servers taking on a task in the same batch already
remains a better choice. Apollo mitigates the effect in
two ways: if the suboptimal match is of a low quality,
sorting the matches by quality will cause the dispatch-
ing of this task to be postponed, and later re-evaluated.
Even if the suboptimal match is dispatched, the correc-
tion mechanisms described in Section 3.4 are designed
to catch this case and reschedule the task if needed.

3.4 Correction Mechanisms
In Apollo, each JM can schedule tasks independently at
a high frequency, with no delay in the process. This is
critical for scheduling a large number of small tasks in
the workload. However, due to the distributed nature of
the scheduling, several JMs might make competing de-
cisions at the same time. In addition, the information
used, such as wait-time matrices, for scheduling deci-
sions might be stale; the task wait time and runtime might
be under or overestimated. Apollo has built-in mecha-
nisms to address those challenges and dynamically adjust
scheduling decisions with new information.

Unlike previous proposals (e.g., as in Omega [23]) in
which conflicts are immediately handled at the schedul-
ing time, Apollo optimistically defers any correction un-
til after tasks are dispatched to PN queues. This de-
sign choice is based on our observation that conflicts are
not always harmful. Two tasks scheduled to the same
server simultaneously by different job managers might
be able to run concurrently if there are sufficient re-
sources for both; tasks that are previously scheduled on
the server might complete soon, releasing the resources
early enough to make any conflict resolution unneces-
sary. In those cases, a deferred correction mechanism,
made possible with local queues, avoids the unneces-
sary overhead associated with eager detection and reso-
lution. Correction mechanisms continuously re-evaluate
the scheduling decisions with up-to-date information and
make appropriate adjustments whenever necessary.
Duplicate Scheduling. When a JM gets fresh informa-

tion from a PN during task creation, task upgrade, or
while monitoring its queued tasks, it compares the infor-
mation from this PN (and the elapsed wait time so far) to
the information that was used to make the scheduling de-
cision. The scheduler re-evaluates the decision if (i) the
updated expected wait time is significantly higher than
the original; (ii) the expected wait time is greater than
the average among the tasks in the same stage; (iii) the
elapsed wait time is already greater than the average. The
first condition indicates an underestimated task comple-
tion time on the server, while the second/third conditions
indicate a low matching quality. Any change in the deci-
sion triggers scheduling a duplicate task to a new desired
server. Duplicates are discarded when one task starts.
Randomization. Multiple JMs might schedule tasks to
the same lightly loaded PN, not aware of each other,
thereby leading to scheduling conflicts. Apollo adds a
small random number to each completion time estima-
tion. This random factor helps reduce the chances of
conflicts by having different JMs choose different, al-
most equally desirable, servers. The number is typically
proportional to the communication interval between the
JM and the PN, introducing no noticeable impact on the
quality of the scheduling decisions.
Confidence. The aggregated cluster information ob-
tained from the RM contains wait-time matrices of dif-
ferent ages, some of which can be stale. The scheduler
attributes a lower confidence to older wait-time matrices
because it is likely that the wait time changed since the
time the matrix was calculated. When the confidence in
the wait-time matrix is low, the scheduler will produce a
pessimistic estimate by looking up the wait time of a task
consuming more CPU and memory.
Straggler Detection. Stragglers are tasks making
progress at a slower rate than other tasks, and have a crip-
pling impact on job performances [4]. Apollo’s straggler
detection mechanism monitors the rate at which data is
processed and the rate at which CPU is consumed to pre-
dict the amount of time remaining for each task. Other
tasks in the same stage are used as a baseline for com-
parison. When the time it would take to rerun a task is
significantly less than the time it would take to let it com-
plete, a duplicate copy is started. They will execute in
parallel until the first one finishes, or until the duplicate
copy caught up with the original task. The scheduler also
monitors the rate of I/O and detects stragglers caused by
slow intermediate inputs. When a task is slow because
of abnormal I/O latencies, it can rerun a copy of the up-
stream task to provide an alternate I/O path.

