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Abstract. Apollonian circle packings arise by repeatedly filling the interstices between

four mutually tangent circles with further tangent circles. Such packings can be described

in terms of the Descartes configurations they contain, where a Descartes configuration is a

set of four mutually tangent circles in the Riemann sphere, having disjoint interiors. Part

I showed there exists a discrete group, the Apollonian group, acting on a parameter space

of (ordered, oriented) Descartes configurations, such that the Descartes configurations in a

packing formed an orbit under the action of this group. It is observed there exist infinitely

many types of integral Apollonian packings in which all circles had integer curvatures, with

the integral structure being related to the integral nature of the Apollonian group. Here we

consider the action of a larger discrete group, the super-Apollonian group, also having an

integral structure, whose orbits describe the Descartes quadruples of a geometric object we

call a super-packing. The circles in a super-packing never cross each other but are nested
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to an arbitrary depth. Certain Apollonian packings and super-packings are strongly integral

in the sense that the curvatures of all circles are integral and the curvature × centers of all

circles are integral. We show that (up to scale) there are exactly eight different (geometric)

strongly integral super-packings, and that each contains a copy of every integral Apollonian

circle packing (also up to scale). We show that the super-Apollonian group has finite volume

in the group of all automorphisms of the parameter space of Descartes configurations, which

is isomorphic to the Lorentz group O(3, 1).

1. Introduction

Apollonian circle packings are arrangements of tangent circles that arise by repeatedly

filling the interstices between four mutually tangent circles with further tangent circles.

A set of four mutually tangent circles is called a Descartes configuration. Part I studied

Apollonian circle packings in terms of the set of Descartes configurations that they

contain. It is observed that there exist Apollonian circle packings that have a very strong

integral structure, with all circles in the packing having integer curvatures, and rational

centers, such that curvature × center is an integer vector. We termed these strongly

integral Apollonian circle packings. An example is the (0, 0, 1, 1) packing pictured in

Fig. 1, with the two circles of radius 1 touching at the origin, and with two straight lines

parallel to the x-axis.

Part I gave an explanation for the existence of such integral structures. This uses a

coordinate system for describing all (ordered, oriented) Descartes configurations D in

terms of their curvatures and centers, which forms a 4× 3 curvature-center coordinate

matrix MD, and a more detailed coordinate system, augmented curvature-center coor-

dinates, using 4× 4 matrices WD. The strongly integral property of a single Descartes

configuration is encoded in the integrality of the matrix MD. The set of all (geometric)

Descartes configurations in an Apollonian packing can be described as a single orbit of

a certain discrete group A of 4× 4 integer matrices; algebraically there are 48 orbits of

ordered, oriented Descartes configurations giving rise to the same geometric packing,
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Fig. 1. The integer Apollonian packing (0, 0, 1, 1).
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Fig. 2. The integer Apollonian packing (−1, 2, 2, 3).

which correspond to the 48 possible ways of ordering the circles and totally orienting the

configuration. The integrality of the members of A is the source of the strong integrality

of some Apollonian circle packings. As a consequence of this group action, if a single

Descartes configuration in the packing is strongly integral, then they all are; hence every

individual circle in the packing is strongly integral.

There are infinitely many distinct integral Apollonian circle packings. Two more of

them are pictured in Figs. 2 and 3, the (−1, 2, 2, 3)-packing and the (−6, 11, 14, 15)-

packing, respectively. Any integral packing can be moved by a Euclidean motion so as

to be strongly integral, as will follow from results in this paper.

Part I introduced some further integral actions on Descartes configurations, involving

a “duality” operator D leading to a dual Apollonian groupA⊥. Combining this group with

the Apollonian group leads to a large group of integer 4×4 matrices, the super-Apollonian

group AS , which acts on the set of all (ordered, oriented) Descartes configurations. Part I

showed that the super-Apollonian group is a hyperbolic Coxeter group. It defined an

Apollonian super-packing to be an orbit AS[D] of a single Descartes configuration

D under this group. Such a super-packing is called integral if the initial Descartes

configuration has integer curvatures, and is strongly integral if the curvature-center

coordinates MD of the initial Descartes configuration are integral. These properties hold

for all Descartes configurations in the packing if they hold for one.

