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Abstract We investigate in this paper the relation between Apollonian d-ball packings

and stacked (d + 1)-polytopes for dimension d ≥ 3. For d = 3, the relation is fully

described: we prove that the 1-skeleton of a stacked 4-polytope is the tangency graph of

an Apollonian 3-ball packing if and only if there is no six 4-cliques sharing a 3-clique.

For higher dimension, we have some partial results.

Keywords Apollonian ball packing · Stacked polytope · k-Tree · Forbidden

subgraph

Mathematics Subject Classification 52C17 · 52B11 · 20F55

1 Introduction

A ball packing is a collection of balls with disjoint interiors. A graph is said to be ball

packable if it can be realized by the tangency relations of a ball packing. The combi-

natorics of disk packings (2-dimensional ball packings) is well understood thanks to

the Koebe–Andreev–Thurston’s disk packing theorem, which asserts that every pla-
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nar graph is disk packable. However, little is known about the combinatorics of ball

packings in higher dimensions.

In this paper we study the relation between Apollonian ball packings and stacked

polytopes. An Apollonian ball packing is constructed from a Descartes configuration

(a collection of pairwise tangent balls) by repeatedly filling new balls into “holes”. A

stacked polytope is constructed from a simplex by repeatedly gluing new simplices

onto facets. See Sects. 2.3 and 2.4 respectively for formal descriptions. There is a 1-to-1

correspondence between 2-dimensional Apollonian ball packings and 3-dimensional

stacked polytopes. Namely, a graph can be realized by the tangency relations of an

Apollonian disk packing if and only if it is the 1-skeleton of a stacked 3-polytope.

However, this relation does not hold in higher dimensions.

On the one hand, the 1-skeleton of a stacked (d +1)-polytope may not be realizable

by the tangency relations of any Apollonian d-ball packing. Our main result, proved in

Sect. 4, gives a condition on stacked 4-polytopes to restore the relation in this direction:

Theorem 1.1 (Main result) The 1-skeleton of a stacked 4-polytope is 3-ball packable

if and only if it does not contain six 4-cliques sharing a 3-clique.

For even higher dimensions, we propose Conjecture 4.1 following the pattern of

2- and 3-dimensional ball packings.

On the other hand, the tangency graph of an Apollonian d-ball packing may not

be the 1-skeleton of any stacked (d + 1)-polytope. We prove in Corollary 4.1 and

Theorem 4.3 that this only happens in dimension 3, when the ball packing contains

Soddy’s hexlet, a special packing consisting of nine balls.

The paper is organized as follows. In Sect. 2, we introduce the notions related to

Apollonian ball packings and stacked polytopes. In Sect. 3, we construct ball packings

for some graph joins. These constructions provide forbidden induced subgraphs for

the tangency graphs of ball packings, which are helpful for the intuition, and some

are useful in the proofs. The main and related results are proved in Sect. 4. Finally,

we discuss in Sect. 5 about edge-tangent polytopes, an object closely related to ball

packings.

2 Definitions and Preliminaries

2.1 Ball Packings

We work in the d-dimensional extended Euclidean space R̂
d = R

d ∪ {∞}. A d-ball

of curvature κ means one of the following sets:

– {x | ‖x − c‖ ≤ 1/κ} if κ > 0;

– {x | ‖x − c‖ ≥ −1/κ} if κ < 0;

– {x | 〈x, n̂〉 ≥ b} ∪ {∞} if κ = 0,

where ‖·‖ is the Euclidean norm, and 〈·, ·〉 is the Euclidean inner product. In the first

two cases, the point c ∈ R
d is called the center of the ball. In the last case, the unit

vector n̂ is called the normal vector of a half-space, and b ∈ R. The boundary of a

d-ball is a (d − 1)-sphere. Two balls are tangent at a point t ∈ R̂
d if t is the only

123



Discrete Comput Geom (2016) 55:801–826 803

element of their intersection. We call t the tangency point, which can be the infinity

point ∞ if it involves two balls of curvature 0. For a ball S ⊂ R̂
d , the curvature-center

coordinates is introduced by Lagarias et al. [24]

m(S) =
{

(κ, κc) if κ �= 0;
(0, n̂) if κ = 0.

Here, the term “coordinate” is an abuse of language, since the curvature-center coor-

dinates do not uniquely determine a ball when κ = 0. A real global coordinate

system would be the augmented curvature-center coordinates, see [24]. However,

the curvature-center coordinates are good enough for our use.

Definition 2.1 A d-ball packing is a collection of d-balls with disjoint interiors.

For a ball packing S, its tangency graph G(S) takes the balls as vertices and

the tangency relations as the edges. The tangency graph is invariant under Möbius

transformations and reflections.

Definition 2.2 A graph G is said to be d-ball packable if there is a d-ball packing

S whose tangency graph is isomorphic to G. In this case, we say that S is a d-ball

packing of G.

Disk packing (i.e. 2-ball packing) is well understood.

Theorem 2.1 (Koebe–Andreev–Thurston theorem [21,35]) Every connected simple

planar graph is disk packable. If the graph is a finite triangulated planar graph, then

it has a unique disk packing up to Möbius transformations.

Little is known about the combinatorics of ball packings in higher dimensions.

Some attempts of generalizing the disk packing theorem to higher dimensions include

[3,10,23,26]. Clearly, an induced subgraph of a d-ball packable graph is also d-ball

packable. In other words, the class of ball packable graphs is closed under the induced

subgraph operation.

Throughout this paper, ball packings are always in dimension d. The dimensions

of other objects will vary correspondingly.

2.2 Descartes Configurations

A Descartes configuration in dimension d is a d-ball packing consisting of d + 2

pairwise tangent balls. The tangency graph of a Descartes configuration is the complete

graph on d + 2 vertices. This is the basic element for the construction of many ball

packings in this paper. The following relation was first established for dimension 2 by

René Descartes in a letter [12] to Princess Elizabeth of Bohemia, then generalized to

dimension 3 by Soddy in the form of a poem [34], and finally generalized to arbitrary

dimension by Gosset [15].
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Theorem 2.2 (Descartes–Soddy–Gosset Theorem) In dimension d, if d + 2 balls

S1, . . . , Sd+2 form a Descartes configuration, let κi be the curvature of Si (1 ≤ i ≤
d + 2), then

d+2
∑

i=1

κ2
i = 1

d

( d+2
∑

i=1

κi

)2
. (1)

Equivalently, K⊺Qd+2K = 0, where K = (κ1, . . . , κd+2)
⊺ is the vector of curva-

tures, and Qd+2 := I − ee⊺/d is a square matrix of size d + 2, where e is the all-one

column vector, and I is the identity matrix, both of size d +2. A more general relation

on the curvature-center coordinates was proved in [24]:

Theorem 2.3 (Generalized Descartes–Soddy–Gosset Theorem) In dimension d, if

d + 2 balls S1, . . . , Sd+2 form a Descartes configuration, then

M⊺Qd+2M =
(

0 0

0 2I

)

, (2)

where M is the curvature-center matrix of the configuration, whose i-th row is m(Si ).

Given a Descartes configuration S1, . . . , Sd+2, we can construct another Descartes

configuration by replacing S1 with an Sd+3, such that the curvatures κ1 and κd+3 are

the two roots of (1) treating κ1 as unknown. So we have the relation

κ1 + κd+3 = 2

d − 1

d+2
∑

i=2

κi . (3)

We see from (2) that the same relation holds for all the entries in the curvature-center

coordinates,

m(S1) + m(Sd+3) = 2

d − 1

d+2
∑

i=2

m(Si ). (4)

These equations are essential for the calculations in the present paper.