3.5 Opportunistic Scheduling
Besides achieving high quality scheduling at scale,
Apollo is also designed to operate efficiently and drive
high cluster utilization. Cluster utilization fluctuates over
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time for several reasons. First, not all users submit jobs at
the same time to consume their allocated capacities fully.
A typical example is that the cluster load on weekdays
is always higher than on weekends. Second, jobs differ
in their resource requirements. Even daily jobs with the
same computation logic consume different amount of re-
sources as their input data sizes vary. Finally, a complete
job typically goes through multiple stages, with different
levels of parallelism and varied resource requirements.
Such load fluctuation on the system provides schedulers
with an opportunity to improve job performance by in-
creasing utilization, at the cost of predictability. How
to judiciously utilize occasionally idle computation re-
sources without affecting SLAs remains challenging.

We introduce opportunistic scheduling in Apollo to
gracefully take advantage of idle resources whenever
they are available. Tasks can execute either in the reg-
ular mode, with sufficient tokens to cover its resource
consumption, or in the opportunistic mode, without allo-
cated resources. Each scheduler first applies optimistic
scheduling to dispatch regular tasks with its allocated to-
kens. If all the tokens are utilized and there are still pend-
ing tasks to be scheduled, opportunistic scheduling may
be applied to dispatch opportunistic tasks. Performance
degradation of regular task is prevented by running op-
portunistic tasks at a lower priority at each server, and
any opportunistic task can be preempted or terminated if
the server is under resource pressure.

One immediate challenge is to prevent one job from
consuming all the idle resources unfairly. Apollo uses
randomized allocation to achieve probabilistic resource
fairness for opportunistic tasks. In addition, Apollo up-
grades opportunistic tasks to regular ones when tokens
become available and assigned.
Randomized Allocation Mechanism. Ideally, the op-
portunistic resources should be shared fairly among jobs,
proportionally to jobs’ token allocation. This is particu-
larly challenging as both the overall cluster load and in-
dividual server load fluctuate over time, which makes it
difficult, if not impossible, to guarantee absolute instan-
taneous fairness. Instead, we focus on avoiding the worst
case of a few jobs consuming all the available capacity of
the cluster and target average fairness.

Apollo achieves this by setting a maximum oppor-
tunistic allowance for a given job proportionally to its to-
ken allocation. For example, a job with n tokens can have
up to cn opportunistic tasks dispatched for some constant
c. When a PN has spare capacity and the regular queue
is empty, the PN picks a random task to execute from
the opportunistic-task queue, regardless of when it was
dispatched. If the chosen task requires more resources
than what is available, the randomized selection process
continues until there is no more task that can execute.
Compared to a FIFO queue, the algorithm has the benefit

of allowing jobs that start later to get a share of the capac-
ity quickly. If a FIFO queue were used for opportunistic
tasks, it could take an arbitrary amount of time for a later
task to make its way through the queue, offering unfair
advantages to tasks that start earlier.

As the degree of parallelism for a job varies in its life-
time, the number of tasks that are ready to be scheduled
also varies. As a result, a job may not always be able to
dispatch enough opportunistic tasks to use its opportunis-
tic allowance fully. We further enhance the system by
allowing each scheduler to increase the weight of an op-
portunistic task during random selection, to compensate
for the reduction in the number of tasks. For example, a
weight of 2 means a task has twice the probability to be
picked. The total weight of all opportunistic tasks issued
by the job must not exceed its opportunistic allowance.

Under an ideal workload, in which tasks run for the
same amount of time and consume the same amount of
resources, and in a perfectly balanced cluster, this strat-
egy averages to sharing the opportunistic resources pro-
portionally to the job allocation. However, in reality,
tasks have large variations in runtime and resource re-
quirements. The number of tasks dispatched per jobs
change constantly as tasks complete and new tasks be-
come ready. Further, jobs may not have enough paral-
lelism at all times to use their opportunistic allowance
fully. Designing a fully decentralized mechanism that
maintains a strong fairness guarantee in a dynamic envi-
ronment remains a challenging topic for future work.

Task Upgrade. Opportunistic tasks are subject to starva-
tion if the host server experiences resource pressure. Fur-
ther, the opportunistic tasks can wait for an unbounded
amount of time in the queue. In order to avoid job starva-
tion, tasks scheduled opportunistically can be upgraded
to regular tasks after being assigned a token. Because a
job requires at least one token to run and there is a finite
amount of tasks in a job, the scheduler is able to transi-
tion a starving opportunistic task to a regular task at one
point, thus preventing job starvation.

