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Abstract. Apollonian circle packings arise by repeatedly filling the interstices between
four mutually tangent circles with further tangent circles. We observe that there exist Apol-
lonian packings which have strong integrality properties, in which all circles in the packing
have integer curvatures and rational centers such that (curvature)×(center) is an integer
vector. This series of papers explain such properties.

A Descartes configuration is a set of four mutually tangent circles with disjoint interiors.
An Apollonian circle packing can be described in terms of the Descartes configuration it
contains. We describe the space of all ordered, oriented Descartes configurations using a
coordinate systemMD consisting of those 4 × 4 real matrices W with WT QDW = QW

where QD is the matrix of the Descartes quadratic form Q D = x2
1 + x2

2 + x2
3 + x2

4 − 1
2 (x1+

x2+ x3+ x4)
2 and QW of the quadratic form QW = −8x1x2+2x2

3 +2x2
4 . On the parameter
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space MD the group Aut(Q D) acts on the left, and Aut(QW ) acts on the right, giving
two different “geometric” actions. Both these groups are isomorphic to the Lorentz group
O(3, 1). The right action of Aut(QW ) (essentially) corresponds to Möbius transformations
acting on the underlying Euclidean space R2 while the left action of Aut(Q D) is defined
only on the parameter space.

We observe that the Descartes configurations in each Apollonian packing form an orbit
of a single Descartes configuration under a certain finitely generated discrete subgroup of
Aut(Q D), which we call the Apollonian group. This group consists of 4×4 integer matrices,
and its integrality properties lead to the integrality properties observed in some Apollonian
circle packings.

We introduce two more related finitely generated groups in Aut(Q D), the dual Apollonian
group produced from the Apollonian group by a “duality” conjugation, and the super-
Apollonian group which is the group generated by the Apollonian and dual Apollonian
groups together. These groups also consist of integer 4× 4 matrices. We show these groups
are hyperbolic Coxeter groups.

1. Introduction

An Apollonian circle packing is a packing of circles arising by repeatedly filling the
interstices between four mutually tangent circles with further tangent circles. We call an
initial arrangement of four mutually tangent circles with distinct tangents (necessarily
six of them) a Descartes configuration.

Starting from any Descartes configuration, we can recursively construct an infinite
circle packing of the Euclidean plane, in which new circles are added which are tan-
gent to three of the circles that have already been placed and have interiors disjoint
from any of them. The infinite packing obtained in the limit of adding all possible
such circles is called an Apollonian packing. The new circles added at each stage can
be obtained using Möbius transformations of Descartes configurations in the partial
packing.

An Apollonian packing is pictured in Fig. 1, in which each circle is labeled by its
curvature, which is the inverse of its radius. The initial configuration consists of two
circles of radius 1

2 inscribed in a circle of radius 1, the latter being assigned negative
curvature −1 by a convention given in Section 3. This particular Apollonian packing
has the special property that all circles in the packing have integer curvatures. We call a
packing with this property integral. More remarkably, if one regards the circle centers as
complex numbers, then one can place the initial circles so that every circle in the packing
has “curvature×center” a Gaussian integer (element of the ring Z[i].) This occurs for
example when the center of the outer circle is placed at z = 0 and the two circles of
radius 1

2 have centers at z = − 1
2 and at z = 1

2 . We call a packing with this extra property
strongly integral.

The object of this paper is to give a geometric explanation of the origin of these
integrality properties involving both the curvatures and the circle centers. This is based
on five facts:

(1) An Apollonian packing can be described in terms of the Descartes configurations
it contains.
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Fig. 1. An Apollonian packing, labeled with circle curvatures.

(2) There is a coordinate representation of the set MD of all ordered, oriented
Descartes configurations as a six-dimensional real-algebraic variety. It consists
of the set of 4 × 4 real matrices W satisfying a system of quadratic equa-
tions, WT QDW = QW , which state that W conjugates the Descartes quadratic
form Q D = x2

1 + x2
2 + x2

3 + x2
4 − 1

2 (x1 + x2 + x3 + x4)
2 to a quadratic form

QW = −8x1x2 + 2x2
3 + 2x2

4 that we call the Wilker quadratic form, after Wilker
[42]. This coordinate system we call “augmented curvature-center coordinates,”
as it encodes the curvatures and centers of the circles in the configuration. We term
MD with these coordinates the parameter space of ordered, oriented Descartes
configurations.

(3) The varietyMD is a principal homogeneous space for the Lorentz group O(3, 1),
under both a left and a right action of this group, realized as Aut(Q D) and
Aut(QW ), respectively. The right action corresponds to Möbius transformations
acting on the plane, while the left action acts only on the Descartes configuration
space.

(4) There is a discrete subgroup of the left action by Aut(Q D), the Apollonian group
A, having the property that the (unordered, unoriented) Descartes configurations
in any Apollonian packing are described by a single orbit of this group. If the
Descartes configurations are regarded as ordered and oriented, then exactly 48
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such orbits correspond to each packing, each one containing a copy of each
unordered, unoriented Descartes configuration in the packing.

(5) The Apollonian group A consists of integer 4× 4 matrices.

The last property explains the existence of Apollonian packings having integrality
properties of both curvatures and centers. If an initial Descartes configuration has integral
augmented curvature-center coordinates, then the same property persists for all Descartes
configurations in the packing, hence for all circles in the packing. The packing pictured
in Fig. 1 has this property.

The observation that there are Apollonian packings having all curvatures integral is
an old one, and was noted by Soddy [37], [38], who also gave an extension to three
dimensions, the “bowl of integers.” The existence of an integral matrix group explaining
such curvatures was studied by Söderberg [39] in 1992. There are many other mentions
in the literature. What we add in this direction is the observation that the circle centers
can simultaneously have integrality properties.

A main contribution of these papers is the viewpoint that these properties should be
understood in terms of group actions on the parameter spaceMD of all ordered, oriented
Descartes configurations. Besides introducing coordinate systems for this parameter
space (given first in [28] by three of the authors), we study the relevant discrete group
actions in detail. In particular we introduce a larger group of integer matrices acting
on the left, the super-Apollonian group AS , whose generators have natural geometric
interpretations in terms of their action on Descartes configurations. We prove that this
group is a hyperbolic Coxeter group.

The detailed contents of part I are summarized in the next section. Below we briefly
indicate the contents of parts II and III.

In part II we study the integrality properties of the Apollonian packing in more
detail, and their relation to the super-Apollonian group. We show that every integral
Apollonian packing can be transformed to a strongly integral one by a Euclidean motion.
We introduce super-packings as orbits of the super-Apollonian group, starting from a
given Descartes configuration, and geometric super-packings which consist of the set
of circles in all these Descartes configurations. We show that there are exactly eight
different primitive1 strongly integral geometric super-packings, and that each of these
contains a copy of every primitive integral Apollonian packing. We characterize the set
of all (primitive) strongly integral Descartes configurations as a collection of 384 orbits
of the super-Apollonian group.

In part III we consider to what extent the results proved in parts I and II extend
to higher dimensions. In all dimensions n ≥ 3 there are analogues of the parameter
space of Descartes configurations, of left and right group actions by O(n+ 1, 1), and of
the Apollonian, dual Apollonian and super-Apollonian groups. However, in dimensions
n ≥ 4 the Apollonian group action does not correspond to a sphere packing; the spheres
will overlap. Nevertheless, one can still study the orbits of these group actions on the
parameter space. The Apollonian group in higher dimensions has rational entries, rather
than integer entries. We show that configurations having all curvatures rational exist in
all dimensions, and having curvature×centers rational exist in certain dimensions only.

1 An integral packing is primitive if the greatest common divisor of all curvatures of circles in the packing
is 1.
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The general framework of these papers was developed by the second author (JCL),
who also did much of the writing. This paper is an extensively revised version of a
preprint written in 2000, which adds some new results in Sections 4 and 5.

2. Summary of Results

There are at least three ways to describe the Apollonian packing P containing a given
Descartes configuration D:

(G1) [Geometric] An Apollonian packing PD is a set of circles in Ĉ = R2 ∪ {∞},
which comprise four orbits under the action of a discrete group GA(D) of
Möbius transformations inside the conformal group Möb(2). The discrete group
GA(D) depends on D.

(G2) [Algebraic] The collection of all (ordered, oriented) Descartes configurations
in the packing PD form 48 orbits of a discrete group A, the Apollonian group,
contained in the group Aut(MD) ≡ Aut(Q D) of left-automorphisms of the
parameter space MD of Descartes configurations. The discrete group A is
independent of the configuration D.

(G3) [Holographic] The open disks comprising the interiors of the circles in the
packing are the complement Ĉ\�D of the limit set �D of a certain Schottky
group SD acting on hyperbolic 3-space H3, with Ĉ identified with its ideal
boundary. The Schottky group SD depends on D.

In this paper we mainly consider viewpoints (G1) and (G2). Viewpoint (G3) is de-
scribed in Chapter 7 in [33], and we treat it in Appendix B. It is termed “holographic”
because it views the limit set of the packing as the boundary of a higher-dimensional
object, which in principle gives information about it. In Appendix B we point out a
connection of viewpoint (G3) to viewpoint (G1). The term “algebraic” for (G2) refers
to the group action being on a real-algebraic variety of Descartes configurations.

The main emphasis of this series of papers is to study Apollonian packings in terms of
the Descartes configurations they contain. That is, we study the packing as a collection
of points inside the parameter space of all ordered, oriented Descartes configurations.
There are two different group actions on this parameter space, which are a right action
associated to viewpoint (G1) and a left action corresponding to viewpoint (G2), with
the groups both isomorphic to the Lorentz group O(3, 1), a real Lie group, as explained
in Section 3. In particular, group actions are independent and mutually commute. The
discrete group GA(D) above is contained in the right action and the discrete group A,
the Apollonian group, is contained in the left action. Thus viewpoints (G1) and (G2) are
complementary and coexist simultaneously on the space of all Descartes configurations.

As stated in the Introduction, the integer structures in the curvatures and centers
of some Apollonian packings can be explained in terms of the viewpoint (G2), using
the discrete group A, the Apollonian group. This viewpoint can be traced back to the
“inversive crystal” in Section 14 in [42].