By recursively replacing Si with a new ball Si+d+2 in this way, we obtain an infinite

sequence of balls S1, S2, . . ., in which any d + 2 consecutive balls form a Descartes

configuration. This is Coxeter’s loxodromic sequences of tangent balls [11].

2.3 Apollonian Cluster of Balls

Definition 2.3 A collection of d-balls is said to be Apollonian if it can be built from

a Descartes configuration by repeatedly introducing, for d + 1 pairwise tangent balls,

a new ball that is tangent to all of them.

For example, Coxeter’s loxodromic sequence is Apollonian. Please note that a

newly added ball is allowed to touch more than d + 1 balls, and may intersect some

other balls. In the latter case, the result is not a packing. In this paper, we are interested

in (finite) Apollonian ball packings.
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We now reformulate the replacing operation described before (3) by inversions.

Given a Descartes configuration S = {S1, . . . , Sd+2}, let Ri be the inversion in the

sphere that orthogonally intersects the boundary of S j for all 1 ≤ j �= i ≤ d +2. Then

RiS forms a new Descartes configuration, which keeps every ball of S, except that

Si is replaced by Ri Si . With this point of view, a Coxeter’s sequence can be obtained

from an initial Descartes configuration S0 by recursively constructing a sequence of

Descartes configurations by Sn+1 = R j+1Sn where j ≡ n (mod d + 2), then taking

the union.

The group W generated by {R1, . . . , Rd+2} is called the Apollonian group. The

union of the orbits
⋃

S∈S0
W S is called the Apollonian cluster (of balls) [17]. The

Apollonian cluster is an infinite ball packing in dimensions two [16] and three [4].

That is, the interiors of any two balls in the cluster are either identical or disjoint.

This is unfortunately not true for higher dimensions. Our main object of study, (finite)

Apollonian ball packings, can be seen as special subsets of the Apollonian cluster.

Define

Ri := I + 2

d − 1
ei e

⊺ − 2d

d − 1
ei e

⊺
i ,

where ei is a (d +2)-vector whose entries are 0 except for the i-th entry being 1. So Ri

coincide with the identity matrix at all rows except for the i-th row, whose diagonal

entry is −1 and off-diagonal entries are 2/(d − 1). One then verifies that Ri induces

a representation of the Apollonian group. In fact, if M is the curvature-center matrix

of a Descartes configuration S, then Ri M is the curvature-center matrix of RiS.

2.4 Stacked Polytopes

For a simplicial polytope, a stacking operation glues a new simplex onto a facet.

Definition 2.4 A simplicial d-polytope is stacked if it can be iteratively constructed

from a d-simplex by a sequence of stacking operations.

We call the 1-skeleton of a polytope P the graph of P , denoted by G(P). For

example, the graph of a d-simplex is the complete graph on d + 1 vertices. The graph

of a stacked d-polytope is a d-tree, that is, a chordal graph whose maximal cliques are

of the same size d + 1. Inversely:

Theorem 2.4 (Kleinschmidt [19]) A d-tree is the graph of a stacked d-polytope if and

only if there are no three (d + 1)-cliques sharing d vertices.

A d-tree satisfying this condition will be called a stacked d-polytopal graph.

A simplicial d-polytope P is stacked if and only if it admits a triangulation T with

only interior faces of dimension (d −1). For d ≥ 3, this triangulation is unique, whose

simplices correspond to the maximal cliques of G(P). This implies that stacked poly-

topes are uniquely determined by their graph (i.e. stacked polytopes with isomorphic

graphs are combinatorially equivalent). The dual tree [14] of P takes the simplices

of T as vertices, and connect two vertices if the corresponding simplices share a

(d − 1)-face.
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Fig. 1 Relation between 3-trees, stacked 3-polytopes and 2-ball packings

The following correspondence between Apollonian 2-ball packings and stacked

3-polytopes can be easily seen from Theorem 2.1 by comparing the construction

processes:

Theorem 2.5 If a disk packing is Apollonian, then its tangency graph is stacked 3-

polytopal. If a graph is stacked 3-polytopal, then it is disk packable with an Apollonian

disk packing, which is unique up to Möbius transformations and reflections.

The relation between 3-tree, stacked 3-polytope and Apollonian 2-ball packing can

be illustrated as in Fig. 1, where the double-headed arrow A ։ B emphasizes that

every instance of B corresponds to an instance of A satisfying the given condition,

and the left-right arrow A ↔ B emphasizes on the one-to-one correspondence.

3 Ball-Packability of Graph Joins

Notations We use Gn to denote any graph on n vertices, and use

Pn for the path on n vertices (therefore of length n − 1);

Cn for the cycle on n vertices;

Kn for the complete graph on n vertices;

K̄n for the empty graph on n vertices;

♦d for the 1-skeleton of the d-dimensional orthoplex.1

The join of two graphs G and H , denoted by G + H , is the graph obtained by

connecting every vertex of G to every vertex of H . Most of the graphs in this section

will be expressed in terms of graph joins. Notably, we have ♦d = K̄2 + · · · + K̄2
︸ ︷︷ ︸

d

(which is also commonly written as K2,...,2, since it is a multipartite graph with d

parts, each of size 2).

Not all constructions in this section are useful for the proof of our main result. We

report them here because they are interesting and may help understand ball packings.

1 The orthoplex is also commonly called “cross polytope”.
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Fig. 2 An attempt of constructing the ball packing of K3 + P6 results in K3 + C6. Referring to the proof

of Theorem 3.1, the red balls correspond to vertices in K3, the blue balls are labeled by B, C, D, E from

bottom to top. The upper half-space F is not shown. The image is rendered by POV-Ray

3.1 Graphs in the form of Kd + Pm

The following theorem reformulates a result of Wilker [36]. A proof was sketched

in [4]. Here we present a very elementary proof, suitable for our further generalization.

Theorem 3.1 Let d > 2 and m ≥ 0. A graph in the form of

(i) K2 + Pm is 2-ball packable for any m;

(ii) Kd + Pm is d-ball packable if m ≤ 4;

(iii) Kd + Pm is not d-ball packable if m ≥ 6;

(iv) Kd + P5 is d-ball packable if and only if d = 3 or 4.

Proof (i) is trivial, since K2 + Pm is planar.

For dimension d > 2, we construct a ball packing for the complete graph Kd+2 =
Kd + P2 as follows. The two vertices of P2 are represented by two disjoint half-spaces

A and F at distance 2 apart (they are tangent at infinity), and the d vertices of Kd are

represented by d pairwise tangent unit balls touching both A and F. Figure 2 shows

the situation for d = 3, where red balls represent vertices of K3. This is the unique

packing of Kd+2 up to Möbius transformations.

The centers of the unit balls defines a (d − 1)-dimensional regular simplex. Let S

be the (d − 2)-dimensional circumsphere of this simplex. The idea of the proof is

the following. Starting from Kd + P2, we construct the ball packing of Kd + Pm
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by appending new balls to the path, with each new ball touching all the d unit balls

representing Kd . The center of a new ball is at the same distance (1+ its radius) from

the centers of the unit balls, so the new balls must center on a straight line through the

center of S and perpendicular to the hyperplane containing S. The construction fails

when the sum of the diameters exceeds 2.

As a first step, we construct Kd + P3 by adding a new ball B tangent to A. By (3), the

diameter of B is 2/κB = (d−1)/d < 1. Since B is disjoint from F, this step succeeded.

Then we add a ball E tangent to F. It has the same diameter as B by symmetry, and

they sum up to 2(d − 1)/d < 2. So the construction of Kd + P4 succeeded, which

proves (ii).

We now add a ball C tangent to B. Still by (3), the diameter of C is

2

κC

= (d − 1)2

d(d + 1)
.