In this paper we study the geometric structure of super-packings, and their integrality

properties. A striking geometric fact is that the circles in a super-packing do not overlap,

as shown in Section 3. Figure 4 shows circles of curvature at most 65 in the super-

packing generated from the (0, 0, 1, 1) configuration in Fig. 1 above. (The generating

Descartes configuration is indicated with slightly darker lines.) Here the horizontal and

vertical scales of the figure are roughly from −2.2 ≤ x ≤ 2.2 and −2.2 ≤ y ≤ 2.2.



4 R. L. Graham, J. C. Lagarias, C. L. Mallows, A. R. Wilks, and C. H. Yan

-6

11

14

15
23

102

267

770

743

506

819

258

755

719

482

774

231

683

674
410

639
918

51

182 498 962

471

890

387

666

122
398

822

311

974

803

590

959

227
750

663

366

539

746

987

95

326
930819

687

266

830

659

527
878

155

534

474 971

231

806

746

323
431

555
695

851

42
158

435
842

399

746

342

999

594
914

107
350

975

918

723

263830

686

491

791

206

678
591

339

506

707

942

71
254 723

630

543

938

203638

494

915

407

683

110
390

951

834

339

815

698

159
566

515

218

782

731

287
987

366

455

554

663

782

911

26
110291

839

806

554
899

279819

774

522

839

246
731

719

434

674

966

59
206

567

534
435

746

143
462

951

366

947

695

267

878

782

431

635

879

110 374

939

786

311
966771

618

179
614

551

266
926

863

371

494

635

794

971

47

174

483

938

438

818

375

650

999

123
398

819

302

950

791

563

906

239
782

686

395
591

827

78
278

795

687

594

227

710

551
458771

119
422

903

371
890767

170
606

555

231
830

779

302
383

474
575

686
807

938

35

134
354

971

674

351

963

666

291866

863

506

779

74
254

711

651

534 914

191

606
483

911

366

599

890

131 446 939

383

942

771

206 710

647

299

983

410

539

686

851

71

246
690

627

519

890

186

590

467

878

359
590

879

123

422

891

362
887

731

191

662

602

275

966

906

375
491

623
771

935

86
219

626

623

410

659

966

210

611

599

386

614

894

207
603

594

378
599

870

Fig. 3. The integer Apollonian packing (−6, 11, 14, 15).

Fig. 4. An initial part of the (0, 0, 1, 1) super-packing (square of sidelength 4.4).
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This picture is representative of the whole super-packing; we show in Section 6 that

this super-packing is periodic under the two-dimensional lattice generated by the shifts

x → x + 2 and y → y + 2.

We cannot picture the whole super-packing because the circles in it are dense in the

plane; they nest inside each other to an arbitrary depth. One can show that the set of

points lying in the interior of an infinite nested sequence of such circles has full Lebesgue

measure. However, there is an interesting structure visible if we increase the scale of the

circles. In Section 6 in Fig. 8 we show all circles of curvature at most 200 inside the

super-packing above, inside the unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

This paper is concerned with the integrality properties of some super-packings, and we

study successively stronger integrality properties. In Section 4 we require the curvatures

to be integral, in Sections 5 and 6 both the curvatures and curvature × center must be

integral, and in Section 8 the augmented curvature-center coordinates of all Descartes

configurations in the super-packing must be integral. At this last level we show that there

are exactly 14 such super-packings, viewed as rigid geometric objects. In Section 2 we

give a more detailed description of our results.

The general framework of this paper was developed by the second author (JCL), who

also did much of the writing. This paper is an extensive revision of a preprint written in

2000, and adds new results in Sections 3 and 6.