In Section 3 we coordinatize the space MD of (ordered, oriented) Descartes con-
figurations as in [28] and describe two group actions on this space. In Section 3.1 we
give two coordinate systems. The first labels such a Descartes configuration with a 4×3
matrix MD, called curvature-center coordinates, and the second with a 4×4 matrix WD,
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called augmented curvature-center coordinates. These coordinates are characterized by
quadratic relations which generalize the Descartes circle theorem. Theorem 3.1 exactly
characterizes these relations for curvature-center coordinates, strengthening Theorem
3.2 in [28] by formulating and proving a converse. For the augmented curvature-center
coordinates these quadratic relations (proved in [28]) take the form

WT
DQDWD = QW ,

which gives a conjugacy of the Descartes quadratic form Q D to the Wilker quadratic
form QW . These forms are indefinite of signature (3, 1) and their (real) automorphism
groups Aut(Q D) and Aut(QW ) are isomorphic to the Lorentz group O(3, 1).

In Section 3.2 we describe a linear left action (“Lorentz action”) by Aut(Q D) and a
right action (“Möbius action”) by Aut(QW ) on the spaceMD. Theorem 3.3 describes
these actions. It shows that the space MD is a principal homogeoneous space for the
group O(3, 1) under both the left action and the right action. The Möbius action is treated
in more detail in Appendix A. In Section 3.3 we describe some integral elements of the
Lorentz action Aut(Q D)which have geometric interpretations as simple transformations
of a Descartes configuration. These elements are used in defining the Apollonian group,
dual Apollonian group and super-Apollonian group given below.

In Section 4 we describe Apollonian packings and the Apollonian group. Theorem 4.3
establishes the basic fact that the interiors of all circles in an Apollonian packing are
disjoint. The much-studied residual set �(P) of an Apollonian packing is the comple-
ment of the interiors of all circles; it is a set of measure zero. For later use, Theorem 5.2
gives several properties of the residual set �(P). Theorem 4.3 shows that the (ordered,
oriented) Descartes configurations in a packing form 48 orbits of this group.

In Section 5 we define the dual Apollonian group A⊥ and call its orbits dual Apol-
lonian packings. Theorem 5.3 shows that the set of all tangency points of circles in a
dual Apollonian packing has closure the limit set of another Apollonian packing, that
generated by the dual Descartes configuration of any Descartes configuration generating
the packing.

In Section 6 we define the super-Apollonian group AS to be the group generated by
A andA⊥ combined, and call its orbits Apollonian super-packings. It is a discrete group
of integer matrices contained in Aut(Q D). Theorem 6.1 in Section 6.1 gives a complete
presentation for A⊥, establishing that it is a hyperbolic Coxeter group. In Section 6.2
we add remarks on super-packings, which are studied at length in part II.

In Appendix A we describe the Möbius group action in detail. Theorem A.2 gives an
isomorphism of this group to Aut(QW ).

In Appendix B we describe the Schottky group action in [33]. We indicate some
relations to the Möbius group action.

3. Descartes Configurations and Group Actions

3.1. Descartes Configurations and Curvature-Center Coordinates

In 1643 Descartes found a relation between the radii for four mutually disjoint tangent
circles of type (a) in Fig. 2. Let r1, r2, r3, r4 be the radii of the tangent circles. Descartes
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(a) (b)

(c) (d)

Fig. 2. Descartes configurations.

showed2 a result equivalent to

1

r2
1

+ 1

r2
2

+ 1

r2
3

+ 1

r2
4

= 1

2

(
1

r1
+ 1

r2
+ 1

r3
+ 1

r4

)2

, (3.1)

which is now called the Descartes circle theorem. This result can be extended to apply
to all Descartes configurations, which can be of types (a)–(d) in Fig. 2.

Figure 2(a) is a standard Descartes configuration in which the circles have disjoint
interiors, and all curvatures are positive. We also allow configurations like Fig. 2(b) in
which one circle encloses the other three. We also allow straight lines to be regarded as
circles of curvature zero, leading to Descartes configurations like Fig. 2(c) and (d), in
which the “interior” of the “circle” defined by a straight line is defined to be a suitable
half-plane.

To extend the Descartes circle theorem to all Descartes configurations of types (a)–(d),
we must define the curvatures to have appropriate signs, as follows. An oriented circle is
a circle together with an assigned direction of unit normal vector, which can point inward
or outward. If it has radius r then its oriented radius is r for an inward pointing normal
and −r for an outward pointing normal. Its oriented curvature (or “signed curvature”)
is 1/r for an inward pointing normal and −1/r for an outward pointing normal. By
convention, the interior of an oriented circle is its interior for an inward pointing normal
and its exterior for an outward pointing normal. An oriented Descartes configuration is
a Descartes configuration in which the orientations of the circles are compatible in the
following sense: either (i) the interiors of all four oriented circles are disjoint, or (ii) the
interiors are disjoint when all orientations are reversed. Each Descartes configuration
has exactly two compatible orientations in this sense, one obtained from the other by
reversing all orientations. The positive orientation of a Descartes configuration is the

2 Descartes expressed his relation in a different form, obtained by clearing denominators in (3.1).
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one in which the sum of the signed curvatures is positive, while the negative orientation
is the one in which the sum of the curvatures is negative. (One can show that the sum
of the signed curvatures is always nonzero.) Note that positive orientation corresponds
to case (i), and negative orientation to case (ii). With these definitions, the Descartes
circle theorem remains valid for all oriented Descartes configurations, using oriented
curvatures.

The geometry of Descartes configurations in Fig. 2 is encoded in the curvature vector
b = (b1, b2, b3, b4)

T where bi is the oriented curvature of the i th circle. If
∑4

j=1 bj > 0,
then one of the following holds: (a) all of b1, b2, b3, b4 are positive; (b) three are positive
and one is negative; (c) three are positive and one is zero; or (d) two are positive and
equal and the other two are zero.

The Descartes circle theorem gives a quadratic equation for the curvature vector b,
which can be rewritten as

bT QDb = 0, (3.2)

in which

QD = I− 1
2 11T = 1

2




1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1


 (3.3)

is the Descartes quadratic form. Here 1 represents the vector (1, 1, 1, 1)T .
In [28] three of the authors of this paper showed there exist matrix extensions of the

Descartes circle theorem which encode information about both the curvatures and the
centers of the circles in the configuration, as follows. Given an oriented circle C with
center (x, y) and oriented curvature b we define its curvature-center coordinates to be
the 1 × 3 row vector m(C) := (b, bx, by). For the “degenerate case” of an oriented
straight line H we define its curvature-center coordinates as

m(H) := (0,h),

where h = (h1, h2) is the unit normal vector giving the orientation of the straight line.

Theorem 3.1 (Extended Descartes Theorem). Given an ordered configuration D of
four oriented circles with oriented curvatures (b1, b2, b3, b4) and centers {(xi , yi ): 1 ≤
i ≤ 4}, let MD be the 4× 3 matrix

MD :=




b1 b1x1 b1 y1

b2 b2x2 b2 y2

b3 b3x3 b3 y3

b4 b4x4 b4 y4


 . (3.4)

We include the “degenerate cases” where some circles are oriented lines. If this configu-
ration is an oriented Descartes configuration, then M = MD has a nonzero first column
and satisfies

MT QDM =

0 0 0

0 2 0
0 0 2


 . (3.5)
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Conversely, any real solution M to (3.5) with a nonzero first column is the curvature-
center coordinate matrix MD of a unique ordered, oriented Descartes configuration D.

Remark. The hypothesis of a nonzero first column is necessary in Theorem 3.1. Given
the matrix M of a Descartes configuration, the matrix M̃ obtained by zeroing out its first
column will continue to satisfy (3.5), and will not come from a Descartes configuration.

Proof. An n-dimensional version of this theorem was stated as Theorem 3.2 in [28],
and the “if” direction of the result was proved there. (The converse part of the theorem
was not proved there.) More precisely, in [28] it was proved that the curvature-center
coordinate matrix M of any ordered, oriented Descartes configuration satisfies (3.5).
The first column of the matrix M of a Descartes configuration cannot be identically zero
because at least two circles in any Descartes configuration have nonzero curvature.

To establish the converse part of the theorem, we need Theorem 3.2 below, which
was independently proved in [28]. We postpone the proof to the end of Section 3.1.

The curvature-center coordinates m(C) uniquely determine a circle in general posi-
tion, but they fail to be unique for the degenerate case of a line, where the information
(0,h) determines only a direction normal to the line and not its position.

In [28] three of the authors defined augmented curvature-center coordinates w(C)
of an oriented circle C with signed curvature b and center (x, y), which resolve this
ambiguity. These represent C by a row vector

w(C) := (b̄, b, bx1, bx2) (3.6)

in which b̄ is the signed curvature of the oriented circle obtained by inversion in the unit
circle. The operation of inversion in the unit circle acts on R2 by

(x, y) �→ (x ′, y′) =
(

x

x2 + y2
,

y

x2 + y2

)
.

It maps a circle C of finite (oriented) radius r to the circle C̄ with center x̄ = x/(|x|2−r2)

and oriented radius r̄ = r/(|x|2 − r2), having oriented curvature b̄ = (|x|2 − r2)/r . If
C is a straight line with specified normal direction, we determine C̄ as the image of this
line, with orientation coming from the specified normal. In the degenerate case that C̄ is
a straight line we define b̄ = 0. In all cases,

(bx, by) = x
r
= x̄

r̄
= (b̄x ′, b̄y′), (3.7)

so that C and C̄ have the same curvature×center data.
Augmented curvature-center coordinates provide a global coordinate system: no two

distinct oriented circles have the same coordinates. The only case to resolve is when C
is a straight line, i.e. b = 0. The relation (3.7) shows that (b̄, bx, by) are the curvature-
center coordinates of C̄ , and if b̄ �= 0, this uniquely determines C̄ ; inversion in the unit
circle then determines C . In fact, b̄ in this case is twice the distance of C from the origin.
In the remaining case, b = b̄ = 0 and C = C̄ is the unique line passing through the
origin whose unit normal is given by the remaining coordinates.
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Given a collection (C1,C2,C3,C4) of four oriented circles (possibly lines) inR2, the
augmented matrix W associated with it is the 4×4 matrix whose j th row has entries given
by the augmented curvature-center coordinates w(Cj ) of the j th circle. The following
result characterizes oriented Descartes configurations.