After an opportunistic task is dispatched, the scheduler
tracks the task in its ready list until it completes. When
scheduling a regular task, the scheduler considers both
unscheduled tasks and previously scheduled opportunis-
tic tasks that still wait for execution. Each scheduler al-
locates its tokens to tasks and performs task matches in a
descending order of their priorities. It is not required that
an opportunistic task be upgraded on the same machine,
but it might be preferable as there is no initialization
time. By calculating all costs holistically, the scheduler
favors upgrading opportunistic tasks on machines with
fewer regular tasks, while waiting for temporarily heav-
ily loaded machines to drain. This strategy results in a
better utilization of the tokens and better load balancing.
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4 Engineering Experiences
Before the development of Apollo, we already had a pro-
duction system running at full scale with our previous
generation DAG scheduler, also referred to as the base-
line scheduler. The baseline scheduler schedules jobs
without any global cluster load information. When tasks
wait in a PN queue, the baseline scheduler systematically
triggers duplicates to explore other idle PNs and balance
the load. Locality is modeled as a per-task scheduling
constraint that is relaxed over time, instead of using com-
pletion time estimation.

In our first attempt to improve the baseline scheduler,
we took an approach of a centralized global scheduler,
which is responsible for scheduling all jobs in a cluster.
While the global scheduler theoretically oversees all ac-
tivities in the cluster and could make optimal scheduling
decisions, we found that it became a performance bottle-
neck and its scheduling quality degraded as the numbers
of machines in the cluster and concurrent jobs continued
to grow. In addition, as described in Section 2, our het-
erogeneous workload consists of jobs with diverse char-
acteristics. Any scheduling delay could have a direct and
severe impact on small tasks. Such lessons ultimately led
us to choose Apollo’s distributed and loosely coordinated
scheduling paradigm.

During the development of Apollo, we had to ensure
the availability of our production system throughout the
process, from early prototyping and experimentation to
evaluation and eventual full deployment. This has posed
many interesting challenges in validation, migration, de-
ployment, and operation at full production scale.
Validation at Scale. We started by evaluating Apollo
in an isolated test cluster at a smaller scale. It helps us
verify scheduling decisions at every step and track down
performance issues quickly. However, the approach has
limitations as the scale of the test cluster is rather lim-
ited and cannot emulate the dynamic cluster environ-
ment. Many interesting challenges arise as the scale and
complexity of the workload grows. For example, Apollo
and the baseline scheduler make different assumptions
around the capacity of the machines. In a test cluster
with a single job running at a time, the baseline sched-
uler schedules a single task to a server, resulting in much
lower machine utilization compared to Apollo. However,
this improvement does not translate into gain in produc-
tion environments because the utilization in production
clusters is already high. Therefore, it is important for
us to evaluate Apollo in real production clusters, side by
side with busy production workloads.

Another lesson we learned from our first failed attempt
was to validate design and performance continuously, in-
stead of delaying full validation until completion and ex-
posing scalability and performance issues when it is too
late. This is particularly important as each engineering

attempt is significant and time-consuming at this large
scale.

Apollo’s fully decentralized design allows each sched-
uler to run side by side with other schedulers, or other
versions of Apollo itself. Such engineering agility is crit-
ical and allows us to compare performance across dif-
ferent schedulers at scale in the same production envi-
ronments. We sampled production jobs and reran them
twice, one with the baseline scheduler and the other with
the Apollo scheduler, to compare the job performance.
In order to minimize other random factors, we initially
ran them side by side. However, the approach resulted in
artificial resource contention as both jobs read the same
inputs. Instead, we chose to run the two jobs one after
another. Our experiences show that the cluster load is un-
likely to change drastically between the two consecutive
runs. We also modified the baseline scheduler to produce
accurate estimates for task runtime and resource require-
ments using Apollo’s logic so that Apollo could perform
adequately well in this mixed mode environment. This
allowed us to get performance data from early exposure
to large scale environment in the design and experimen-
tation phase.
Migration at Scale. We designed Apollo to replace the
previous scheduler in place. On the one hand, this means
that protocols had to be carefully designed to be com-
patible; on the other hand, it also means that we had
to make sure both schedulers could coexist in the same
environment, each scheduling a part of the workload on
the same set of machines, without creating interferences.
For example, Apollo judiciously performs opportunis-
tic scheduling with significantly less resource. In iso-
lation, Apollo issues 98% less duplicates than the base-
line scheduler, without losing performance. However, in
the mixed mode where both schedulers runs, the baseline
scheduler gains an unfair advantage by issuing more du-
plicates to get work done. We therefore tuned the system
during the transition to increase the probability to start
opportunistic tasks for Apollo-scheduled jobs in order to
correct the bias caused by the reduction in the number of
tasks scheduled.
Deployment at Scale. Without any service downtime
or unavailability, we rolled out Apollo to our users in
stages and increased user coverage over time until even-
tually fully deployed on all clusters. At each stage, we
closely watched various system metrics, verified job per-
formance, and studied impact on other system compo-
nents before proceeding to the next stage.