If we sum up the diameters of B, C and E, we get

2
d − 1

d
+ (d − 1)2

d(d + 1)
= 3d2 − 2d − 1

d(d + 1)
, (5)

which is smaller than 2 if and only if d ≤ 4. Therefore the construction fails unless

d = 3 or 4, which proves (iv).

For d = 3 or 4, we continue to add a ball D tangent to E. It has the same diameter

as C. If we sum up the diameters of B, C, D and E, we get

2
(d − 1

d
+ (d − 1)2

d(d + 1)

)

= 4
d − 1

d + 1
, (6)

which is smaller than 2 if and only if d < 3, which proves (iii). ⊓⊔
Remark 3.1 Figure 2 shows the attempt of constructing the ball packing of K3 + P6

but results in the ball packing of K3 + C6. This packing is called Soddy’s hexlet [33].

It’s an interesting configuration since the diameters of B, C, D and E sum up to exactly

2. This configuration is also studied by Maehara and Oshiro [25].

Remark 3.2 Let’s point out the main differences between the situation in dimension 2

and higher dimensions. For d = 2, a Descartes configuration divides the space into 4

disconnected parts, and the radius of a circle tangent to the two unit circles of K2 can

be arbitrarily small. However, if d > 2, the complement of a Descartes configuration

is always connected, and the radius of a ball tangent to all the d balls of Kd is bounded

away from 0. In fact, using the Descartes–Soddy–Gosset theorem, one verifies that the

radius of such a ball is at least d−2

d+
√

2d2−2d
, which tends to 1

1+
√

2
as d tends to infinity.

3.2 Graphs in the Form of Kn + Gm

Recall that Gm denotes any graph on m vertices. The following is a corollary of

Theorem 3.1.
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Corollary 3.1 For d = 3 or 4, a graph in the form of Kd + G6 is not d-ball packable,

with the exception of K3 +C6. For d ≥ 5, a graph in the form of Kd +G5 is not d-ball

packable.

Proof Consider the graph Kd + Gm , where m = 6 if d = 3 or 4, or m = 5 if d > 4.

If Gm is not empty, we construct a packing of Kd + P2 with d unit balls and two

disjoint half-spaces, as in the proof of Theorem 3.1. Otherwise, we replace the upper

half-space with a ball of an arbitrarily small curvature.

Since the centers of the balls of Gm are situated on a straight line, Gm can only be

a path, a cycle Cm or a disjoint union of paths (possibly empty). The first possibility is

ruled out by Theorem 3.1. The cycle is only possible when d = 3 and m = 6, in which

case the ball packing of K3 + C6 is Soddy’s hexlet. There remains the case where Gm

is a disjoint union of paths. As in the proof of Theorem 3.1, we try to construct the

packing of Kd + Gm by introducing new balls, one above another on the straight line,

touching all the unit balls representing Kd .

But this time, some ball is not allowed to touch the previous one. For such a ball,

let r be its radius and h be the height (distance from the lower half-space) of its center.

Since it touches all the unit balls, an elementary geometric calculation yields

(h + r)(2 − h + r) = 2(d − 1)/d.

The constant on the right hand side is the square of the circumradius of the (d − 1)-

dimensional regular simplex of edge length 2. On the left hand side, h + r (resp.

h − r ) is the height of the highest (resp. lowest) point of the ball. We then observe

that when we increase h − r to avoid touching the previous ball, h + r also increases,

and any ball that is above it also has a higher value of h + r . Comparing to the proof

of Theorem 3.1, we conclude that no matter how hard we try to keep the gaps small

between non-touching balls, the last ball in Gm has to overlap the upper half-space

(possibly replaced by a ball of small curvature). ⊓⊔

We now study some other graphs with the form Kn + Gm using kissing config-

urations and spherical codes. A d-kissing configuration is a packing of unit d-balls

all touching another unit ball. The d-kissing number k(d, 1) (the reason for this nota-

tion will be clear later) is the maximum number of balls in a d-kissing configuration.

The kissing number is known to be 2 for dimension 1, 6 for dimension 2, 12 for

dimension 3 [9], 24 for dimension 4 [28], 240 for dimension 8 and 196560 for dimen-

sion 24 [29]. We have immediately the following theorem.

Theorem 3.2 A graph in the form of K3 + G is d-ball packable if and only if G is the

tangency graph of a (d − 1)-kissing configuration.

To see this, just represent K3 by one unit ball and two disjoint half-spaces at distance

2 apart, then the other balls must form a (d − 1)-kissing configuration. For example,

K3 + G13 is not 4-ball packable, K3 + G25 is not 5-ball packable, and in general,

K3 + Gk(d−1,1)+1 is not d-ball packable.

We can generalize this idea as follows. A (d, α)-kissing configuration is a pack-

ing of unit d-balls all touching α pairwise tangent unit d-balls. The (d, α)-kissing
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number k(d, α) is the maximum number of balls in a (d, α)-kissing configuration. So

the d-kissing configuration discussed above is actually the (d, 1)-kissing configura-

tion, from where the notation k(d, 1) is derived. Clearly, if G is the tangency graph

of a (d, α)-kissing configuration, G + K1 must be the graph of a (d, α − 1)-kissing

configuration, and G + Kα−1 must be the graph of a d-kissing configuration. With a

similar argument as before, we have the following theorem.

Theorem 3.3 A graph in the form of K2+α + G is d-ball packable if and only if G is

the tangency graph of a (d − 1, α)-kissing configuration.

To see this, just represent K2+α by two half-spaces at distance 2 apart and α pairwise

tangent unit balls, then the other balls must form a (d − 1, α)-kissing configuration.

As a consequence, a graph in the form of K2+α + Gk(d−1,α)+1 is not d-ball packable.

The following corollary follows from the fact that k(d, d) = 2 for all d > 0.

Corollary 3.2 A graph in the form of Kd+1 + G3 is not d-ball packable.

We then see from Theorem 2.4 that a (d + 1)-tree is d-ball packable only if it is

stacked (d + 1)-polytopal.

A (d, cos θ)-spherical code [9] is a set of points on the unit (d − 1)-sphere such

that the spherical distance between any two points in the set is at least θ . We denote

by A(d, cos θ) the maximal number of points in such a spherical code. Spherical

codes generalize kissing configurations. The minimal spherical distance corresponds

to the tangency relation, and A(d, cos θ) = k(d, 1) if θ = π/3. Corresponding to

the tangency graph, the minimal-distance graph of a spherical code takes the points

as vertices and connects two vertices if the corresponding points attain the minimal

spherical distance. As noticed by Bannai and Sloane [2, Thm. 1], the centers of unit

balls in a (d, α)-kissing configuration correspond to a (d −α+1, 1
α+1

)-spherical code

after rescaling. Therefore:

Corollary 3.3 A graph in the form of K2+α + G is (d + α)-ball packable if and only

if G is the minimal-distance graph of a (d, 1
α+1

)-spherical code.

We give in Table 1 an incomplete list of (d, 1
α+1

)-spherical codes for integer values

of α. They are therefore (d+α−1, α)-kissing configurations for the α and d given in the

table. The first column is the name of the polytope whose vertices form the spherical

code. Some of them are from Klitzing’s list of segmentochora [20], which can be

viewed as a special type of spherical codes. Some others are inspired from Sloane’s

collection of optimal spherical codes [32]. For those polytopes with no conventional

name, we keep Klitzing’s notation, or give a name following Klitzing’s method. The

second column is the corresponding minimal-distance graph, if a conventional notation

is available. Here are some notations used in the table:

– For a graph G, its line graph L(G) takes the edges of G as vertices, and two

vertices are adjacent if and only if the corresponding edges share a vertex in G.

– The Johnson graph Jn,k takes the k-element subsets of an n-element set as vertices,

and two vertices are adjacent whenever their intersection contains k − 1 elements.