Theorem 3.2 (Augmented Euclidean Descartes Theorem). Given an ordered configu-
rationD of four oriented circles (or lines) {Ci : 1≤ i≤4}with curvatures (b1, b2, b3, b4)

and centers {(xi , yi ) : 1 ≤ i ≤ 4}, let WD be the 4× 4 matrix

WD :=




b̄1 b1 b1x1 b1 y1

b̄2 b2 b2x2 b2 y2

b̄3 b3 b3x3 b3 y3

b̄4 b4 b4x4 b4 y4


 . (3.8)

If D is an (ordered, oriented) Descartes configuration then WD satisfies

WT QDW =




0 −4 0 0
−4 0 0 0

0 0 2 0
0 0 0 2


 . (3.9)

Conversely, any real solution W to (3.9) is the augmented matrix WD of a unique ordered,
oriented Descartes configuration D.

Proof. This is proved as the two-dimensional case of Theorem 3.3 in [28].

We call the quadratic form QW defined by the matrix

QW =




0 −4 0 0
−4 0 0 0

0 0 2 0
0 0 0 2


 (3.10)

the Wilker quadratic form. We name this quadratic form after J. B. Wilker [42], who
introduced in spherical geometry a coordinate system analogous to augmented curvature-
center coordinates, see Section 2, pp. 388–390, and Section 9 in [42]. However, Wilker
did not explicitly formulate any result exhibiting the quadratic form QW , see p. 349
in [28].

Theorem 3.2 identifies the set of all ordered, oriented Descartes configurationsDwith
the setMD of real solutions W = WD to the matrix equation (3.9). This equation states
that the augmented matrix coordinates of an oriented Descartes configuration give an
intertwining map between the Descartes form and the Wilker form. The setMD has the
structure of a six-dimensional affine real-algebraic variety.

It is possible to refine the parameter space to a moduli space M̃D of (unordered,
unoriented) Descartes configurations as an orbifoldMD/∼ obtained by quotienting by
a finite group of order 48 (acting on the left). This group is generated by the 4 × 4
permutation matrices (permuting rows) and −I, which reverses total orientation. This
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orbifold has singular points at those ordered, oriented Descartes configurations which
remain invariant under a nontrivial permutation matrix. For our purposes it is more
convenient to use the parameter spaceMD which is a smooth manifold.

Both the Descartes quadratic form and the Wilker quadratic form are equivalent over
the real numbers to the Lorentz quadratic form QL(x) := −x2

0 + x2
1 + x3

2 + x2
3 , with

associated matrix

QL =



−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


 . (3.11)

For any quadratic form Q, let Aut(Q) be the group of automorphisms under the “con-
gruence action,” defined by

Aut(Q) = {U ∈ GL(4,R): UT QU = Q},

where Q is the symmetric matrix that represents Q. The Lorentz quadratic form has a
large group of automorphisms Aut(QL), which is exactly the real Lorentz group O(3, 1).

The Descartes form and Wilker form are not only equivalent to the Lorentz form over
the real numbers, but also over the rational numbers. For the Descartes form one has

QD = JT
0 QLJ0, (3.12)

in which

J0 = 1

2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 (3.13)

and J0 = JT
0 = J−1

0 . It follows that

Aut(Q D) = J−1
0 O(3, 1)J0. (3.14)

The rational equivalence of the Wilker quadratic form QW to the Lorentz form QL
follows from Theorem 3.2, as soon as we exhibit a Descartes configuration D whose
augmented curvature-center coordinates WD are a rational matrix. One is given by

W0 = WD =




2 0 0 1
2 0 0 −1
0 1 1 0
0 1 −1 0


 . (3.15)

It corresponds to the positively oriented Descartes configuration pictured in Fig. 3, in
which the dashed line is the x-axis and the two circles touch at the origin.

We then have

QW = AT QLA, (3.16)
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CC

1
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34

Fig. 3. A strongly integral Descartes configuration.

with

A = J0W0 =




2 1 0 0
2 −1 0 0
0 0 1 1
0 0 −1 1


 . (3.17)

It follows that

Aut(QW ) = A−1 O(3, 1)A. (3.18)

Finally we note that the determinants of these quadratic forms are given by

det(QD) = det(QL) = −1 and det(QW ) = −64. (3.19)

Taking determinants in (3.9) yields that augmented curvature-center coordinate matrices
WD have

det(WD) = ±8. (3.20)

Examples show that both values ±8 occur.

Proof of the “only if” part of Theorem 3.1. We note that if M is the curvature-center
coordinate matrix of a Descartes configuration, this configuration is unique. Indeed, at
least two circles in the configuration have nonzero curvature, so are determined by their
curvature-center coordinates. This gives enough information to find the location of any
lines in the configuration, and their signed normal vectors are determined uniquely by
their curvature-center coordinates. Thus it suffices to show that there exists a 4×4 matrix
W whose last three columns agree with M, such that

WT QDW = QW =




0 −4 0 0
−4 0 0 0

0 0 2 0
0 0 0 2


 . (3.21)

If so, then Theorem 3.2 implies that W is the augmented curvature-center coordinate
matrix of a unique ordered, oriented Descartes configuration D. It follows that M is the
curvature-center coordinate matrix of D.
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This discussion implies that the extension W is unique, and we proceed to find it
by transforming the problem from the Descartes form QD to the Lorentz form QL =
JT

0 QDJ0. This proof seems “pulled out of thin air” in that it guesses to do the “translation”
by the matrix T below, in terms of which the extended matrix W̃ has a simple form. We
set M̃ = J0M with J0 given by (3.13), so that J0 = JT

0 = J−1
0 . Then

M̃T QLM̃ = MT QDM = Q0 :=

0 0 0

0 2 0
0 0 2


 . (3.22)

We now note that

M̃11 = 1
2 (m11 + m12 + m13 + m14) �= 0.

To verify this, note that the top left entry of (3.5) gives

Q D(m11,m12,m13,m14) = (m2
11+m2

12+m2
13+m2

14)− 1
2 (m11+m12+m13+m14)

2 = 0,

and if m11 +m12 +m13 +m14 = 0 then we would obtain m2
11 +m2

12 +m2
13 +m2

14 = 0,
which forces all m1 j = 0, contradicting the hypothesis. Now there exists a unique matrix

T =

a b c

0 1 0
0 0 1




such that the first row of M̃T is [1, 0, 0], which takes a = (M̃11)
−1, so that T is invertible.

We write

M̃T =




1 0 0
v21 v22

√
2 v23

√
2

v31 v32

√
2 v33

√
2

v41 v42

√
2 v43

√
2


 ,

and then have

TT M̃T QLM̃T = TT Q0T = Q0 =

0 0 0

0 2 0
0 0 2


 . (3.23)

This matrix equation is equivalent to the assertion that

V :=

v21 v22 v23

v31 v32 v33

v41 v42 v43




is an orthogonal matrix, i.e. VT V = VVT = I. We now define

W̃ :=




2 1 0 0
−2v21 v21 v22

√
2 v23

√
2

−2v31 v31 v32

√
2 v33

√
2

−2v41 v41 v42

√
2 v43

√
2


 ,
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whose last three columns match M̃T, and verify by direct calculation using (3.23) that

W̃T QLW̃ = QW .

We define W := J−1
0 W̃ = J0W̃, and find that

WT QDW = W̃T J0QLJ0W̃ = QW .

This is the desired lift, since the last three columns of W are exactly M.

3.2. Möbius and Lorentz Group Actions

The augmented Euclidean Descartes theorem immediately yields two group actions on
the spaceMD of ordered, oriented Descartes configurations. The group Aut(Q D) acts
on the left and the group Aut(QW ) acts on the right, as

WD �→ UWDV−1, with U ∈ Aut(Q D), V ∈ Aut(QW ).

The two group actions clearly commute with each other. Both groups are conjugate to the
real Lorentz group O(3, 1), and therefore they each have four connected components.
These components are specified for any Y ∈ O(3, 1)by the sign of det(Y), and by the sign
of “total orientation,” which is the sign of Y11 = eT

1 Ye1, in which eT
1 = (1, 0, 0, 0). For

U ∈ Aut(Q D), it is the sign of 1T U1, in which 1T = (1, 1, 1, 1); and for V ∈ Aut(QW ), it
is the sign of eT

1 AVA−1e1 in which A is any matrix satisfying O(3, 1) = A Aut(QW )A−1,
such as (3.17).

The parameter spaceMD also has four connected components, specified by similar
invariants, which are the sign of det(W) and the total orientation, which is the sign of the
sum3 of the (signed) curvatures of the four circles in the Descartes configuration. We let

MD =M↑
+ ∪M↑

− ∪M↓
+ ∪M↓

−,

in which the subscript describes the sign of the determinant and the superscript the
orientation, with ↑ being positive orientation. We also let

M↑
D

:=M↑
+ ∪M↑

−

denote the set of positively oriented Descartes configurations. The relevance of this de-
composition is that the Apollonian group defined in Section 4 leaves the set of positively
oriented Descartes configurationsM↑

D
invariant.

The action on the right by the elements of Aut(QW ) maps circles to circles, since
the circles in a Descartes configuration correspond to the rows in the matrix WD of an
ordered, oriented Descartes configuration. This right action can essentially be identified
with the general Möbius group Möb(2) generated by the linear fractional transformations
acting on the one-point compactification R̂2 ofR2, which is PSL(2,C) = SL(2,C)/{±I},
together with complex conjugation z �→ z̄. and has two connected components. More

3 The sum of the signed curvatures of the circles of an oriented Descartes configuration cannot be zero.
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precisely, Aut(QW ) is isomorphic to the direct sum of the Möbius group with a group of
order two, which has four connected components, as explained in Appendix A.