One interesting observation was that users who had
not yet migrated to Apollo also experienced some per-
formance improvement during the deployment process.
This was because Apollo avoided scheduling tasks to
hotspots inside the system, which helped improve job
performance across the cluster, including the ones sched-
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uled by the baseline scheduler. When we finally enabled
those jobs with Apollo, the absolute percentage of im-
provement was less than what we observed initially.
Operation at Scale. Even with thoughtful design and
implementation, the dynamic behavior of such a large
scale system continues to pose new challenges, which
motivate us to refine and improve the system contin-
uously while operating Apollo at scale. For example,
Apollo leverages an opportunistic scheduling mechanism
to increase system utilization by operating tasks either in
normal-priority regular mode or in lower-priority oppor-
tunistic mode. Initially, this priority is enforced by local
operating system but not by the underlying distributed
file system. During the early validation, this did not
pose a problem. However, as we deployed Apollo, both
CPU and I/O utilization in the cluster increased. The
overall increase in I/O pressure caused a latency impact
and interfered with tasks even running in regular mode.
This highlights the importance of interpreting task pri-
ority throughout the entire stack to maintain predictable
performance at high utilization.

Another example is that we developed a server failure
model by mining historical data and various factors to
predict the likelihood of possible repeated server failures
in the near future, based on recent observed events. As
described in Section 3.3, such failure model has a direct
impact on task completion time estimation and thus in-
fluences scheduling decisions. The model works great
in most cases and helps Apollo avoid scheduling tasks
to repeated offenders, thereby improving system relia-
bility. However, a rare power transformer outage caused
failures on a large number of servers all at once. Af-
ter the power was restored, the model predicted that they
were likely to fail again and prevented Apollo from using
those machines. As a result, the recovery of the cluster
was unnecessarily slowed down. This indicates the im-
portance of further distinguishing failure types and deal-
ing with them presumably in different models.

5 Evaluation
Since late 2013, Apollo has been deployed in production
clusters at Microsoft, each containing over 20,000 com-
modity servers. To evaluate Apollo thoroughly, we use a
combination of the following methods: (i) We analyze
and report various system metrics on large-scale pro-
duction clusters where Apollo has been deployed; fur-
ther, we compare the behavior before and after enabling
Apollo. (ii) We perform in-depth studies on representa-
tive production jobs to highlight our observations at per-
job level. (iii) We use trace-driven simulations on certain
specific points in the Apollo design to compare with al-
ternatives. Whenever possible, we prefer reporting the
production Apollo behavior, instead of using simulated
results, because it is hard, if not infeasible, to model the
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Figure 6: Scheduling rates.
complexity of real workload and production environment
faithfully in a simulator. To our knowledge, this is the
first detailed analysis of production schedulers at such a
large scale with such a complex and diverse workload.

We intend to answer the following questions: (a) How
well does Apollo scale and utilize resources in a large-
scale cluster? (b) What is the scheduling quality with
Apollo? (c) How accurate are the estimates on task ex-
ecution and queuing time used in Apollo and how much
do the estimates help? (d) How does Apollo cope with
dynamic cluster environment? (e) What is the complex-
ity of Apollo’s core scheduling algorithm?

5.1 Apollo at Scale
We first measured the aggregated scheduling rate in a
cluster over time to understand Apollo’s scalability. We
define scheduling rate as the number of materialized
scheduling decisions (those resulting a task execution at
a PN) made by all the individual schedulers in the clus-
ter per second. Figure 6 shows the peak scheduling rates
for each hour over the past 6 months, highlighting that
Apollo can constantly provide a scheduling rate of above
10,000, reaching up to 20,000 per second in a single clus-
ter. This confirms the need for a distributed scheduling
infrastructure, as it would be challenging for any single
scheduler to make high quality decisions at this rate. It
is important to note that the scheduling rate is also gov-
erned by the capacity of the cluster and the number of
concurrent jobs. With its distributed architecture, we ex-
pect the scheduling rate to increase with the number of
jobs and the size of the cluster.