Especially, Jn,2 = L(Kn).
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Table 1 Some (d, 1
α+1 )-spherical codes for integer α

Spherical code Minimal distance graph α d

k-Orthoplicial prism ♦k�K2 2 k + 1

k-Orthoplicial-pyramidal prism (♦k + K1)�K2 2 k + 2

Rectified k-orthoplex L(♦k ) 1 k

Augmented k-simplicial prism k k + 1

2-Simplicial prism(−121) [20, 3.4.1] K3�K2 6 3

3-Simplicial prism(−131) [20, 4.9.2] K4�K2 4 4

5-Simplicial prism K6�K2 3 6

Triangle-triangle duoprism(−122) [20, 4.10] K3�K3 3 4

Tetrahedron-tetrahedron duoprism K4�K4 2 6

Triangle-hexahedron duoprism K3�K6 2 7

Rectified 4-simplex(021) [1] J5,2 5 4

Rectified 5-simplex(031) J6,2 3 5

Rectified 7-simplex J8,2 2 7

Birectified 5-simplex(022) J6,3 2 5

Birectified 8-simplex J9,3 1 8

Trirectified 7-simplex J8,4 1 7

5-Demicube(121) [32, pack.5.16] 4 5

6-Demicube(131) 2 6

8-Demicube 1 8

122 1 6

231 1 7

221 [8, AppendixA] 3 6

321 [2] 2 7

421 [2] 1 8

3p‖refl ortho 3p [20, 4.13] 2 4

3g‖gyro 3p [20, 4.6.2] 5 4

3g‖ortho 4g [20, 4.7.3] 5 4

3p‖ortho line [20, 4.8.2] 5 4

oct‖hex [32, pack.5.14] 4 5

– For two graph G and H , G�H denotes the Cartesian product.

We would like to point out that for 1 ≤ α ≤ 6, vertices of the uniform

(5 − α)21 polytope form an (8, α)-kissing configuration. These codes are derived

from the E8 root lattice [2, Ex. 2]. They are optimal and unique except for the trigonal

prism((−1)21 polytope) [1,8, Appendix A]. There are also spherical codes similarly

derived from the Leech lattice [2,7, Ex. 3].

As a last example, since

k(d, α) = A
(

d − α + 1,
1

α + 1

)

,
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the following fact provides another proof of Corollary 3.1:

k(d, d − 1) = A(2, 1/d) =

⎧

⎪
⎨

⎪
⎩

4 if d ≥ 4;
5 if d = 3;
6 if d = 2 (optimal).

Before ending this part, we present the following trivial theorem (see [18,

Lem. 2.3]).

Theorem 3.4 A graph in the form of K2 + G is d-ball packable if and only if G

is (d − 1)-unit-ball packable.

For the proof, just use disjoint half-spaces to represent K2, then G must be repre-

sentable by a packing of unit balls.

3.3 Graphs in the Form of ♦d + Gm

Theorem 3.5 A graph in the form of ♦d−1 + P4 is not d-ball packable, but ♦d+1 =
♦d−1 + C4 is d-ball packable.

Proof The graph ♦d−1 is the 1-skeleton of the (d − 1)-dimensional orthoplex. The

vertices of a regular orthoplex of edge length
√

2 forms an optimal spherical code

of minimal distance π/2. As in the proof of Theorem 3.1, we first construct the ball

packing of ♦d−1 + P2. The edge P2 is represented by two disjoint half-spaces. The

graph ♦d−1 is represented by 2(d − 1) unit balls. Their centers are on a (d − 2)-

dimensional sphere S, otherwise further construction would not be possible. So the

centers of these unit balls must be the vertices of a regular (d − 1)-dimensional

orthoplex of edge length 2, and the radius of S is
√

2.

We now construct ♦d−1 + P3 by adding the unique ball that is tangent to all the

unit balls and also to one half-space. An elementary calculation shows that the radius

of this ball is 1/2. By symmetry, a ball touching the other half-space has the same

radius. These two balls must be tangent since their diameters sum up to 2. Therefore,

an attempt for constructing a ball packing of ♦d−1 + P4 results in a ball packing of

♦d+1 = ♦d−1 + C4. ⊓⊔

For example, C4 + C4 is 3-ball packable, as shown in Fig. 3. This is also observed

by Maehara and Oshiro [25]. By the same argument as in the proof of Corollary 3.1,

we have

Corollary 3.4 A graph in the form of ♦d−1 + G4 is not d-ball packable, with the

exception of ♦d+1 = ♦d−1 + C4.

3.4 Graphs in the Form of Gn + Gm

Recall that Gn denotes any graph on n vertices. The following is a corollary of Corol-

lary 3.1.
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Fig. 3 A ball packing of C4 + C4. The red balls form a cycle, and the blue balls form a cycle with the

lower and the upper half-space. The upper half-space is not shown. The image is rendered by POV-Ray

Corollary 3.5 A graph in the form of G6+G3 is not 3-ball packable, with the exception

of C6 + C3.

Proof As in the proof of Theorem 3.1, up to Möbius transformations, we may represent

G3 by three unit balls. We assume that their centers are not collinear, otherwise further

construction is not possible. Let S be the 1-sphere decided by their centers. Every ball

representing a vertex of G6 must center on the straight line through the center of S and

perpendicular to the plane containing S. From the proof of Corollary 3.1, the number

of disjoint balls touching all three unit balls is at most six, while six balls only happens

in the Soddy’s hexlet. ⊓⊔

The following corollaries follow from the same argument with slight modification.

Corollary 3.6 A graph in the form of G4+G4 is not 3-ball packable, with the exception

of C4 + C4.

Proof Up to Möbius transformation, we may represent three vertices of the first G4 by

unit balls, whose centers decide a 1-sphere S. Balls representing vertices of the second

G4 must center on the straight line through the center of S and perpendicular to the

plane containing S. Then the remaining vertex of the first G4 must be represented by a

unit ball centered on S, too. We conclude from Corollary 3.4 that the only possibility

is C4 + C4. ⊓⊔
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Corollary 3.7 A graph in the form of G4+G6 is not 4-ball packable, with the exception

of C4 + ♦3.

Proof Up to Möbius transformation, we represent four vertices of G6 by unit balls,

whose centers are not coplanar and decide a 2-sphere S. Balls representing vertices of

G4 must center on the straight line through the center of S and perpendicular to the

hyperplane containing S. Then the two remaining vertices of G6 must be represented

by unit balls centered on S, too. The diameter of S is minimal only when G6 = ♦3. In

this case, G4 must be in the form of C4 by Corollary 3.4. If G6 is in any other form,

a ball touching the unit balls must have a larger radius, which is not possible.

Special caution is needed for a degenerate case: the six balls representing G6 could

center on a 1-sphere. This possibility can be eliminated by first constructing G4 and

conclude with Theorems 3.1 and 3.5. ⊓⊔

Therefore, if a graph is 3-ball packable, any induced subgraph in the form of G6+G3

must be in the form of C6 + K3, and any induced subgraph in the form of G4 + G4

must be in the form of C4 + C4. If a graph is 4-ball packable, every induced subgraph

in the form of G4 + G6 must be in the form of C4 + ♦3.

Remark 3.3 The argument in these proofs should be used with caution. As mentioned

in the proof of Corollary 3.7, one must check carefully the degenerate cases. For

example, if we prove Corollary 3.7 by constructing G4 first, and neglect the degenerate

case where the balls representing G4 center on a 1-sphere, then we would falsely

conclude that G4 + G6 are not 4-ball packable, ignoring the exception C4 + ♦3.

The following is a corollary of Theorem 3.3, for which we omit the simple proof.