The action on the left, by Aut(Q D), produces a new oriented Descartes configuration
whose coordinates mix together the coordinates of the different circles in the original
Descartes configuration. This group action does not make sense as an action on individual
circles in the configuration. This group action is intrinsically associated to the six-
dimensional space of oriented Descartes configurations.

Theorem 3.3.

(1) The groups Aut(Q D) and Aut(QW ) are conjugate to Aut(QL) ≡ O(3, 1).
(2) The group Aut(Q D) acts transitively on the left on the spaceMD of all ordered,

oriented Descartes configurations. Given two such Descartes configurations D
and D′ there exists a unique U ∈ Aut(Q D) such that UWD = WD′ .

(3) The group Aut(QW ) acts transitively on the right on the space of all ordered,
oriented Descartes configurationsMD. Given two such Descartes configurations
D and D′ there exists a unique V ∈ Aut(QW ) such that WDV−1 = WD′ .

(4) The action of Aut(Q D) on the spaceMD commutes with the action of Aut(QW ).

Remark. The left action by Aut(Q D) and the right action by Aut(QW ) onMD given
by Theorem 3.3 can be identified with a left and right action of the Lorentz group
O(3, 1) = Aut(QL) onMD, using (3.14) and (3.18), respectively. Theorem 3.3 shows
that both these actions are transitive, and that the stabilizer of a point is the identity
element. This is equivalent to saying that the space MD is a principal homogeneous
space (or torsor) for O(3, 1) for either action.

Proof. Part (1) follows from the conjugacy between the Descartes and Wilker forms
and the Lorentz form QL given in (3.12) and (3.16), respectively. These give

Aut(Q D) = J−1
0 Aut(QL)J0 ≡ J−1

0 O(3, 1)J0

and
Aut(QW ) = A−1 Aut(QL)A ≡ A−1 O(3, 1)A.

Parts (2) and (3) follow immediately from (1). Given a fixed W = WD ∈MD, we
assert that

MD = Aut(Q D)W. (3.24)

Taking W0 in (3.15) we have

(WW−1
0 )T QD(WW−1

0 ) = (WA−1J0)
T QD(WA−1J0) = QD,

so that WW−1
0 ∈ Aut(Q D) and Aut(Q D)WW−1

0 forms a single orbit of Aut(Q D). The
map WD �→ WDW−1

0 fromMD into Aut(Q D) is one-to-one since W0 is invertible, and
it is onto since the domain includes Aut(Q D)W. Thus (3.24) follows, and this gives (2).
We similarly obtain

MD = W Aut(QW )
−1 = W Aut(QW ),

which gives (3).
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Finally, part (4) follows directly from parts (2) and (3), since in general a left and a
right action of two matrix groups on a space of matrices commute.

In this paper we mainly study structures associated to the left action of Aut(Q D) on
MD. We term the left action the Lorentz action, although this is a misnomer, since the
right action can also be identified with a Lorentz group action. However, we wish to
assign different names for the two actions, and the right action is conveniently called
the Möbius action, because of its relation to a Möbius group action on circles on the
Riemann sphere, detailed in Appendix A.

3.3. Distinguished Elements of Aut(Q D)

We now describe some specific elements of Aut(Q D) that have a nice geometrically
interpretable action on every Descartes configuration, visualizable in terms of inversions,
and whose associated matrices have integer (or half-integer) entries.

The first set of four operations correspond to inversion in the circle determined by the
three intersection points of circles in a Descartes configurationD that avoid one particular
circle. There are four possibilities for these. This inversion fixes the three circles involved
in the intersections and moves the fourth circle, to the unique other circle that is tangent
to the first three circles. For this reason we call it the reflection operator. Let s1 = s1[D]
denote the Möbius transformation of this kind that moves the circle C1. In particular, s1

maps the Descartes configuration D = (C1,C2,C3,C4) to s1(D) = (C ′
1,C2,C3,C4).

This reflection operator depends on the specific Descartes configuration. However, for
all Descartes configurations D there holds

Ws1(D) = S1WD, (3.25)

where S1 ∈ Aut(Q D) is given by

S1 =



−1 2 2 2

0 1 0 0
0 0 1 0
0 0 0 1




belongs to Aut(Q D) and is independent of the location ofD. The geometric action of s1

is pictured in Fig. 4. The other three operations s2, s3, s4 give similar matrices S2,S3,S4,
obtained by permuting the first and j th rows and columns of S1 for 2 ≤ j ≤ 4.

C4

C2

C3

C1

C4

C2

C3

C1
′

Fig. 4. The reflection operator s1.
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To prove (3.25) we check that S1 ∈ Aut(Q D). Then for any Descartes configuration
D Theorem 3.2 gives that S1WD = WD′ for some Descartes configuration D′. The
configuration D′ necessarily has three oriented circles fixed, with the fourth moved, so
the fourth one must be the unique other circle tangent to the given three, and its orientation
is uniquely determined by the other three orientations. Now Ws1(D) corresponds to that
Descartes configuration consisting of the same four ordered circles, which has the same
(positive or negative) orientation as D′.

A second set of four operations corresponds to inversion in one of the four circles in
a Descartes configuration. Let that circle be C1. Now C1 remains fixed, while the other
three circles change. Denoting this inversion by s⊥1 , it is easy to show that

Ws⊥1 (D) = S⊥1 WD, (3.26)

where S⊥1 ∈ Aut(Q D) is given by

S⊥1 =



−1 0 0 0

2 1 0 0
2 0 1 0
2 0 0 1


 .

The corresponding matrices S⊥2 ,S⊥3 ,S⊥4 are obtained by permuting the first and j th rows
and columns of S⊥1 for 2 ≤ j ≤ 4. The operation s⊥1 is pictured in Fig. 5.

Finally we describe an operator, which we call the duality operator D, and which is
an involution, as follows. Given a Descartes configuration D, there exists a Descartes
configurationD′ obtained from it which consists of the four circles each of which passes
through the three intersection points avoiding one circle. The resulting configuration
has the same six points of tangency as the original configuration, and the circles in the
configuration D′ are perpendicular to the circles of D at these tangency points. This is
pictured in Fig. 6.

Straightforward computation shows that

WD′ = DWD,

C1

C2 C3

C4

C1

C2
′ C3

′

C4
′

Fig. 5. The inversion operation s⊥1 .
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C1

C3 C4

C2

C1
⊥

C3
⊥C4

⊥

C2
⊥

Fig. 6. The dual operation.

with

D = 1

2



−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1


 .

Note that D = −QD ∈ Aut(Q D). There is a Möbius transformation d = dD which sends
D �→ d(D) = D′, and it depends on D.

4. Apollonian Packings and the Apollonian Group

Apollonian circle packings are infinite packings of circles recursively constructed from a
given positively oriented Descartes configurationD. For simplicity consider a positively
oriented Descartes configuration D = {C1,C2,C3,C4} in which circle C4 encloses the
other three, so that the interior of C4 includes the point z∞ at infinity. The uncovered
area consists of four lunes, indicated by the shading in Fig. 7.

The zeroth stage packing P (0)D = D. At the first stage we inscribe a circle in each
lune, to obtain a circle packing P (1)D containing eight circles. Each of these circles lies
in a unique (unordered) Descartes configuration in the first stage packing, consisting of
it and the three circles it touches. The uncovered area that remains consists of 12 lunes.
See Fig. 8.

At the second stage we inscribe a circle in each of these lunes, which produces the
second stage packing P (2)D . Continuing in this way, at the nth stage we add 4 · 3n−1

circles, and each of these lies in a unique Descartes configuration in the nth stage partial
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C4

C1

C2

C3

Fig. 7. A zeroth stage packing P(0)D and uncovered regions (lunes).

packing. The Apollonian packing PD associated to D is the limit packing

PD :=
∞⋃

n=1

P (n)D . (4.1)

One can regard an Apollonian packing P as a geometric object consisting of an
infinite collection of circles. These circles are described as the four orbits of a group
of Möbius transformations GA(D) acting on the circles (C1,C2,C3,C4) in original
Descartes configuration D. The group

GA(D) := 〈s1, s2, s3, s4〉, (4.2)

in which sj is the inversion with respect to the circle that passes through the three
intersection points ofD that do not include the circle Cj , as indicated in Section 3.3. One
can check that the circles added at the nth stage of the construction above correspond to
words si1si2 · · · sin of length n in the generators of this group, in which any two adjacent
generators are distinct, i.e. i j �= i j+1.

C4

C1

C2

C3

Fig. 8. A first stage packing P(1)D .



566 R. L. Graham, J. C. Lagarias, C. L. Mallows, A. R. Wilks, and C. H. Yan

The key geometric property of Apollonian circle packings is that they can be viewed
as packings of disks having the circles as boundary. To each circle in the Riemann
sphere correspond two disks having the circle as boundary. Recall that the “interior” of
an oriented circle corresponds to making a choice of one of these two disks, indicated by
a choice of sign of the curvature, when it is nonzero (and by a choice of normal vector if
the curvature is zero). The disk packing property of an Apollonian packing corresponds
to treating its Descartes configurations as positively oriented.

Theorem 4.1. For any Apollonian packing generated by a positively oriented Descartes
configuration, the interiors of all circles in the packing are disjoint.

Proof. We generate the packing from a single Descartes configuration D chosen to
have positive total orientation, so that the interiors of its four circles defined by the total
orientation are disjoint. Positive total orientation is preserved by the action of Möbius
transformations; see Theorem A.1 in Appendix A. Let

PD[m] :=
m⋃

n=1

P (n)D ,

where D is a positively oriented Descartes configuration. We prove by induction on m
the following statement: PD[m] consists of 2(3m + 1) circles which form the boundary
of 2(3m + 1) disks and 4 · 3m lune areas. The interiors of the disks, as well as the lunes,
are mutually disjoint.

The base case m = 0 is easy. Since any two positively oriented Descartes configura-
tions are equivalent under the Möbius transformations, which map circles to circles and
preserve the (total) orientation (see Theorem A.2, Appendix A), we can simply check the
Descartes configuration given in Fig. 7, which has four circles that form the boundary
of four disks and four lunes with disjoint interiors.

Assume the statement holds for m ≥ 0. We carry out the inductive step for m + 1.
By the inductive construction above,

PD[m + 1] = PD[m] ∪ P (m+1)
D .