We then drill down into a period of two weeks and re-
port various aspects of Apollo, without diluting data over
a long period of time. Figure 7(a) shows the number of
concurrently running jobs and their tasks in the cluster
while Figure 7(b) shows server CPU utilization in the
same period, both sampled at every 10 seconds. Apollo
is able to run 750 concurrent complex jobs (140,000 con-
current regular tasks) and achieve over 90% CPU uti-
lization when the demand is high during the weekdays,
reaching closely the capacity of the cluster.

To illustrate the distribution of system utilization
among all the servers in the cluster, Figure 7(b) shows
the median, as well as the 20th and 80th percentiles in
CPU utilization. When the demand surges, Apollo makes
use of all the available resources and only leaves a 3%
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Figure 7: Apollo in production.
gap between the 20th and the 80th percentiles. When
the demand is low, such as on Sundays, the load is less
balanced and the machine utilization is mostly corre-
lated to the popularity of the data stored on them. The
figures shows a clear weekly pattern of the workloads.
The task concurrency decreases during the weekends and
recovers back to a large volume during the weekdays.
However, the dip in system utilization is significantly
less than that of the number of jobs submitted. With
opportunistic scheduling, Apollo allows jobs to grace-
fully exploit idle system resources to achieve better job
performances and continues to drive system utilization
high even with fewer number of jobs. This is further
validated in Figure 7(c), which shows the percentage of
CPU hours attributed to regular and opportunistic tasks.
During the weekdays, 70% of Apollo’s workload comes
from regular tasks. The balance shifts during the week-
ends: more opportunistic tasks get executed on the avail-
able resources when there are fewer regular tasks.

Task location % Tasks % I/Os

The same server that contains the input 28% 46%
Within the same rack as the input 56% 47%
Across rack 16% 7%

Table 1: Breakdown of tasks and their I/Os.
We also measured the average task queuing time for

all regular tasks to verify that the queuing time remains

low despite the high concurrency and system utilization.
At the 95th percentile, the tasks show less than 1 second
queuing time across the entire cluster. Apollo achieves
this by considering data locality, wait time, and other fac-
tors holistically when distributing tasks. Table 1 catego-
rizes tasks into three groups and reports the percentage of
I/Os they account for. 72% of the tasks are dispatched to
servers that require reading inputs remotely, either within
or across rack, to avoid wait time. If only data locality
is considered, tasks are likely to concentrate on a small
group of servers that contain hot data.
Summary. Combined, those results show that Apollo
is highly scalable, capable of scheduling over 20,000 re-
quests per second, and driving high and balanced system
utilization while incurring minimum syqueuing time.

5.2 Scheduling Quality
We evaluate the scheduling quality of Apollo in two
ways: (i) compare with the previously implemented
baseline scheduler using production workloads and (ii)
study business critical production jobs and use trace-
based simulations to compare the quality.

Performing a fair comparison between the baseline
scheduler and Apollo in a truly production environment
with real workload is challenging. Fortunately, we re-
placed the baseline scheduler in place with Apollo, al-
lowing us to observe both schedulers in the same cluster
with similar workloads. Further, about 40% of the pro-
duction jobs in the cluster has a recurring pattern and
such recurring jobs account for more than 75% system
resource utilization [5]. We therefore choose two time
frames, before and after the Apollo deployment, to com-
pare performance and speedup of each recurring job, run-
ning Apollo and the baseline scheduler respectively. The
recurring nature of the workload produced a strong cor-
relation in CPU time between the workloads in the two
time frames, as shown in Figure 8(a). Figure 8(b) shows
the CDF of the speedups for all recurring jobs and it
indicates that about 80% of recurring jobs receive var-
ious degrees of performance improvements (up to 3x in
speedup) with Apollo. To understand the reason for the
differences, we measured the average task queuing time
on each server for every window of 10 minutes. Fig-
ure 8(c) shows the standard deviation of the average task
queue time across servers, comparing Apollo with the
baseline scheduler, which indicates clearly that Apollo
achieves much more balanced task queues across servers.