Corollary 3.8 A graph in the form of K2 + Gα + Gk(d−1,α)+1 is not d-ball packable.

4 Ball Packable Stacked-Polytopal Graphs

This section is devoted to the proof of the main result. Some proof techniques are

adapted from [17].

4.1 More on Stacked Polytopes

Since a graph in the form of Kd + Pm is stacked (d + 1)-polytopal, Theorem 3.1

provides some examples of stacked (d + 1)-polytopes whose graphs are not d-ball

packable, and C3 + C6 provides an example of an Apollonian 3-ball packing whose

tangency graph is not stacked 4-polytopal. Therefore, in higher dimensions, the relation

between Apollonian ball packings and stacked polytopes is more complicated. The

following remains true:

Theorem 4.1 If the graph of a stacked (d + 1)-polytope is d-ball packable, its ball

packing is Apollonian and unique up to Möbius transformations and reflections.

123



Discrete Comput Geom (2016) 55:801–826 815

Proof The graph being Apollonian can be easily seen by comparing the construction

processes. The uniqueness can be proved by an induction on the construction process.

While a stacked polytope is built from a simplex, we construct its ball packing from a

Descarte configuration, which is unique up to Möbius transformations and reflections.

For every stacking operation, a new ball representing the new vertex was added into

the packing, forming a new Descartes configuration. We have a unique choice for

every newly added ball, so the uniqueness is preserved at every step of construction.

⊓⊔

For a d-polytope P , the link of a k-face F is the subgraph of G(P) induced by the

common neighbors of the vertices of F . The following lemma will be useful for the

proofs later:

Lemma 4.1 For a stacked d-polytope P , the link of a k-face is stacked (d − k − 1)-

polytopal.

4.2 Weighted Mass of a Word

The following theorem was proved in [17].

Theorem 4.2 The 3-dimensional Apollonian group is a hyperbolic Coxeter group

generated by the relations Ri Ri = I and (Ri R j )
3 = I for 1 ≤ i �= j ≤ 5.

Here we sketch the proof in [17], which is based on the study of reduced words.

Definition 4.1 A word U = U1U2 · · · Un over the generator of the 3-dimensional

Apollonian group (i.e. Ui ∈ {R1, . . . , R5}) is reduced if it does not contain

– subwords in the form of Ri Ri for 1 ≤ i ≤ 5; or

– subwords in the form of V1V2 · · · V2m in which V1 = V3, V2m−2 = V2m and

V2 j = V2 j+3 for 1 ≤ j ≤ 2m − 2.

Notice that m = 2 excludes the subwords of the form (Ri R j )
2. One verifies that a

non-reduced word can be simplified to a reduced word using the generating relations.

Then it suffices to prove that no nonempty reduced word, treated as a product of

matrices, is identity.

To prove this, the authors of [17] studied the sum of entries in the i-th row of U,

i.e. σi (U) := e
⊺
i Ue, and the sum of all the entries in U, i.e. Σ(U) := e⊺Ue. The latter

is called the mass of U. The quantities Σ(U), Σ(R j U), σi (U) and σi (R j U) satisfy a

series of linear equations, which was used to inductively prove that Σ(U) > Σ(U′)
for a reduced word U = Ri U

′. Therefore U is not an identity since Σ(U) ≥ Σ(Ri ) =
7 > Σ(I) = 5.

We propose the following adaption. Given a weight vector w, we define σw
i (U) =

e
⊺
i Uw the weighted sum of entries in the i-th row of U, and Σw(U) = e⊺Uw the

weighted mass of U. The following lemma can be proved with an argument similar as

in [17]:

Lemma 4.2 For dimension 3, if Σw(Ri ) ≥ Σw(I) for any 1 ≤ i ≤ 5, then for a

reduced word U = Ri U
′, we have Σw(U) ≥ Σw(U′).
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Proof (Sketch of proof) It suffices to replace “sum” by “weighted sum”, “mass” by

“weighted mass”, and “>” by “≥” in the proof of [17, Thm. 5.1]. It turns out that the

following relations hold for 1 ≤ i, j ≤ 5.

σw
i (R j U) =

{

σw
i (U) if i �= j,

Σw(U) − 2σw
i (U) if i = j,

(7)

Σw(Ri U) = 2Σw(U) − 3σw
i (U).

Then, if we define δw
i (U) := Σw(Ri U) − Σw(U), the following relations hold:

δw
i (R j U) =

{

δw
i (U) + δw

j (U) if i �= j,

−δw
i (U) if i = j,

δw
i (R j U) = δw

j (Ri U) if i �= j,

δw
i (R j Ri U) = δw

j (U).

These relations suffice for the induction. The base case is already assumed in the

assumption of the theorem, which reads δw
i (I) ≥ 0 for 1 ≤ i ≤ 5. So the rest of

the proof is exactly the same as in the proof of [17, Thm 5.1]. For details of the

induction, we refer the readers to the original proof. The conclusion is δw
i (U′) ≥ 0,

i.e. Σw(U) ≥ Σw(U′). ⊓⊔

4.3 A Generalization of Coxeter’s Sequence

Let U = Un · · · U2U1 be a word over the generators of the 3-dimensional Apollonian

group (we have a good reason for reversing the order of the index). Let M0 be the

curvature-center matrix of an initial Descartes configuration, consisting of five balls

S1, . . . , S5. The curvature-center matrices recursively defined by Mi = Ui Mi−1,

1 ≤ i ≤ n, define a sequence of Descartes configurations. We take S5+i to be the

unique ball that is in the configuration at step i but not in the configuration at step

i −1. This generates a sequence of 5+n balls, which generalizes Coxeter’s loxodromic

sequence in dimension 3. In fact, Coxeter’s loxodromic sequence is generated by an

infinite word of period 5, e.g. U = · · · R2R1R5R4R3R2R1.

Lemma 4.3 If U is reduced and U1 = R1, then in the sequence constructed above,

S1 is disjoint from every ball except the first five.

Proof We take the initial configuration to be the configuration used in the proof of

Theorem 3.1. Assume S1 to be the lower half-space x1 ≤ 0, then the initial curvature-

center matrix is

M0 =

⎛

⎜
⎜
⎜
⎜
⎝

0 −1 0 0

0 1 0 0

1 1 1
√

1/3

1 1 −1
√

1/3

1 1 0 −2
√

1/3

⎞

⎟
⎟
⎟
⎟
⎠

.

123



Discrete Comput Geom (2016) 55:801–826 817

Every row corresponds to the curvature-center coordinates m of a ball. The first coor-

dinate m1 is the curvature κ . If the curvature is not zero, the second coordinate m2 is

the “height” of the center times the curvature, i.e. x1κ .

Now take the second column of M0 to be the weight vector w. That is,

w = (−1, 1, 1, 1, 1)⊺.

We have Σw(R1) = 9 > Σw(I) = 3 and Σw(R j ) = 3 = Σw(I) for j > 1. By

Lemma 4.2, we have

Σw(UkUk−1 · · · U2R1) ≥ Σw(Uk−1 · · · U2R1).

By (7), this means that

σw
j (Uk · · · U2R1) ≥ σw

j (Uk−1 · · · U2R1)

if Uk = R j , or equality if Uk �= R j .

The key observation is that σw
j (Uk · · · R1) is nothing but the second curvature-

center coordinate m2 of the j-th ball in the k-th Descartes configuration. So at every

step, a ball is replaced by another ball with a larger or same value for m2. Especially,

since σw
j (R1) ≥ 1 for 1 ≤ j ≤ 5, we conclude that m2 ≥ 1 for every ball.