The circles ofPD[m] remain inPD[m+1] with their interiors untouched. In each lune of
PD[m] a new circle is inscribed, breaking the original lune into four parts—one disk and
three smaller lunes, with disjoint interiors. Combining the inductive hypothesis, we have
that PD[m + 1] consists of 2(3m + 1)+ 4 · 3m = 2(3m+1 + 1) many circles with empty
interiors, and the uncovered area are 3 · 4 · 3m = 4 · 3m+1 lunes with disjoint interiors.
Each new Descartes configuration shares the interior of three circles with the Descartes
configuration generating it; this implies it has the same orientation as the preceding one;
hence it has positive total orientation. This proves the statement for m + 1.

We first consider an Apollonian packing as a geometric object. A geometric Apol-
lonian packing P is the point set consisting of a countable collection of circles on the
Riemann sphere Ĉ = C ∪ {∞} obtained by the construction above. It has Hausdorff
dimension 1, since it is a countable union of sets of Hausdorff dimension 1 (circles). Let
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G(P) denote the group of Möbius transformations that leaveP invariant. This group can
be proved to be a discrete subgroup of the group of all Möbius transformations, which
acts transitively on the circles in the packing. The group G(P) contains GA(D) above
as a subgroup of index 24, with cosets given by 24 Möbius transformations whose effect
is to fix a generating Descartes configurationD and permute the four circles in it. (These
are nontrivial facts, and we do not prove them here.)

The geometric Apollonian packing is not a closed set on the Riemann sphere. We
define �(P) to be its closure on the Riemann sphere, and call it the residual set of the
Apollonian packing. These sets are prototypical examples of fractal sets, and have been
much studied; in 1967 Hirst [25] showed these sets have Hausdorff dimension strictly
between 1 and 2. For later use, we summarize properties of�(P) in the following result.

Theorem 4.2. The residual set �(P) of a geometric Apollonian packing P has the
following properties:

(1) �(P) is the complement in the Riemann sphere of the interiors of all circles in
the packing. Here “interior” is defined by a positive orientation of a Descartes
configuration in the packing.

(2) �(P) has a Hausdorff dimension which is independent of the packing P , that
satisfies the bounds

1.300197 < dimH (�(P)) < 1.314534.

In particular, �(P) has Lebesgue measure zero.
(3) �(P) is the closure of the countable set of all tangency points of circles in the

packing.
(4) �(P) is invariant under the action of the discrete group G(P) of Möbius trans-

formations.

Remark. Property (1) is the more usual definition of the residual set of an Apollonian
packing.

Proof. Let I (P) be the open set which is the union of the interiors of all circles in the
packing. It is clear that

�(P) ⊂ �∗(P) := Ĉ\I (P).
The set �∗(P) is the usual definition of the residual set of an Apollonian packing; we
will show �(P) = �∗(P).

The result of Hirst [25] that the Hausdorff dimension of�∗(P) is strictly less than two
implies that�∗(P) has Lebesgue measure zero. The sharper bounds on the Hausdorff di-
mension stated here were obtained in 1973 by Boyd [7]. A later result of Boyd [9] suggests
that dimH (�

∗(P)) = 1.3056 ± 0.0001. Thomas and Dhar [40] give a nonrigorous ap-
proximation scheme suggesting that this Hausdorff dimension is 1.30568673 with an er-
ror of 1 in the last digit. See pp. 125–131 in [18] for proofs of 1 < dimH (�

∗(P)) < 1.432.
Now let z ∈ �∗(P). The interiors of the circles in the Apollonian packing cover all

but a measure zero area in a neighborhood of z. This requires infinitely many circles, so
their radii must go to zero, since there are only finitely many circles of radius larger than
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any positive bound. Since each of these circles has a tangency point on it, the point z is
a limit point of such tangency points. Since the tangency points are contained in P , so
we conclude that�∗(P) ⊂ �(P). This gives�(P) = �∗(P), at which point properties
(1)–(3) follow.

Property (4) follows by observing that the group invariance of P carries over to its
closure, by applying it to any Cauchy sequence of points in P .

The main viewpoint of this paper is to treat an Apollonian circle packing P as de-
scribed “algebraically” by the set of all Descartes configurations it contains, which we
denote D(P). In the construction process above, except for the four circles in D, each
other circle C in the packing corresponds to the unique (unordered) Descartes configu-
ration containing it which occurs at the stage of the construction where C first appears.
Each (unordered, unoriented) Descartes configuration appears exactly once in this cor-
respondence, except for the base configuration D which corresponds to the initial four
circles. These Descartes configurations can be described in terms of orbits of a discrete
subgroup A of Aut(QD), called here the Apollonian group.

The Apollonian groupA is a subgroup of Aut(Q D) defined by the action of the reflec-
tion operations on Descartes configurations described in Section 3.3. These correspond
to inversions in the circles passing through the three tangency points in a Descartes
configuration that do not include one fixed circle in the configuration.

Definition 4.1. The Apollonian group A is the subgroup of Aut(Q D) defined by

A := 〈S1,S2,S3,S4〉, (4.3)

where

S1 =



−1 2 2 2

0 1 0 0
0 0 1 0
0 0 0 1


 , S2 =




1 0 0 0
2 −1 2 2
0 0 1 0
0 0 0 1


 ,

S3 =




1 0 0 0
0 1 0 0
2 2 −1 2
0 0 0 1


 , S4 =




1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 −1


 .

(4.4)

We now characterize the set of ordered, oriented Descartes configurationsD(P) in an
Apollonian circle packing P in terms of this group. We note that a single unordered, un-
oriented Descartes configuration, corresponds to exactly 48 ordered, oriented Descartes
configuration, since there are 24 choices of ordering of the four circles, and two choices
of orientation.

Theorem 4.3. The ordered, oriented Descartes configurations in an Apollonian circle
packing comprise a union of 48 orbits of the Apollonian group. Each of these orbits
contains exactly one ordered, oriented representative of each (unordered, unoriented)
Descartes configuration in the packing.
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Proof. Let D = (C1,C2,C3,C4) be the zeroth stage packing of P , which is ordered
and positively oriented. It is enough to show thatA(D) contains exactly one ordered, pos-
itively oriented representative of each unordered, unoriented Descartes configuration in
the packing. Note that S2

1 = S2
2 = S2

3 = S2
4 = I, and for any word Si1 Si2 · · ·Sin (i j �= i j+1),

the Descartes configuration D′ = (C ′
1,C ′

2,C ′
3,C ′

4) with augmented curvature-center
coordinates WD′ = Si1 Si2 · · ·Sin WD is a positively oriented Descartes configuration
containing a unique circle C ′

in
in the nth stage partial packing. Since no two circles at

level n touch for n ≥ 1, by induction it is easy to see that

A = {Si1 Si2 · · ·Sin | n ≥ 0, i j �= i j+1}
and

A(D) = {D′ | WD′ = Si1 Si2 · · ·Sin WD, n ≥ 0, i j �= i j+1}.
Furthermore, for any ordered, positively oriented configuration D′′ in P , there is a
unique permutation σ such that σ(D′′) = D′ ∈ A(D), where there is a unique sequence
i1i2 · · · in , 1 ≤ i j ≤ 4 and i j �= i j+1, such that WD′ = Si1 Si2 · · ·Sin WD. This proves
that all the ordered, positively oriented Descartes configurations in an Apollonian circle
packing comprise a union of 24 orbits of the Apollonian group. The theorem follows by
counting both the positively and negatively oriented Descartes configurations.

Theorem 4.3 shows that the orbit under the Apollonian group of a single (ordered,
oriented) Descartes configuration completely describes an Apollonian packing.

5. Dual Apollonian Group

As explained in Section 3, the operation of inversion in the each of the individual circles
of a Descartes configuration is described by an integral matrix in Aut(Q D). This leads
us to the following definition.

Definition 5.1. The dual Apollonian groupA⊥ is the subgroup of Aut(Q D) generated
by the matrices

S⊥1 =



−1 0 0 0

2 1 0 0
2 0 1 0
2 0 0 1


 , S⊥2 =




1 2 0 0
0 −1 0 0
0 2 1 0
0 2 0 1


 ,

S⊥3 =




1 0 2 0
0 1 2 0
0 0 −1 0
0 0 2 1


 , S⊥4 =




1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 −1


 .

(5.1)

We note that S⊥i = ST
i , the transpose of Si .

By analogy with Theorem 4.3 we might think of an orbit of the dual Apollonian
group acting on a single oriented Descartes configuration D, as a “dual Apollonian
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circle packing”. It can be viewed algebraically as a set of Descartes configurations or
geometrically as a collection of circles in the plane. In the algebraic viewpoint the orbit
is a discrete set of points in the parameter space MD, so is a discrete object. From
the geometrical viewpoint, as a collection of circles, which we denote P⊥D, it has the
following weak “packing” property.

Theorem 5.1. No two circles in a dual Apollonian circle packing cross each other. That
is, two circles in distinct Descartes configurations in a dual Apollonian circle packing
P⊥D either coincide, or are tangent to each other, or are disjoint.

We do not give a proof of this theorem here, as it follows from a similar result proved
for the super-Apollonian packing in Section 3 of part II. It is also a special case of an
n-dimensional generalization proved in Section 4.2 of part III.

Figure 9 pictures the circles in a dual packing P⊥. These are circles in Descartes
configurations dual to those in the Apollonian packing in Fig. 1. The fractal-like part of

Fig. 9. A dual Apollonian packing.
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this figure is the closure of the set of points at which circles in the dual packing touch. It
can be shown that infinitely many circles touch at each such tangency point. Below we
show that this fractal set coincides with the limit set of the Apollonian packing generated
by the dual Descartes configuration D(D0).

The dual Apollonian group has a simple relation to the Apollonian group.

Theorem 5.2. The dual Apollonian groupA⊥ is conjugate to the Apollonian groupA
using the duality operator D ∈ Aut(Q D). This holds at the level of generators, with

DT Si D = S⊥i for 1 ≤ i ≤ 4,

where D = D−1 = DT .

Proof. This is a straightforward computation.