2. Summary of Main Results

We consider Apollonian super-packings. Analogously to part I, an Apollonian super-

packing may be considered as either a geometric object or an algebraic object, as follows:

(i) [Geometric] A geometric Apollonian super-packing is a point set on the Riemann

sphere Ĉ = R
2∪{∞}, consisting of all the circles in four orbits of a certain group

GAS (D) of Möbius transformations inside the conformal group Möb(2) acting

on the four circles {C1, C2, C3, C4} in a given Descartes configuration D. The

group GAS (D) depends on D.

(ii) [Algebraic] An (algebraic) Apollonian super-packing is a set of ordered, ori-

ented Descartes configurations, given by 48 orbits of the super-Apollonian group

AS[D]. The augmented curvature-center coordinates of its elements areASWD :=
{UWD: U ∈ AS}.

A geometric super-packing can be described in terms of its unordered, unoriented

Descartes configurations. From this viewpoint, each geometric Apollonian super-packing

corresponds to 48 different algebraic super-packings; there are 24 choices of ordering

the four circles and 2 choices of total orientation of the configuration. We can consider

geometric super-packings as unions of a countable number of Apollonian packings.

This leads to interesting questions concerning the way these Apollonian packings are

embedded inside the geometric super-packing. We note that as a point set, the geometric

super-packing is invariant under the group action GAS (D). However, it is not a closed

set, and its closure is the entire Riemann sphere R
2 ∪ {∞}.

A large part of the paper considers the integrality properties of curvatures and cen-

ters of some super-packings. These questions are mainly studied using algebraic super-
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packings, although we also consider questions concerning the associated geometric

super-packing, such as its group of symmetries under Euclidean motions.

In Section 3 Theorem 3.1 shows that each geometric super-packing is a packing in

the sense that the circles in it do not cross each other transversally, as mentioned above.

Theorem 3.2 specifies certain subcollections of geometric super-packings which are

genuine packings in the sense that the interiors of the circles do not overlap.

In Section 4 we study integer super-packings, in which all circles have integer curva-

tures. Integer super-packings are classified up to Euclidean motions by a single invariant,

their divisor g, which is the greatest common divisor of the curvatures in any Descartes

configuration in the packing. Theorem 4.1 shows that for each g ≥ 1 there is a unique

such integral super-packing, up to a Euclidean motion. We also show in Theorem 4.3 that

for each geometric Apollonian circle packing that is integral, there exists a Euclidean

motion taking it to one that is strongly integral.

In Section 5 we study strongly integral super-packings, which are those whose cur-

vatures are integral and whose curvature × center is also integral. Strongly integral

super-packings are geometrically rigid: Theorem 5.1 shows that for each integer g ≥ 1

there are exactly eight strongly integral geometric super-packings which have divisor g.

Here we do not allow the packings to be moved by Euclidean motions.

In Section 6 we study the relations between integer Apollonian packings and strongly

integral super-packings. Without loss of generality we restrict to primitive integer super-

packings, those with divisor 1. Theorem 6.1 shows that each of the eight kinds of these has

a large group of internal symmetries, forming a crystallographic group. For convenience

we fix one of them and call it the standard strongly integral super-packing; results proved

for it have analogues for the other seven. Theorem 6.2 shows that each primitive integral

Descartes configuration (except for the (0, 0, 1, 1) configuration) occurs in this packing

with the center of its largest circle being contained in the closed unit square 0 ≤ x ≤
1, 0 ≤ y ≤ 1, and the location of this circle center is unique. Theorem 6.3 deduces

that the geometric standard strongly integral super-packing contains a unique copy of

each primitive integral Apollonian packing, except for the (0, 0, 1, 1) packing, having the

property that the center of its bounding circle lies inside the closed unit square. Figures 5–

7 show the locations of all primitive integer Apollonian packing with a bounding circle

of curvature 6, 8 and 9, respectively. The unit square is indicated by slightly darker

shading in the figures. Note that in Fig. 5 the three Apollonian packings are generated by

Descartes configurations with curvature vectors (−6, 7, 42, 43), (−6, 10, 15, 19) and

(−6, 11, 14, 15); these are root quadruples in the sense of Section 4 in [3].