Four balls in the initial configuration have m2 = 1. Once they are replaced, the new

ball must have a strictly larger value of m2. This can be seen from (4) and notice that,

for the second coordinate, the right hand side of (4) is at least 4 from the very first

step of the construction. We then conclude that m2 > 1 for all balls except for the first

five.

For dimension 3, the sequence is a packing (by the result of [4]), so no ball in

the sequence has a negative curvature, and only the first two are of zero curvature.

Therefore, except for the first five, all the balls have a positive curvature κ > 0 and a

positive m2 = x1κ > 1. This implies that x1 > 1/κ , hence the balls are all disjoint

from the half-space x1 ≤ 0, except for the first five. ⊓⊔

4.4 Proof of the Main Result

The “only if” part of Theorem 1.1 follows from Theorem 3.1 and the following lemma.

Lemma 4.4 Let G be a stacked 4-polytopal graph. If G has an induced subgraph in

the form of G3 + G6, then G must have an induced subgraph in the form of K3 + P6.

Note that C6 + K3 is not an induced subgraph of any stacked polytopal graph.

Proof Let H be an induced subgraph of G of form G3 + G6. Let v ∈ V (H) be the

last vertex of H that is added into the polytope during the construction of the stacked

polytope. We have degH v = 3 or 4, and the neighbors of v induce a complete graph.

So the vertex v must be a vertex of G6, and G3 must be the complete graph K3. Hence

H is of the form K3 + G6.
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By Lemma 4.1, in the stacked 4-polytope with graph G, the link of every 2-face is

stacked 1-polytopal. In other words, the common neighbors of K3 induce a path Pn

where n ≥ 6. Therefore G must have an induced subgraph of the form P6 + K3. ⊓⊔

Proof (“if” part of Theorem 1.1) The complete graph on five vertices is clearly 3-ball

packable. Assume that every stacked 4-polytope with less than n vertices satisfies this

theorem. We now consider a stacked 4-polytope P of n +1 vertices that does not have

six 4-cliques in its graph with 3 vertices in common, and assume that G(P) is not ball

packable.

Let u, v be two vertices of G(P) of degree 4. Deleting v from P leaves a stacked

polytope P ′ of n vertices that satisfies the condition of the theorem, so G(P ′) is ball

packable by the assumption of induction. In the ball packing of P ′, the four balls

corresponding to the neighbors of v are pairwise tangent. We then construct the ball

packing of P by adding a ball Sv that is tangent to these four balls. We have only

one choice (the other choice coincides with another ball), but since G(P) is not ball

packable, Sv must intersect some other balls.

However, deleting u also leaves a stacked polytope whose graph is ball packable.

Therefore Sv must intersect Su and only Su . Now if there is another vertex w of degree

4 different from u and v, deleting w leaves a stacked polytope whose graph is ball

packable, which produces a contradiction. Therefore u and v are the only vertices of

degree 4.

Let T be the dual tree of P , its leaves correspond to vertices of degree 4. So T

must be a path, whose two ends correspond to u and v. We can therefore construct

the ball packing of P as a generalized Coxeter’s sequence studied in the previous

part. The first ball is Su . The construction word does not contain any subword of form

(Ri R j )
2 (which produces C6 + K3 and violates the condition) or Ri Ri . One can

always simplify the word into a non-empty reduced word. This does not change the

corresponding matrix, so the curvature-center matrix of the last Descarte configuration

remains the same.

Then Lemma 4.3 says that Su and Sv are disjoint, which contradicts our previous

discussion. Therefore G(P) is ball packable. ⊓⊔

Corollary 4.1 (of the proof) The tangency graph of an Apollonian 3-ball packing is

a 4-tree if and only if it does not contain any Soddy’s hexlet.

Proof The “only if” part is trivial. We only need to proof the “if” part.

If the tangency graph is a 4-tree, then during the construction, every newly added

ball touches exactly 4 pairwise tangent balls. If it is not the case, we can assume S to

be the first ball that touches five balls, the extra ball being S′.
Since the tangency graph is stacked 4-polytopal before introducing S, there is a

sequence of Descartes configurations generated by a word, with S′ in the first config-

uration and S in the last one. By ignoring the leading configurations in the sequence

if necessary, we may assume that the second Descartes configuration does not contain

S′. We can arrange the first configuration as in the previous proof, taking S′ as the

lower half-space x1 < 0 and labelling it as the first ball. Therefore the generating word

U ends with R1.
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Fig. 4 Relation between 4-trees, stacked 4-polytopes and 3-ball packings

We may assume that U does not have any subword of the form Ri Ri . If U is reduced,

we know in the proof of Theorem 1.1 that S and S′ are disjoint, contradiction. So U

is non-reduced, but we may simplify U to a reduced one U′. This will not change

the curvature-center matrix of the last Descartes configuration. After this simplifica-

tion, the last letter of U′ cannot be R1 anymore, otherwise S and S′ are disjoint by

Lemma 4.3. If U ends with Ri R1, i �= 1, then U′ ends with R1Ri .

In the sequence of balls generated by U′, the only ball that touches S′ but not in

the initial Descartes configuration is generated at the first step (the end of U′) by Ri ,

i �= 1. This ball must be S by assumption. This is the only occurrence of Ri in U′,
otherwise S is not contained in the last Descartes configuration generated by U′. Since

S is the last ball generated by U, Ri must be the first letter of U. The only possibility is

then U′ = R1Ri and U = Ri R1Ri R1, which implies the presence of Soddy’s hexlet.

⊓⊔

By Corollary 3.2, the tangency graph of an Apollonian 3-ball packing does not

contain three 5-cliques sharing a 4-clique, so being a 4-tree implies that it is stacked

4-polytopal. Therefore, the relation between 4-trees, stacked 4-polytopes and Apol-

lonian 3-ball packings can be illustrated as in Fig. 4.

4.5 Higher Dimensions

In dimensions higher than 3, the following relation between Apollonian packing and

stacked polytope is restored.

Theorem 4.3 For d > 3, if a d-ball packing is Apollonian, then its tangency graph

is stacked (d + 1)-polytopal.

We will need the following lemma:

Lemma 4.5 If d �= 3, let w be the (d + 2) dimensional vector (−1, 1, . . . , 1)⊺, and

U = Un . . . U2U1 be a word over the generators of the d-dimensional Apollonian

group (i.e. Ui ∈ {R1, · · · , Rd+2}). If U ends with R1 and does not contain any

subword of the form Ri Ri , then σw
i (U) �= 1 for 1 ≤ i ≤ d + 2 as long as U contains

the letter Ri .
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Proof It is shown in [17, Thm. 5.2] that the i-th row of U − I is a linear combination

of rows of the matrix2

A = 1

d − 1
(ee⊺ − dI).

However, the weighted row sum σw
j (A) of the j-th row of A is 0 except for j = 1,

whose weighted row sum is 2d
d−1

. So σw
i (U − I) = 2Ci d

d−1
, where Ci is the coefficient

for the first row in the linear combination.

According to the calculation in [17], Ci is a polynomial in the variable xd = 1
d−1

in the form of

Ci (xd) =
ni −1
∑

k=0

ck2k+1xk
d ,

where ck are integer coefficients, and ni is the length of the longest subword that starts

with Ri and ends with R1. Such a word does not contain R j R j , hence the leading

term is 2ni x
ni −1
d (i.e. cni −1 = 1), as noticed in [17]. Then, by the same argument as

in [17], we can conclude that Ci (xd) is not zero as long as U contains Ri . Therefore,

for i �= 1,

σw
i (U) = 2Ci d

d − 1
+ σw

i (I) = 2Ci d

d − 1
+ 1 �= 1.