For the second experiment, we present a study of one
business critical production job, which runs every hour.
The job consumes logs from a search and advertisement
engine and analyzes user click information. Its execu-
tion graph consists of around ten thousands tasks, pro-
cessing a few terabytes of data. The execution graph
shown in Figure 1 is a much simplified version of this



296 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0
20k
40k
60k
80k

100k
120k
140k
160k
180k
200k

To
ta

l C
PU

 ti
m

e

Time

Apollo
Baseline  0

 0.2
 0.4
 0.6
 0.8

 1

0x 1x 2x 3x 4x

C
D

F

Speedup
 0
 5

 10
 15
 20
 25
 30

St
de

v 
of

 w
ai

t t
im

e 
(s

ec
)

ac
ro

ss
 m

ac
hi

ne
s

Time

Apollo
Baseline

(a) Comparable workloads. (b) Recurring job speedup. (c) Scheduling balance.

Figure 8: Comparison between Apollo and the baseline scheduler.

 20
 25
 30
 35
 40
 45
 50

Sun Mon Tue Wed Thu Fri Sat

Jo
b 

ru
nt

im
e 

(m
in

ut
es

)

Oracle (Capacity Constraint)
Oracle (Infinite Capacity)
Baseline
Apollo

Figure 9: Job latencies with different schedulers.

job. The performance of the job varies by weekdays be-
cause of periodic fluctuations in the input volume of user
clicks. To compare performance, we use one job per day
at the same hour in a week and evaluated the scheduling
performance of Apollo, baseline scheduler, and a sim-
ulated oracle scheduler, which has zero task wait time,
zero scheduling latency, zero task failures, and knows
exact runtime statistics about each task. Further, we use
two variants of the oracle scheduler: (i) oracle with ca-
pacity constraint, which is limited to the same capacity
that was allocated to the job when it ran in the production
environment and (ii) oracle without capacity constraint,
which has access to unlimited capacity, roughly repre-
senting the best case scenario.

Figure 9 shows job performance using Apollo and
the baseline scheduler, respectively, and compares them
with the oracle scheduler using runtime traces. On aver-
age, the job latency improved around 22% with Apollo
over the baseline scheduler, and Apollo performed within
4.5% of the oracle scheduler. On some days, Apollo
is even better than the oracle scheduler with the capac-
ity constraint because the job is able to get some extra
speedup from opportunistic scheduling, allowing the job
to get more capacity than the capacity constraint used by
the oracle scheduler.
Summary. Apollo delivers excellent job performance
compared with the baseline scheduler and its scheduling
quality is close to the optimal case.

5.3 Evaluating Estimates
Estimating task completion time, as described in Sec-
tion 3.3, plays an important role in Apollo’s scheduling
algorithm and thus job performance. Both task initializa-
tion time and I/O time can be calculated when the inputs
and server locations are known at runtime.
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We first measure the accuracy of the estimated task
wait time, as a result of applying task resource estima-
tion to the wait-time matrix. Over 95% tasks have a wait
time estimation error of less than 1 second. We then mea-
sure the CDF of the estimation error for task CPU time,
as shown in Figure 10. For 75% of tasks, the CPU time
predicted when the task is scheduled is within 25% of the
actual CPU consumption. Apollo continues to refine run-
time estimates based on statistics from the finished tasks
within the same stage at runtime. Nevertheless, a num-
ber of factors make runtime estimation challenging. A
common case is for tasks with early-out behavior with-
out reading all of its input. An example of such tasks may
consist of a filter operator followed by a TOP N operator.
Different tasks may consume different amount of input
data before collecting N rows satisfying the filter condi-
tion, which makes inference based on past task runtime
difficult. Complex user code whose resource consump-
tion and execution time varies by input data characteris-
tics also makes prediction difficult, if not infeasible. We
evaluate how Apollo dynamically adjusts scheduling de-
cisions at runtime in Section 5.4.