Theorem 5.3. Given a dual Apollonian packing P⊥D0
generated by Descartes configu-

ration D0, let � be the set of all intersection points of the circles in A⊥(D0). Then the
closure� := � is equal to the residual set�(PD(D0)) of the Apollonian packing PD(D0)

generated by the dual Descartes configuration D(D0).

Proof. Theorem 4.2(3) states that the residual set �(P) of a geometric Apollonian
packing P is the closure of the set of tangency points �′ in P . Thus it will suffice to
show that the set of tangency points � of the circles in the dual packing P⊥D0

coincides
with the set of tangency points �′ of circles in the Apollonian packing PD(D0). Each
intersection point of two circles in the dual Apollonian packing P⊥D0

is an intersection
point of circles in some Descartes configuration D of A⊥(D0). (This follows from the
recursive construction of the dual packing.) Each intersection point or circles in D is
an intersection point of circles in the dual Descartes configuration D(D), which is the
configuration having augmented curvature-center coordinates DWD. Now D(D) belongs
to the Apollonian packing A(D(D0)) because

DWD = D(S⊥i1
· · ·S⊥im

WD0) = Si1 · · ·Sim (DWD0),

using Theorem 5.2. Thus the set� of intersection points of circles in the dual Apollonian
packing P⊥D0

is contained in the set�′ of intersection points of circles in the Apollonian
packingPD(D0). The argument reverses to show the converse is also true: each intersection
point of circles in the Apollonian packing PD(D0) is an intersection point of circles in the
dual Apollonian packing P⊥D0

. Thus � = �′.

We have the following dichotomy between the geometric and algebraic views of
Apollonian packings and dual Apollonian packings. Viewed geometrically as collections
of circles, a dual Apollonian packing P⊥ appears quite different from an Apollonian
packing, as the circles are nested to an infinite depth. However, when viewed algebraically
as a collection of ordered, oriented Descartes configurations D(P⊥), it is a discrete set
given by the orbit of a groupA⊥ conjugate to the Apollonian group S, and so is a similar
object.
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6. Super-Apollonian Group

The Apollonian group A and dual Apollonian group A⊥ both consist of integer auto-
morphs in Aut(Q D). We obtain a larger integral group by combining the two groups, as
follows.

Definition 6.1. The super-Apollonian groupAS is the subgroup of Aut(Q D) generated
by the Apollonian group A and A⊥ together. We have

AS = 〈S1,S2,S3,S4,S⊥1 ,S⊥2 ,S⊥3 ,S⊥4 〉.

The super-Apollonian groupAS is a discrete subgroup of Aut(Q D) as a consequence
of the fact that all its members are integral matrices.

6.1. Presentation of Super-Apollonian Group

We now determine a presentation of the super-Apollonian group, showing that it is a
hyperbolic Coxeter group. This result implies that both the Apollonian group and dual
Apollonian group are finitely presented, and are hyperbolic Coxeter groups.

Theorem 6.1. The super-Apollonian group

AS = 〈S1,S2,S3,S4,S⊥1 ,S⊥2 ,S⊥3 ,S⊥4 〉

is a hyperbolic Coxeter group whose complete set of Coxeter relations are

S2
i = (S⊥i )2 = I for 1 ≤ i ≤ 4, (6.1)

(Si S⊥j )
2 = (S⊥j Si )

2 = I if i �= j. (6.2)

Proof. Recall that S⊥i = ST
i . The group AS satisfies the relations S2

i = (ST
i )

2 = I for
1 ≤ i ≤ 4 and it satisfies

Si ST
j = ST

j Si for i �= j, (6.3)

which is equivalent to (6.2).
Write words U in AS as U = UnUn−1 · · ·U1, in which each Ui is a generator Sj or

ST
j , with the empty word (n = 0) being the identity element. We do not need inverses

since each generator is its own inverse. A word U is in normal form if it has the two
properties:

(i) Uk �= Uk−1 for 2 ≤ k ≤ n.
(ii) If Uk = ST

j for some j , then Uk−1 �= Si for all i �= j .

We can reduce any word to a word in normal form, using the relations to move any
symbols ST

j as far to the right in the word as possible. We cancel any adjacent identical
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symbols to make (i) hold. Then move the rightmost ST
j as far to the right as possible, as

allowed by (6.3). Repeat the same with the next rightmost symbol ST
j . If in the process

any adjacent symbols (ST
j )

2 occur, cancel them. This process must terminate in a normal
form word or the empty word.

The theorem is equivalent to showing that no normal form word with n ≥ 1 is the
identity element in AS . This holds because the reduction to normal form used only the
Coxeter relations, so if AS satisfies an additional nontrivial relation, there would exist
some nontrivial normal form word that is the identity.

We proceed by induction on the length n of a word in normal form U = UnUn−1 · · ·U1.
Note that any suffix Uj−1Uj · · ·U1 of U is also in normal form. For each n ≥ 1, let Xn

denote the set of all normal form words of length n. (By a simple enumeration we can
show that the number of normal form words of length n is 9 · 5n−1− 1.) We measure the
size of a word U (viewed as a 4× 4 matrix) as

f (U) := 1T U1 =
4∑

i=1

4∑
j=1

Ui j . (6.4)

Thus f (I) = 4. For n = 1 we have

f (U) = f (U1) = 8 (6.5)

in all cases. For n ≥ 2 if U ∈ Xn then U′ = Un−1Un−2 · · ·U1 ∈ Xn−1, and we will prove

f (U) > f (U′). (6.6)

If so, then

f (U) ≥ f (U1) ≥ 8,

hence U �= I, which will complete the proof.
We let

r(U) := (r1(U), r2(U), r3(U), r4(U))T = U1 (6.7)

be the vector of row sums of U. Now

f (S1U′) = 1T S1r(U′) = (−1, 3, 3, 3)r(U′) = −4r1(U′)+ 3 f (U′),

f (ST
1 U′) = 1T ST

1 r(U′) = (5, 1, 1, 1)r(U) = 4r1(U′)+ f (U′),

with similar formulas in the other cases. To prove (6.6) it is therefore sufficient to prove
the following two assertions, for 1 ≤ h ≤ 4.

(1) If Un = Sh , so that Un−1 �= Sh , then 2rh(U′) < f (U′).
(2) If Un = ST

h , so that Un−1 �= ST
h and Un−1 �= Si for i �= h, then rh(U′) > 0.

Instead of proving (1) and (2), we prove by induction on n the following three asser-
tions for all U ∈ Xn . Here (h, i, j, k) always denotes some permutation of (1, 2, 3, 4) in
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what follows.

(i) For 1 ≤ i, j ≤ 4, with i �= j ,

ri (U)+ rj (U) > 0.

(ii) If Un = Sh , then

rh(U) > 0,

ri (U) < rh(U)+ rj (U)+ rk(U),

rj (U) < rh(U)+ ri (U)+ rk(U),

rk(U) < rh(U)+ ri (U)+ rj (U).

(iii) If Un = ST
h then

rh(U) < 0,

ri (U) < rh(U)+ rj (U)+ rk(U),

rj (U) < rh(U)+ ri (U)+ rk(U),

rk(U) < rh(U)+ ri (U)+ rj (U).

Note that (i) implies that at most one of the row sums of U can be negative. If proved,
(i)–(iii) imply (1) and (2), which themselves imply (6.6), completing the proof of the
theorem.

The induction hypotheses (i)–(iii) holds for n = 1, since r(Sh) is a permutation of
(5, 1, 1, 1)T and r(ST

h ) is a permutation of (−1, 3, 3, 3)T . Suppose it is true for n. For the
induction step, write U ∈ Xn+1 as U = Un+1U′ with U′ ∈ Xn and abbreviate r ′i = ri (U′).

Case 1: Un+1 = Sh for some h. We must verify (i) and (ii) for U. We have

rh(U) = rh(ShU′) = −r ′h + 2r ′i + 2r ′j + 2r ′k,
ri (U) = ri (ShU′) = r ′i ,
rj (U) = rj (ShU′) = r ′j ,
rk(U) = rk(ShU′) = r ′k .

To verify (i), all cases not involving rh(U) follow from the induction hypothesis. To show
rh(U)+ ri (U) > 0 note that

rh(U)+ ri (U) = −r ′h + 3r ′i + 2r ′j + 2r ′k . (6.8)

Now Un �= Sh since U ∈ Xn+1, and for all cases except Un = ST
h the induction hypotheses

(ii) and (iii) give r ′h < r ′i + r ′j + r ′k , whence

rh(U)+ ri (U) ≥ 2r ′i + r ′j + r ′k = (r ′i + r ′j )+ (r ′i + r ′k) > 0,

using induction hypothesis (i). If Un = ST
h , then by hypothesis (iii) r ′h < 0, hence

r ′i , r
′
j , r

′
k > 0 by hypothesis (i), so all terms on the right side of (6.8) are positive, so
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rh(U)+ri (U) > 0. The cases rh(U)+rj (U) > 0 and rh(U)+rk(U) > 0 follow similarly.
To verify (ii) for U it suffices to prove

0 < −r ′h + 2r ′i + 2r ′j + 2r ′k,

r ′i < −r ′h + 2r ′i + 3r ′j + 3r ′k,

r ′j < −r ′h + 3r ′i + 2r ′j + 3r ′k,

r ′k < −r ′h + 3r ′i + 3r ′j + 2r ′k,

which is equivalent to

r ′h < 2r ′i + 2r ′j + 2r ′k,

r ′h < r ′i + 3r ′j + 3r ′k,
(6.9)

r ′h < 3r ′i + r ′j + 3r ′k,

r ′k < 3r ′i + 3rj + r ′k .

There are three cases, according as Un = Si , Un = ST
i with i �= h and Un = ST

h . In the
first two of these, the induction hypotheses give

r ′h < r ′i + r ′j + r ′k,

which with induction hypothesis (i) immediately yields (6.9). If Un = ST
h then by (iii),

r ′h < 0, whence r ′i , r
′
j , r

′
k > 0 by (i) so (6.9) is immediate. This finishes Case 1.