For i = 1, since σw
1 (I) = −1, what we need to prove is that C1 �= 1 − 1/d. So the

calculation is slightly different. If C1 = 1 − 1/d, then xd is a root of the polynomial

(1+xd)C1(xd)−1, whose leading term is (2xd)n1 (note that n1 is well defined because

U ends with R1). By the rational root theorem, d − 1 divides 2n1 . So we must have

d − 1 = 2p for some p > 1, that is, xd = 2−p. We then have

(2p + 1)

n1−1
∑

k=0

ck2(k+1)(1−p) = 1.

Multiply both side by 2(p−1)n1 , we got

(2p + 1)

n1−1
∑

k=0

ck2(p−1)(n1−k−1) = 2(p−1)n1 .

The right hand side is even since (p −1)n1 > 0. The terms in the summation are even

except for the last one since (p − 1)(n1 − k) > 0. The last term in the summation is

2 The definition of A in [17] does not have the parentheses, which should be a typo.
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Fig. 5 Relation between (d + 1)-trees, stacked (d + 1)-polytopes and d-ball packings

cn1−120 = 1 (recall that cn1−1 = 1), so the left hand side is odd, which is the desired

contradiction. Therefore

σw
1 (U) = 2C1d

d − 1
+ σw

1 (I) �= 1. ⊓⊔

Proof of Theorem 4.3 Consider a construction process of the Apollonian ball packing.

The theorem is true at the first step. Assume that it remains true before the introduction

of a ball S. We are going to prove that, once added, S touches exactly d + 1 pairwise

tangent balls in the packing.

If this is not the case, assume that S touches a (d + 2)-th ball S′, then we can

find a sequence of Descartes configurations, with S′ in the first configuration and

S in the last, generated (similar as in Sect. 4.3) by a word over the generators of the

d-dimensional Apollonian group with distinct adjacent terms. Without loss of general-

ity, we assume S′ to be the lower half-space x1 ≤ 0, as in the proof of the Corollary 4.3.

Then Lemma 4.5 says that no ball (except for the first d + 2 balls) in this sequence is

tangent to S′, contradicting our assumption.

By induction, every newly added ball touches exactly d + 1 pairwise tangent balls,

so the tangency graph is a (d + 1)-tree, and therefore (d + 1)-polytopal. ⊓⊔

So the relation between (d + 1)-trees, stacked (d + 1)-polytopes and Apollonian

d-ball packings can be illustrated as in Fig. 5, where the hooked arrow A →֒ B

emphasizes that every instance of A corresponds to an instance of B.

Now the remaining problem is to characterize stacked (d + 1)-polytopal graphs

that are d-ball packable. From Corollary 3.2, we know that if a (d + 1)-tree is d-ball

packable, the number of (α+3)-cliques sharing a (α+2)-clique is at most k(d −1, α)

for all 1 ≤ α ≤ d − 1. Following the patterns in Theorems 1.1 and 2.4, we propose

the following conjecture:

Conjecture 4.1 For an integer d ≥ 2, there are d − 1 integers n1, . . . , nd−1 such that

a (d + 1)-tree is d-ball packable if and only if the number of (α + 3)-cliques sharing

an (α + 2)-clique is at most nα for all 1 ≤ α ≤ d − 1.
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5 Discussion

A convex (d + 1)-polytope is edge-tangent if all of its edges are tangent to a d-sphere

called the midsphere. One can derive from the disk packing theorem that:3

Theorem 5.1 Every convex 3-polytope has an edge-tangent realization.

Eppstein et al. have proved in [13] that no stacked 4-polytopes with more than

six vertices have an edge-tangent realization. Comparing to Theorem 1.1, we see

that ball packings and edge-tangent polytopes are not so closely related in higher

dimensions: a polytope with ball packable graph does not, in general, have an edge-

tangent realization. In this part, we would like to discuss about this difference in detail.

5.1 From Ball Packings to Polytopes

Let S
d ⊂ R

d+1 be the unit sphere {x | x2
0 + · · · + x2

d = 1}. For a spherical cap

C ⊂ S
d of radius smaller than π/2, its boundary can be viewed as the intersection

of S
d with a d-dimensional hyperplane H , which can be uniquely written in form of

H = {x ∈ R
d | 〈x, v〉 = 1}. Explicitly, if c ∈ S

d is the center of C , and θ < π/2 is

its spherical radius, then v = c/ cos θ . We can interpret v as the center of the unique

sphere that intersects S
d orthogonally along the boundary of C , or as the apex of the

unique cone whose boundary is tangent to S
d along the boundary of C . We call v

the polar vertex of C , and H the hyperplane of C . We see that 〈v, v〉 > 1. If the

boundaries of two caps C and C ′ intersect orthogonally, their polar vertices v and v′

satisfy 〈v, v′〉 = 1, i.e. the polar vertex of one is on the hyperplane of the other. If C

and C ′ have disjoint interiors, or their boundaries intersect at a nonobtuse angle, then

〈v, v′〉 < 1. If C and C ′ are tangent at t ∈ S
d , the segment vv′ is tangent to S

d at t.

Now, given a d-ball packing S = {S0, . . . , Sn} in R̂
d , we can construct a (d + 1)-

polytope P as follows. View R̂
d as the hyperplane x0 = 0 in R̂

d+1. Then a

stereographic projection maps R̂
d to S

d , and S is mapped to a packing of spheri-

cal caps on S
d . With a Möbius transformation if necessary, we may assume that the

radii of all caps are smaller than π/2. Then P is obtained by taking the convex hull

of the polar vertices of the spherical caps.

Theorem 5.2 If a (d + 1)-polytope P is constructed as described above from a

d-sphere packing S, then G(S) is isomorphic to a spanning subgraph of G(P).

Proof For every Si ∈ S, the polar vertex vi of the corresponding cap is a vertex of P ,

since the hyperplane {x | 〈vi , x〉 = 1} divides vi from other vertices.

For every edge Si S j of G(S), we now prove that vi v j is an edge of P . Since vi v j

is tangent to the unit sphere, 〈v, v〉 ≥ 1 for all points v on the segment vi v j . If vi v j is

not an edge of P , some point v = λvi + (1 − λ)v j (0 ≤ λ ≤ 1) can be written as a

convex combination of other vertices v =
∑

k �=i, j λkvk , where λk ≥ 0 and
∑

λk ≤ 1.

3 Schramm [31] said that the theorem is first claimed by Koebe [21], who only proved the simplicial and

simple cases. He credits the full proof to Thurston [35], but the online version of Thurston’s lecture notes

only gave a proof for simplicial cases.
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Then we have

1 ≤ 〈v, v〉 =
〈

λvi + (1 − λ)v j ,
∑

k �=i, j

λkvk

〉

< 1

because 〈vi , v j 〉 < 1 if i �= j . This is a contradiction. ⊓⊔

For an arbitrary d-ball packing S, if a polytope P is constructed from S as described

above, it is possible that G(P) is not isomorphic to G(S). More specifically, there may

be an edge of P that does not correspond to any edge of G(S). This edge will intersect

S
d , and P is therefore not edge-tangent. On the other hand, if the graph of a polytope

P is isomorphic to G(S), since the graph does not determine the combinatorial type

of a polytope, P may be different from the one constructed from S. So a polytope

whose graph is ball packable may not be edge-tangent.

5.2 Edge-Tangent Polytopes

A polytope is edge-tangent if it can be constructed from a ball packing as described

above, and its graph is isomorphic to the tangency relation of this ball packing. Neither

condition can be removed. For the other direction, given an edge-tangent polytope P ,

one can always obtain a ball packing of G(P) by reversing the construction above.