In Section 7 Theorem 7.1 shows that the super-Apollonian group is a finite index

normal subgroup of the group Aut(Q D, Z) of integral automorphs of the Descartes

quadratic form. The latter group can be identified with an index 2 subgroup of the

integer Lorentz group O(3, 1, Z), and this identification allows us to identify the super-

Apollonian group with a particular normal subgroup ÃS of index 96 in O(3, 1, Z),

defined after Theorem 7.1.

In Section 8 we study super-packings all of whose Descartes configurations are super-

integral in the sense that their augmented curvature-center coordinate matrices WD are

integer matrices. Theorem 8.1 shows there are exactly 14 geometric super-packings of

this kind.

The last section, Section 9, makes a few concluding remarks.
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Fig. 5. Integer Apollonian packings with a bounding circle of curvature 6.
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Fig. 7. Integer Apollonian packings with a bounding circle of curvature 9.

The Appendix considers minimal conditions to guarantee that a Descartes configura-

tion is strongly integral. Theorem A.1 shows that a configuration is strongly integral if

(and only if) three of its four circles are strongly integral.

3. Geometric Apollonian Super-Packings

In this section we consider properties of geometric Apollonian circle packings. We view

such a super-packing as a point set on the Riemann sphere Ĉ = C ∪ {∞}. We first note

that it is not a closed set. It is not hard to show that its closure is the whole Riemann

sphere. Each geometric Apollonian packing has a group invariance property under a

certain group of Möbius transformations which depends on the super-packing, which is

the group generated by the countable set of groups of Möbius transformations that leave

invariant some Apollonian packing contained in the super-packing.

Our object is prove the following “packing” property of geometric super-packings.

Theorem 3.1. A geometric Apollonian super-packing is a circle packing in the weak

sense that no two circles belonging to it cross each other transversally. Circles in the

geometric super-packing may be nested or tangent to each other.

Before giving the proof, we describe the nature of the geometric packing in terms of

nesting of circles. We view the packing AS[D0] as generated from an initial (positively
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oriented) Descartes configuration D0, by multiplication by a finite set of generators of

the super-Apollonian group. Each circle in the super-packing has a well-defined nesting

depth d (relative to the generating configuration D0) which counts the number of circles

in the packing which include C in their interior. Here the notion of “interior” is defined

with respect to the initial Descartes configuration D0. The Apollonian group generators

move “horizontally,” leaving constant the nesting depth of any circles they produce. The

dual Apollonian group generators move “vertically,” by reflecting three of the circles in a

configuration into the interior of the fourth circle, they increase the nesting depth by one.

We show there is a unique “normal form” word of minimal length in the generators that

produces a Descartes configuration D containing C . The nesting depth of C is exactly

equal to the number d of generators of A⊥ that appear in this normal form word. The

circles at nesting depth 0 are those circles in the Apollonian packing generated by D0.

Each circle C at nesting depth k ≥ 1 contains a unique Apollonian packing, consisting

of it plus all circles at depth k + 1 nested inside it.

Proof of Theorem 3.1. We view the geometric super-packing on the Riemann sphere

Ĉ = C ∪ {∞}, so the initial Descartes configuration D0 consists of four circles on

the sphere. In this case each circle defines a spherical cap. We choose an ordering and

orientation of D0 (this does not affect the geometry), requiring that D0 have positive

(total) orientation.

Let the super-packing be AS[D0] = ASWD0
. We consider the effect of the super-

Apollonian group generators acting on the left on the matrix WD0
. The Descartes

configurations in the super-packing are given by D = UmUm−1 · · ·U1[D0] with each

Uk ∈ {S1, S2, S3, S4, S⊥1 , S⊥2 , S⊥3 , S⊥4 }. We consider words in the group measured by

their length m. The stage m circles will consist of all new circles added using products

of m generators. We may without loss of generality restrict to normal form words, which

are those that satisfy the two conditions:

(i) If Uk = Si , then Uk+1 �= Si and Uk+1 �= S⊥j with j �= i .