In order to evaluate the overall estimation impact, we
compare the Apollo performance with and without esti-
mation. As we rolled out Apollo to one production clus-
ter, we went through a phase in which we used a default
estimate for all tasks uniformly, before we enabled all
the internal estimation mechanism. We refer the phase
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as Apollo without estimation. Comparing the system be-
havior before and after allows us to understand the im-
pact of estimation on scheduling decisions in a produc-
tion cluster because the workloads are similar as we re-
ported in Section 5.2. Figure 11 shows the distributions
of task queuing time. With estimation enabled, Apollo
achieves much more balanced scheduling across servers,
which in turn leads to shorter task queuing latency.
Summary. Apollo provides good estimates on task wait
time and CPU time, despite all the challenges, and esti-
mation does help improve scheduling quality. Further
improvements can be achieved by leveraging statistics
of recurring jobs and better understanding task internals,
which is part of our future work.

5.4 Correction Effectiveness
In case of inaccurate estimates or sudden changes in a
cluster environment, Apollo applies a series of correc-
tion mechanisms to mitigate effectively. For duplicate
scheduling, we call a duplicate task successful if it starts
before the initial task.

Conditions (W : wait time) Trigger rate Success rate

New expected W significantly higher 0.12% 81.3%
Expected W greater than average 0.12% 81.3%
Elapsed W greater than average 0.17% 83.0%

Table 2: Duplicate scheduling efficiency.

Table 2 evaluates different heuristics of duplicate
scheduling, described in Section 3.4, for the same two-
week period and reports how frequently they are trig-
gered and their success rate. Overall, Apollo’s dupli-
cate scheduling is efficient, with 82% success rates, and
accounts for less than 0.5% of task creations. Such a
low correction rate confirms the viability of optimistic
scheduling and deferred corrections for this workload.

Straggler detection and mitigation is also important for
job performance. Apollo is able to catch more than 70%
stragglers efficiently and apply mitigation timely to expe-
dite query execution. We omit the detailed experiments
due to space constraints.
Summary. Apollo’s correction mechanisms are shown
effective with small overhead.

5.5 Stable Matching Efficiency
In a general case, the complexity of the stable match-
ing algorithm, when using a red-black tree to maintain a
sorted set of tasks to schedule, is O(n2) while the greedy
algorithm is O(n log(n)). However in our case the com-
plexity of the stable matching algorithm is limited to
O(n log(n)). The algorithm usually converges in less
than 3 iterations and our implementation limits the num-
ber of iterations of the matcher, which makes the worst
case complexity O(n log(n)), the same as the greedy al-
gorithm. In practice, a scheduling batch contains less
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Figure 12: Matching quality.
than 1,000 tasks and the computation overhead is negli-
gible, with no observed performance differences.

We verify the effectiveness of the stable matching al-
gorithm using a simulator. We measure the amount of
time it takes for a workload of N tasks to complete on 100
servers, using the greedy, stable matching, and optimal
matching algorithms, respectively. The optimal match-
ing algorithm uses an exhaustive search to compute the
best possible sequence of scheduling. Each server has
a single execution slot and have an expected wait time
that is exponentially distributed with an average of 1.
The expected runtime of each tasks is exponentially dis-
tributed with an average of 1. Each task is randomly
assigned a server preference and runs faster on the pre-
ferred server. Figure 12 shows that the stable match-
ing algorithm performs within 5% of the optimal match-
ing under the simulated conditions while the greedy ap-
proach, which schedules tasks one at a time on the server
with the minimum expected completion time, was 57%
slower than the optimal matching.
Summary. Apollo’s matching algorithm has the same
asymptotic complexity as a naive greedy algorithm with
negligible overhead. It performs significantly better than
the greedy algorithm and is within 5% of the optimal
scheduling in our simulation.

6 Related Work
Job scheduling was extensively studied [24, 25] in
high-performance computing for scheduling batch CPU-
intensive jobs and has become a hot topic again with
emerging data-parallel systems [7, 15, 29]. Monolithic
schedulers, such as Hadoop Fair Scheduler [28] and
Quincy [16], implement a scheduling policy for an en-
tire cluster using a centralized component. This class of
schedulers suffers from scalability challenges when serv-
ing large-scale clusters.