Disk packings are excepted from these problems. In fact, it is easier [30] to derive

Theorem 5.1 from the following version of the disk packing theorem, which is equiv-

alent but contains more information:

Theorem 5.3 (Brightwell and Scheinerman [5]) For every 3-polytope P , there is

a pair of disk packings, one consists of vertex-disks representing G(P), the other

consists of face-disks representing the dual graph G(P∗), such that:

– For each edge e of P , the vertex-disks corresponding to the two endpoints of e

and the face-disks corresponding to the two faces bounded by e meet at the same

point;

– A vertex-disk and a face-disk intersect if and only if the corresponding vertex is on

the boundary of the corresponding face, in which case their boundaries intersect

orthogonally.

This representation is unique up to Möbius transformations.

The presence of the face-disks and the orthogonal intersections guarantee the inci-

dence relations between vertices and faces, and therefore fix the combinatorial type

of the polytope. We can generalize this statement into higher dimensions:

Theorem 5.4 Given a (d + 1)-polytope P , if there is a packing of d-dimensional

vertex-balls representing G(P), together with a collection of d-dimensional facet-

balls indexed by the facets of P , such that:

– For each edge e of P , the vertex-balls corresponding to the two endpoints of e and

the boundaries of the facet-balls corresponding to the facets bounded by e meet

at the same point;
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– Either a vertex-ball and a facet-ball are disjoint, or their boundaries intersect at

a non-obtuse angle;

– The boundary of a vertex-ball and the boundary of a facet-ball intersect orthogo-

nally if and only if the corresponding vertex is on the boundary of the corresponding

facet.

Then P has an edge-tangent realization.

Again, the convexity is guaranteed by the disjointness and nonobtuse intersections, and

the incidence relations are guaranteed by the orthogonal intersections. For an edge-

tangent polytope, the facet-balls can be obtained by intersecting the midsphere with

the facets. However, they do not form a d-ball packing for d > 2. On the other hand,

for an arbitrary polytope of dimension 4 or higher, even if its graph is ball packable,

the facet-balls satisfying the conditions of Theorem 5.4 do not in general exist.

For example, consider the stacked 4-polytope with 7 vertices. The packing of its

graph (with the form K3 + P4) is constructed in the proof of Theorem 3.1. We notice

that a ball whose boundary orthogonally intersects the boundary of the three unit balls

and the boundary of ball B, have to intersect the boundary of ball E orthogonally (see

Fig. 2), thus violates the last condition of Theorem 5.4. One verifies that the polytope

constructed from this packing is not simplicial.

5.3 Stress Freeness

Given a ball packing S = {S1, . . . , Sn}, let vi be the vertices of the polytope P

constructed as above. A stress of S is a real function T on the edge set of G(S) such

that for all Si ∈ S

∑

Si S j edge of G(S)

T (Si S j )(v j − vi ) = 0.

We can view stress as forces between tangent spherical caps when all caps are in

equilibrium. We say that S is stress-free if it has no non-zero stress.

Theorem 5.5 If the graph of a stacked (d + 1)-polytope is d-ball packable, its ball

packing is stress-free.

Proof We construct the ball packing as we did in the proof of Theorem 4.1, and assume

a non-zero stress. The last ball S that is added into the packing has d + 1 “neighbor”

balls tangent to it. Let v be the vertex of P corresponding to S, and C the correponding

spherical caps on S
d . If the stress is not zero on all the d + 1 edges incident to v, since

P is convex, they cannot be of the same sign. So there must be a hyperplane containing

v separating positive edges and negative edges of v. This contradicts the assumption

that the spherical cap corresponding to v is in equilibrium. So the stress must vanish

on the edges incident to v. We then remove S and repeat the same argument on the

second to last ball, and so on, and finally conclude that the stress has to be zero on all

the edges of G(S). ⊓⊔
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The above theorem, as well as the proof, was informally discussed in Kotlov et

al.’s paper on the Colin de Verdière number [22, Sect. 8]. In that paper, the authors

defined an graph invariant ν(G) using the notion of stress-freeness, which turns out

to be strongly related to the Colin de Verdière number. Their results imply that if

the graph G of a stacked (d + 1)-polytope with n vertices is d-ball packable, then

ν(G) ≤ d + 2, and the upper bound is achieved if n ≥ d + 4. However, Theorem 3.1

asserts that graphs of stacked polytopes are in general not ball packable.

Note Added in Proof

The author was able to revise the paper two years after submission. During the period,

Labbé and the author [6] investigated the Boyd–Maxwell ball packings, a general-

ization of Apollonian packings. In particular, we described the tangency graphs of

Boyd–Maxwell packings in terms of the associated Coxeter complexes, generalizing

the results in this paper. Meanwhile, Mitchell and Yengulalp [27] investigated the

representation of graphs by orthogonal spheres. They showed that stacked polytopal

graphs always admit such a representation, and derived lower bounds for the Colin

de Verdière numbers of complements of stacked polytopal graphs using the results

in [22].

Acknowledgments I’d like to thank Fernando Mário de Oliveira Filho, Jean-Philippe Labbé, Bernd

Gonska and Günter M. Ziegler for helpful discussions. The author was supported by the Deutsche

Forschungsgemeinschaft within the Research Training Group ‘Methods for Discrete Structures’ (GRK

1408).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bachoc, C., Vallentin, F.: Optimality and uniqueness of the (4, 10, 1/6) spherical code. J. Comb.

Theory, Ser. A 116(1), 195–204 (2009)

2. Bannai, E., Sloane, N.J.A.: Uniqueness of certain spherical codes. Can. J. Math. 33(2), 437–449 (1981)

3. Benjamini, I., Schramm, O.: Lack of sphere packing of graphs via non-linear potential theory (2010).

arXiv:0910.3071v2

4. Boyd, D.W.: The osculatory packing of a three dimensional sphere. Can. J. Math. 25, 303–322 (1973)

5. Brightwell, G.R., Scheinerman, E.R.: Representations of planar graphs. SIAM J. Discrete Math. 6(2),

214–229 (1993)

6. Chen, H., Labbé, J.P.: Lorentzian Coxeter systems and Boyd–Maxwell ball packings. Geom. Dedicata

174, 43–73 (2015)

7. Cohn, H., Kumar, A.: Uniqueness of the (22, 891, 1/4) spherical code. New York J. Math. 13, 147–157

(2007)

8. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1),

99–148 (2007)

9. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Grundlehren der Mathematischen

Wissenschaften, vol. 290, 3rd edn. Springer, New York (1999)

10. Cooper, D., Rivin, I.: Combinatorial scalar curvature and rigidity of ball packings. Math. Res. Lett.

3(1), 51–60 (1996)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/0910.3071v2


826 Discrete Comput Geom (2016) 55:801–826

11. Coxeter, H.S.M.: Loxodromic sequences of tangent spheres. Aequationes Math. 1, 104–121 (1968)

12. Descartes, R.: Oeuvres de Descartes, Correspondance IV. Edited by C. Adam and P. Tannery. Léopold

Cerf, Paris (1901)

13. Eppstein, D., Kuperberg, G., Ziegler, G. M.: Fat 4-polytopes and fatter 3-spheres. In: Bezdek, A. (ed.)

Discrete Geometry. In Honor of W. Kuperberg’s 60th Birthday. Pure and Applied Mathematics, vol.

253, pp. 239–265. Marcel Dekker Inc., New York (2003)

14. Gonska, B., Ziegler, G.M.: Inscribable stacked polytopes. Adv. Geom. 13, 723–740 (2013)

15. Gosset, T.: The kiss precise. Nature 139, 62 (1937)

16. Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A.R., Yan, C.H.: Apollonian circle packings:

geometry and group theory. I. The Apollonian group. Discrete Comput. Geom. 34(4), 547–585 (2005)

17. Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A.R., Yan, C.H.: Apollonian circle packings:

geometry and group theory. III. Higher dimensions. Discrete Comput. Geom. 35(1), 37–72 (2006)
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