(ii) If Uk = S⊥i , then Uk+1 �= S⊥i .

Equivalently, looking backwards, if Uk+1 = S⊥i then either Uk = Si or else Uk =
S⊥j for some j �= i . A word may be put in normal form by canceling adjacent equal

generators, since all S2
i = (S⊥i )2 = I, and by moving towards the right1 in the word as

far as possible any generator S⊥i , using the property that it commutes with all Sj with

j �= i . These operations eventually put a word in normal form, without increasing its

length. The operations do not change the Descartes configuration D it represents.

We prove the theorem by induction on the number of symbols m in a normal form

word, which we call the stage of the induction. The induction hypotheses at stage m are

as follows. Here we let Ci refer to the circle at row i of the associated (ordered, oriented)

Descartes configuration.

(1) Each normal form word of length m produces either one or three new circles,

according as Um = Si , where it is the circle Ci or Um = S⊥j , where it is the three

circles Ci with i �= j .

1 That is, moving it towards the beginning of the word.
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(2) The nesting depth of any new circle produced at this stage is equal to the number

of occurrences of a letter in A⊥ in its generating normal form word.

(3) Each new circle produced has an empty interior, when it first appears.

In particular, hypothesis (3) implies that all circles produced at stage m have disjoint

interiors, and that each such circle contains no circles from earlier stages in its interior. If

the induction is proved, then hypothesis (3) guarantees that the nesting depth of a circle

is well-defined when it is first produced, because no new circle will ever include it in

its interior. Hypothesis (3) also guarantees that all circles produced by the end of stage

m+1 do not cross. As a consequence no two circles in the packing cross, using property

(3) applied at that level m which is the greater of the levels of the two circles. Thus the

theorem will follow.

The base case m = 0 of the induction is immediate, consisting of the initial Descartes

configuration D0. We now show the induction step for m + 1, given m. We are given

a Descartes configuration D′ = Um+1[D] = Um+1Um · · ·U1[D0] with a normal form

word.

To establish hypothesis (1) for m + 1, suppose first that Um+1 = S⊥i . We assert that

the i th circle Ci of D was a new circle produced at stage m. For either Um = Si , in

which case it was the unique new circle in D by induction hypothesis (1) at stage m,

or Um = S⊥j with j �= i , in which case it was one of three new circles produced at

stage m. By induction hypothesis (2) the circle Ci has an empty interior at stage m. The

three circles {C ′j : j �= i} in the new configuration D′ contained in the interior of Ci are

therefore new circles. They do not cross, being part of a Descartes configuration. Thus

hypothesis (1) holds for m + 1 in this case.

Suppose next that Um+1 = Si , so the possible new circle is C ′i . If Dk := UkUk−1 · · ·
U1[D0] is the maximal length subword such that Uk = S⊥j for some j , with 1 ≤ k ≤
m, then D′ belongs to the Apollonian packing generated by Dk , since all subsequent

generators belong to the Apollonian group. If no such k exists, thenD′ is in the Apollonian

packing generated by the original Descartes configurationD0. For k ≥ 1, this Apollonian

packing is entirely contained in the interior of a bounding circle C = C j first produced

at stage k − 1. At that time the interior of C was empty, by induction hypotheses (2)

and (3) at stage k − 1. The only Descartes configurations that can ever enter the interior

of the circle C must do so by a reflection in C and these are exactly those normal form

words starting with initial segment UkUk−1 · · ·U1. (This follows from the uniqueness of

a circle when it is created, hypothesis (3) applied at stage k.) The words containing this

initial segment at the same depth, with all subsequent letters in A, fill out an Apollonian

packing at this depth. In particular, each such normal form word produces one new circle

in this Apollonian packing. Recall that all the circles in the Apollonian packing inside