Mesos [14] and YARN [27] aim to ease the support for
multiple workloads by decoupling resource management
from application logic in a two-layer design. Facebook
Corona [1] uses a similar design but focuses on reduc-
ing job latency and improving scalability for Hadoop by
leveraging a push-based message flow and an optimistic
locking pattern. Mesos, YARN, and Corona remain fun-
damentally centralized. Apollo in contrast makes decen-
tralized scheduling decisions with no central scheduler,
which facilitates small task scheduling.
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Distributed schedulers such as Omega [23] and Spar-
row [22] address the scalability challenges by not relying
on a centralized entity for scheduling. Two different ap-
proaches have been explored to resolve conflicts. Omega
resolves any conflict using optimistic concurrency con-
trol [17] where only one of the conflicting schedulers
succeeds and the others have to roll back and retry later.
Sparrow instead relies on (random) sampling and specu-
lative scheduling to balance the load.

Similar to Omega, schedulers in Apollo makes op-
timistic scheduling decisions based on their views of
the cluster (with the help of the RM). Unlike Omega,
which detects and resolves conflicts at the scheduling
time, Apollo is optimistic in conflict detection and res-
olution by deferring any corrections until after tasks are
dispatched. This is made possible by Apollo’s design
of having local queues on servers. The use of local
task queue and task runtime estimates provides criti-
cal insight about future resource availability and allows
Apollo schedulers to optimize task scheduling by esti-
mating task completion time, instead of based on instan-
taneous resource availability at the scheduling time. This
also gives Apollo the extra benefit of masking resource-
prefetching latency effectively, which is important for
our target workload.

Although both adopting a distributed scheduling
framework, Sparrow and Apollo differ in how they make
scheduling decisions. Sparrow’s sampling mechanism
will schedule tasks on machines with the shortest queue,
with no consideration for other factors affecting the com-
pletion time, such as locality. In contrast, Apollo sched-
ulers optimize task scheduling by estimating task com-
pletion time that takes into account multiple factors such
as load and locality. Sparrow uses reservation on multi-
ple servers with late binding to alleviate its reliance on
queue length, rather than task completion time. Such
a reservation mechanism would introduce excessive ini-
tialization costs on multiple servers in our workload.
Apollo introduces duplicate scheduling only as a correc-
tion mechanism; it is rarely triggered in our system.

While Omega and Sparrow have been evaluated us-
ing simulation and a 110-machine cluster respectively,
our work distinguishes itself by showing Apollo’s effec-
tiveness in a real production environment at a truly large
scale, with diverse workloads, and complex resource and
job requirements.

Capacity management often goes hand-in-hand with
scheduling. Capacity scheduler [2] in Hadoop/YARN
uses global capacity queues to specify the share of re-
sources for each job, which is similar to token-based re-
source guarantee implemented in Apollo. Apollo uses
fine grained allocations and opportunistic scheduling to
take advantage of idle resources gracefully. Resource
management on local servers is also critical. Existing

work leverages Linux containers [13], usage monitor-
ing [27] and/or contention detection [31] to provide per-
formance isolation. Apollo can accommodate any of
those mechanisms.

Operator runtime estimation based on data statistics
and operator semantics has been extensively studied in
the database community for effective query optimiza-
tion [19, 11, 6]. For distributed computing of arbitrary
input and program, most effort (e.g., ParaTimer [21])
has been focusing on estimating the progress of running
jobs based on runtime statistics. Apollo combines both
static and runtime information and leverages program
patterns (e.g., stage) to estimate task runtime. Apollo
also includes a set of mechanisms to compensate inac-
curacy whenever needed. For example, many existing
works on outlier detection and straggler mitigation (e.g.,
LATE [30], Mantri [4], and Jockey [9]) are complemen-
tary to our work and can be integrated with the Apollo
framework for reducing job latency.

7 Conclusion

In this paper, we present Apollo, a scalable and coor-
dinated scheduling framework for cloud-scale comput-
ing. Apollo adopts a distributed and loosely coordinated
scheduling architecture that scales well without sacrific-
ing scheduling quality. Each Apollo scheduler consid-
ers various factors holistically and performs estimation-
based scheduling to minimize task completion time. By
maintaining a local task queue on each server, Apollo
enables each scheduler to reason about future resource
availability and implement a deferred correction mecha-
nism to effectively adjust suboptimal decisions dynami-
cally. To leverage idle system resources gracefully, op-
portunistic scheduling is used to maximize the overall
system utilization. Apollo has been deployed on produc-
tion clusters at Microsoft: it has been shown to achieve
high utilization and low latency, while coping well with
the dynamics in diverse workloads and large clusters.
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