Case 2: Un+1 = ST
h for some h. We must verify (i) and (iii). We have

rh(U) = rh(ST
h U′) = −r ′h,

ri (U) = ri (ST
h U′) = 2r ′h + r ′i ,

rj (U) = rj (ST
h U′) = 2r ′h + r ′j ,

rk(U) = rk(ST
h U′) = 2r ′h + r ′j .

To prove (i), note first that

rh(U)+ ri (U) = r ′h + r ′i > 0,

using (i) for U′, and similar inequalities hold for other cases involving rh(U). The re-
maining cases are all of the form ri (U) + rj (U) > 0 with i, j �= h, and the proofs for
each are similar. We have

ri (U)+ rj (U) = 4r ′h + r ′i + r ′j = 2r ′h + (r ′h + r ′i )+ (r ′h + r ′j ) > 2r ′h,

using induction hypothesis (i). We now show r ′h > 0 holds in all cases. Since U ∈ Xn+1,
we have Un �= ST

h and Un �= Si with i �= h. If Un = ST
j for some j �= h then hypothesis

(iii) for U′ says that r ′j < 0, whence we must have r ′h > 0. If Un = Sh then hypothesis
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(ii) for U′ says r ′h > 0. Thus r ′h > 0 in all cases, and (i) holds for U. To prove (ii) we
must prove

r ′h < 0,
2r ′h + r ′i < 3r ′h + r ′j + r ′k,
2r ′h + r ′j < 3r ′h + r ′i + r ′k,
2r ′h + r ′k < 3r ′h + r ′i + r ′j ,

which is equivalent to

r ′h > 0,
r ′i < r ′h + r ′j + r ′k,
r ′j < r ′h + r ′i + r ′k,
r ′k < r ′h + r ′i + r ′j .

(6.10)

We verified r ′h > 0 already. For the remainder there are two cases, according as Un = Sh

or Un = ST
i for some i �= h. If Un = Sh the three remaining inequalities in (6.10) follow

from inductive hypothesis (ii) for U′. If Un = ST
i the inductive hypothesis (iii) gives the

last two inequalities in (6.10), and also that r ′i < 0. By hypothesis (i) for U′ this implies
r ′j , r

′
h, r

′
k > 0 hence r ′i < 0 < r ′h + r ′j + r ′k which verifies (6.10) in this case, and finishes

Case 2.
The induction is complete.

6.2. Apollonian Super-Packings

We now define an Apollonian super-packing to be a set of (ordered, oriented) Descartes
configurations forming an orbit of the super-Apollonian group AS , acting on a single
such configuration.

The study of Apollonian super-packings forms the subject matter of part II. We call
the set of circles in all the Descartes configurations in such a super-packing a geometric
Apollonian super-packing. These circles comprise four orbits of a group of Möbius
transformations

GAS (D) = 〈s1, s2, s3, s4, s⊥1 , s⊥2 , s⊥3 , bs⊥4 〉,
where si and s⊥i were defined in Section 3.3. In terms of the space MD of Descartes
configurations this group action is given by G̃AS (D) ⊂ Aut(QW ) defined by

G̃AS (D) := W−1
D ASWD,

using the isomorphism Aut(QW ) = Möb(2) × {I,−I} given in Theorem A.2 of
Appendix A.

In part II we show that the individual circles in a geometric super-packing form a
“packing” in the weak sense that no two circles cross each other, although circles can
be nested. This is a remarkable geometric fact, because we also show in part II that a
strongly integral Apollonian super-packing necessarily contains a copy of every integral
Apollonian circle packing, with all these copies (essentially) contained inside the square
0 ≤ x ≤ 2, 0 ≤ y ≤ 2. All these Apollonian packings fit together in such a way that all
the circles in these packings manage not to cross each other.
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Appendix A. Möbius Group Action

The (general) Möbius group Möb(2) is the group of Möbius transformations, allowing
reflections (including complex conjugation). This group is denoted GM(R̂2) in p. 23 in
[3], and is also known as the conformal group. The group Möb(2)+ ! PSL(2,C) =
SL(2,C)/{±I} consists of the orientation-preserving maps of Ĉ = R

2 ∪ {∞}. The
group Möb(2) is a six-dimensional real Lie group which has two connected components
corresponding to orientation-preserving4 and orientation-reversing transformations. It
can be written as a semi-direct product

Möb(2) ∼= Möb(2)+ � {1, c},

in which c denotes complex conjugation. Möbius transformations take circles to circles
(or straight lines) and preserve angles. Thus they take ordered Descartes configurations
to ordered Descartes configurations. Concerning orientation, we show that although
Möbius transformations can reverse orientation of a single circle, they preserve (total)
orientation of oriented Descartes configurations. Recall that the total orientation of an
oriented Descartes configuration is the sign of the sum of the (signed) curvatures of the
circles in it.

Theorem A.1. Möbius transformations preserve the total orientation of oriented
Descartes configurations.

Proof. Positively oriented Descartes configurations are characterized by the four circles
having disjoint “interiors,” specified by the positive orientation. Möbius transformations
take Descartes configurations to Descartes configurations, and preserve the “disjoint
interior” property, hence preserve positive orientation, as given by normal vectors to the
circle. The result for negatively oriented Descartes configurations holds since all normal
vectors are reversed from the positively oriented case.

We now consider a group GM∗(2) with four connected components, which we term
the extended General Möbius group, defined by GM∗(2) := Möb(2) × {I,−I}. Here
{I,−I} are in the center of this group, and we write elements of GM∗(2) as±g, in which
g ∈ Möb(2), and the sign indicates which of ±I occurs. We have

GM∗(2) ∼= SL(2,C)� {I, c}.

4 The terminology “orientation” here refers to the invariant det(M).
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Table 1. Group Isomorphisms

GM∗(2) = Möb(2)× {−I, I} ∼✲ Aut(QW )
∼✲ O(3, 1)

Möb(2) = PSL(2,C)� {I, c}

π

❄∪

✻

∼✲ Aut(QW )
↑

π

❄∪

✻

∼✲ O(3, 1)↑

π

❄∪

✻

Möb(2)+ = PSL(2,C)
∪

✻

∼✲ Aut(QW )
↑
+

∪

✻

∼✲ O(3, 1)↑+

∪

✻

Lorentz group

Orthochronous

Lorentz group

Proper orthochronous

Lorentz group

The main object of this Appendix is to define an action of GM∗(2) on the right on
the parameter spaceMD, given in the next theorem. This amounts to finding an explicit
isomorphism between GM∗(2) and Aut(QW ), which appears as the horizontal arrow on
the left in the top row in Table 1. This map when restricted to the smaller groups Möb(2)
and Möb(2)+ give the other two horizontal isomorphisms on the left side of the table.
Table 1 also indicates isomorphisms on its right side to the Lorentz group O(3, 1) and
corresponding subgroups, which we defer discussing until after the following result.

Theorem A.2. Let GM∗(2) := Möb(2) × {I,−I}. There is a unique isomorphism
π : GM∗(2)→ Aut(QW ), with image elements V±g := π(±g), such that the following
hold:

(i) For g ∈ Möb(2) the augmented curvature-center coordinates for each ordered,
oriented Descartes configuration D satisfy

Wg(D) = WDV−1
g . (A.1)

(ii) The action of −I on augmented curvature-center coordinates is

W−D = WDV−1
−I = −WD. (A.2)

Proof. We compute the action of Möb(2) acting on augmented curvature-center co-
ordinates. Let (b̄, b, w1, w2) = ((x2

1 + y2
1 − r2)/r, 1/r, x1/r, y1/r) be the augmented

curvature-center coordinates of the circle

(x − x1)
2 + (y − y1)

2 = r2.

This circle can be recovered from these coordinates via

(bx − w1)
2 + (by − w2)

2 = 1, (A.3)

and the orientation of the circle (inside versus outside) is determined by the sign of b.
An oriented “circle at infinity” is a line given by

x cos θ + y sin θ = m, (A.4)
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and its associated curvature-center coordinates are

(b̄, b, w1, w2) = (2m, 0, cos θ, sin θ). (A.5)

Here the orientation is given by the convention that the normal (cos θ, sin θ) points
inward.

The group Möb(2) is generated by

(1) translations tz0 = z + z0;
(2) dilations dλ(z) = λz with λ ∈ C, λ �= 0;
(3) the conjugation c(z) = z̄;
(4) the inversion in the unit circle j(z) = 1/z̄ = z/|z|2.

Given g ∈ Möb(2), we let g̃ denote the corresponding action on the curvature-center
coordinates of an oriented circle. The action of translation by z0 = x0 + iy0 is

t̃z0(b̄, b, w1, w2)

= (b̄ + 2w1x0 + 2w2 y0 + b(x2
0 + y2

0), b, w1 + bx0, w2 + by0). (A.6)

The action of a dilation with λ = reiθ (r > 0) is given by

d̃λ(b̄, b, w1, w2) = (r b̄, b/r, w1 cos θ − w2 sin θ,w1 sin θ + w2 cos θ). (A.7)

The action of complex conjugation is

c̃(b̄, b, w1, w2) = (b̄, b, w1,−w2). (A.8)

The action of inversion is

j̃(b̄, b, w1, w2) = (b, b̄, w1, w2).

All of these actions apply to “circles at infinity” and extend to linear maps on the 4× 4
matrices WD.

The translation operation is given by right multiplication by the matrix

V−1
tz0

:=




1 0 0 0
x2

0 + y2
0 1 x0 y0

2x0 0 1 0
2y0 0 0 1


 , (A.9)

and one verifies (A.1) holds by direct computation.
For the dilation dλ, with λ = reiθ (r > 0) the right action is by the matrix

V−1
dλ

:=




r 0 0 0
0 1/r 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ


 . (A.10)

For complex conjugation c, the right action is by the matrix

V−1
c = Vc :=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 . (A.11)
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For the inversion jC in the unit circle, the permutation matrix

V−1
jC
= VjC = P(12) =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 . (A.12)

It is easy to verify that the above matrices are all in Aut(QW )
↑, so that the map so

far defines a homomorphism of Möb(2) into Aut(QW )
↑ ! O(3, 1)↑, identified with

the isochronous Lorentz group. The group Möb(2) acts simply transitively on ordered
Descartes configurations, as observed by Wilker [42, Theorem 3, p. 394], and the group
Aut(QW ) acts simply transitively on ordered, oriented Descartes configurations by The-
orem 3.3. Because Aut(QW )

↑ is of index 2 in Aut(QW ) ! O(3, 1), we conclude that the
map so far defines an isomorphism of Möb(2) onto Aut(QW )

↑.
To complete the proof, we define the action of −I to be

(V−I)
−1 = V−I = −I. (A.13)

It has the effect of reversing (total) orientation of the Descartes configuration, and does
not correspond to a conformal transformation. Since −I /∈ Aut(QW )

↑, adding it gives
the desired isomorphism of GM(2) onto Aut(QW ).

In terms of the natural coordinates on Möb(2)+ ! PSL(2,C) the homomorphism
π(·) given in Theorem A.2 is a nonlinear map. This can be clearly seen in (A.10), where
both Udλ and U−1

dλ
are nonlinear functions of the coordinates of

dλ =
[√
λ 0

0 1/
√
λ

]
∈ SL(2,C). (A.14)

Here the two choices of ±√λ give a well defined matrix modulo ±I .
We now return to the data in Table 1 giving the isomorphisms of Aut(QW ) and its sub-

groups to the Lorentz group O(3, 1) and its two subgroups O(3, 1)↑ the orthochronous
Lorentz group, and O(3, 1)↑+, the proper orthochronous Lorentz group, using the termi-
nology of Wilker [42]. An orthochronous Lorentz transformation is one that preserves
the arrow of time; Table 1 shows this corresponds to preserving total orientation of a
Descartes configuration. The set of isomorphisms given by the three horizontal arrows
on the right in Table 1 are obtained by any fixed choice of matrix A that intertwines QW

and QL by QW = AT QLA, in which case the isomorphism is Aut(QW ) = A−1 O(3, 1)A
sending V �→ AVA−1. To preserve the underlying rational structure of these forms, one
must choose A to be a rational matrix, for example the integral matrix given in (3.17).

There is a different choice of intertwining matrix, for the rightmost horizontal rows
in Table 1, which will allow us to make the composed horizontal maps in Table 1 from
the Möbius group to the Lorentz groups compatible with the framework used by Wilker
[42]. In Theorem 10 in [42] Wilker gave an explicit isomorphism of PSL(2,C) onto the
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proper orthochronous Lorentz group O(3, 1)↑+. It maps5

±
[

a b
c d

]
�−→




1
2

(|a|2 + |b|2 "(ac̄ + bd̄) 1
2

(|a|2 + |b|2 #(ac̄ + bd̄)
+ |c|2 + |d|2) − |c|2 − |d|2)

"(−ab̄ − cd̄) #(ad̄ − bc̄) "(−ab̄ + cd̄) "(−ad̄ + bc̄)
1
2

(|a|2 − |b|2 "(ac̄ − bd̄) 1
2

(|a|2 − |b|2 #(ac̄ − bd̄)
+ |c|2 − |d|2) − |c|2 + |d|2)

#(ab̄ + cd̄) "(ad̄ + bc̄) #(ab̄ − cd̄) #(ad̄ + bc̄)



.

One can identify this map with the composed map in the last row of Table 1 from the
first column to the last column, if one chooses the map Aut(QW ) → Aut(QL) to be
V �→ ZVZ−1 for a particular intertwining matrix Z, which is unique up to multiplication
by ±I. It has irrational entries, and is

Z := ±
√

2




1 1 0 0
0 0 0 −1
1 −1 0 0
0 0 −1 0


 . (A.15)

Appendix B. Groups in Hyperbolic 3-Space Associated to
Apollonian Packings

In this appendix we describe two different discrete groups of isometries of hyperbolic
3-space H3 associated to an Apollonian packing. We specify these groups as groups of
Möbius transformations of Ĉ.

Any Möbius transformation of Ĉ = R̂2 has a unique Poincaré lift to an isometry of
hyperbolic 3-space H3, viewed as the upper half-space of R̂3 = R3 ∪ {∞}, as described
in Section 3.3 of [3]. Here Ĉ is identified with the ideal boundary of R̂3. In this way any
group of Möbius transformations acting on Ĉ lifts to a group of hyperbolic isometries.

A classical Schottky group is a group � = 〈g1, . . . , gn〉 of Möbius transformations
associated to 2n circles in the plane Ĉ having disjoint interiors, but possibly touching on
their boundaries. The group has n generators gj , in which the j th generator of the group
maps the exterior of circle C2 j−1 onto the interior of circle C2 j . Schottky groups consist
entirely of holomorphic Möbius transformations. (Note: knowing a single gj alone does
not determine the circles C2 j−1 and C2 j uniquely.)

Mumford et al. [33, Chapter 7] observe that given an Apollonian circle packing PD
generated by a Descartes configurationD, there is a Schottky group �(D) in hyperbolic
3-space H3 whose limit set is exactly the limit set �D of the Apollonian packing PD.
The Schottky group �(D) has two generators P1,P2, involving maps between two pairs
of circles in the dual Descartes configurationD⊥, specified by the ordering as A, a, B, b,
say. It takes the exterior of circle A to the interior of circle a and the exterior of circle B
to the interior of circle b.

5 We have permuted the first and last row and column of Wilker’s result because he uses the Lorentz form
w2 + x2 + y2 − z2.
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22
3

-1 C1

C3 C2

C4

(a) (b)

Fig. 10. Special Descartes configuration D0.

We treat the case they picture [33, Figure 7.3], where the Schottky limit set is�(D0),
for the (ordered) Descartes configuration D0 having coordinates

WD0 =




1 −1 0 0
0 2 1 0
0 2 −1 0
1 3 0 −2


 .

This configuration is pictured in Fig. 10, with part (a) indicating curvatures and part (b)
shows the ordering of circles, used later in labeling Möbius group generators si .

The Schottky group operations are associated to the dual Descartes configurationD⊥0 ,
which has augmented curvature-center coordinates

WD⊥0 =




0 0 0 1
1 1 −1 −1
1 1 1 1
0 4 0 −1


 .

It is pictured in Fig. 11, with (a) indicating curvatures and (b) the labeling of circles used
in the Schottky group.

In Fig. 11 the Schottky group generator P1 maps the exterior of circle A to the interior
of circle a, and P2 maps the exterior of circle B to the interior of circle b. We let �S(D)
denote the Schottky group they generate. The limit set ��S(D) of this Schottky group is
the closed set in P1(C) obtained by removing the interiors of all circles in the Apollonian

1 1
4

0

B b

A

a

(a) (b)

Fig. 11. Dual Descartes configuration D⊥0 .
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packing associated to D. This is exactly the residual set of the Apollonian packing, see
Theorem 4.2 for its properties. It is a fractal set of Hausdorff dimension about 1.3.

The precise result is as follows.

Proposition B.1. The Schottky group � = 〈P1,P2〉 given by the parabolic generators

P1 =
[

1− i 1
1 1+ i

]
and P2 =

[
1 0
−2i 1

]
(B.1)

has a limit set�� which is the complement of the interiors of the circles in the Apollonian
packing PD0 associated to the Descartes configuration D0 above.

This limit set, “the glowing gasket,” is illustrated in Figure 7.3 in Chapter 7 in [33].
The Schottky group �S(D0) is very special; it admits no deformations other than

conjugacy, and under conjugacy g�S(D0)g
−1 = �S(D) with D = g(D0). Recall that a

matrix M ∈ PSL(2,C) is parabolic if Trace(M) = ±2; its action on the Riemann sphere
has a single fixed point. Here P1,P2 are parabolic, as is

[P1,P2] := P1P2P−1
1 P−1

2 =
[−1− 2i 2i
−2i −1+ 2i

]
. (B.2)

The Schottky group �S(D0) is characterized up to conjugacy by the property that it
is generated by two elements P1,P2 which are parabolic, such that their commutator
[P1,P2] = P1P2P−1

1 P−1
2 is also parabolic [33, pp. 207–208].

Now consider the group GA(D0) = 〈s1, s2, s3, s4〉 of Möbius transformations corre-
sponding to the Apollonian group for the Descartes configuration D0, see (4.2). Here si

is inversion in the i th circle of the dual Descartes configuration D⊥, which is the circle
passing through the three intersection points in D not touching Ci . The group GA(D0)

lifts to a group �A(D0) of isometries ofH3. We describe GA(D0) for the case thatD0 is
the Descartes configuration in Fig. 10 with circles numbered as in Fig. 10(b); all other
GA(D) are related to it by conjugacy in the Möbius group. An inversion in a circle C of
radius r centered at z0 is the anti-holomorphic map

jC(z) = z0 + r2

z − z0
= z0 z̄ + r2 − |z0|2

z̄ − z̄0
.

We can write the group generators as sj = pj ◦ c, where pj ∈ PSL(2,C) is holomorphic
and c denotes complex conjugation, with

p1 =
[

1− i −i
i 1+ i

]
, p2 =

[
1+ i −i

i 1− i

]
, p3 =

[
1 0
4i 1

]
, p4 =

[
1 0
0 1

]
.

Since p4 = I, the subgroup of holomorphic elements of GA(D) is

G2
A(D) = 〈p1p2, p1p3, p1p4, p2p3, p2p4, p3p4, p2p1, p3p1, p4p1, p3p2, p4p2, p4p3〉

= 〈p1, p2, p3〉, (B.3)

where we used the fact that pj = p
−1
j .
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There are clearly relations between the Schottky group�S(D0) and the group G2
A(D0)

of holomorphic elements of GA(D). Indeed, the group G2
A(D0) is generated by three

parabolic elements p1, p2, p3, and these are related to the three parabolic elements
P1, P2, [P1, P2] in �S(D) by the relations

p3 = (P2)
−2, p

−1
1 p2 = −(P1)

−2, p
2
2 = −[P1, P2].

However, these groups are not exactly the same. It remains to determine a more precise
relation between them, explaining how they give rise to the same Apollonian packing.
Note that both these groups lifted to discrete isometry groups of H3 have fundamental
domains in H3 of infinite volume.
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