the bounding circle C have disjoint interiors (Theorem 4.1 of Part I). These circles all

have the same depth, and (1) holds in this case. Normal form words that have another

subsequent generator in A⊥ confine the resulting Descartes configuration to the inside

of a single circle in the Apollonian packing A[Dk] already produced, and all longer

words with this prefix are entirely contained inside this circle. In particular, they do

not coincide with C ′i , the new circle produced by the normal form word corresponding

to D′. It follows that the circle C ′i is new, so hypothesis (1) holds for m + 1 in this

case.
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There remains the case where Um+1 = Si and all previous Uk ∈ A. Then Um+1 · · ·
U1[D0] belongs to the Apollonian packing generated by D0, and is at depth 0. Here C ′i is

new since the generation of an Apollonian packing creates one new circle at each step,

and any word that contains an element of A⊥ moves the Descartes configuration inside

an older circle in this packing, from which it cannot escape. Thus C ′i is a new circle in

this case, and hypothesis (1) holds.

Hypothesis (2) holds for m + 1 in the case Um = S⊥i because the three new circles

produced have nesting depth one greater than the nesting depth of Ci at the previous level,

to which induction hypothesis (2) applied. It also holds in the remaining case Um = Si

because the argument above showed that the nesting depth did not increase in this case.

Hypothesis (3) holds if Um+1 = S⊥i . Now circle Ci was first created only at stage

m, and the only other possible sequences leading to a Descartes configuration including

this circle must start from Dm and use a generator Um+1 = Sj with j �= i . In all other

cases the resulting Descartes configuration includes no circle inside Ci , so the interiors

of the three new circles produced are empty at the end of stage m + 1.

In the remaining case, Um+1 = Si , we have already observed that the new circle C ′i
produced is disjoint from all other circles in the Apollonian packing A[Dk] created by

level m, which are necessarily contained in the bounding circle C of Dk . As mentioned

above, all Descartes configurations containing a circle inside C must have an initial

segment of their generating word, giving the unique normal form word that first generates

C , at stage k ≤ m. Other depth m + 1 words with this initial segment, and with all

subsequent Uj drawn from the Apollonian group generators, produce new circles in

the Apollonian packing A[Dk], disjoint from C ′i . Any normal form word at depth m +
1 with this initial segment, which contains some generator S⊥j afterwards, produces

a Descartes configuration contained inside a circle of the Apollonian packing A[Dk]

different from C . It follows that the interior of C ′i is empty at the end of stage m + 1, as

required.

This completes the induction step and the proof.

Super-packings have some properties that are genuine packing properties. The proof

of Theorem 3.1 established in hypothesis (3) shows that the finite set of circles at stage m

of the construction, starting from a generating Descartes configurationD, all had disjoint

interiors. It also gives the following stronger result.

Theorem 3.2. For a geometric Apollonian super-packing given with a generating

Descartes configuration D, and each k ≥ 1, the set of all circles having nesting depth

exactly k with respect to D have pairwise disjoint interiors. These circles can be viewed

as forming an infinite collection of Apollonian packings, each missing one circle; the

missing circle is a bounding circle at depth k − 1.

Proof. The proof of Theorem 3.1 shows that the nesting depth of a circle is well-defined.

Circles at nesting depth k have disjoint interiors, since no two of them cross, and the

only way for two of them to have an interior point in common is for one to be nested

inside the other, which would violate the nesting ordering.

Given a normal form word U := UmUm−1 · · ·U1 with Um = S⊥i , and containing

exactly k elements of A⊥ = 〈S⊥1 , S⊥2 , S⊥3 , S⊥4 〉, the set of all normal form words having
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V as the prefix and all other letters Uj ∈ A for j > m produce all the circles in an

Apollonian packing A[Dm], with Dm = U[D0]. All these circles are at depth k except

for the outer circle of Dm , which is its i th circle. Enumerating all possible such U

as prefixes represents the set of nesting depth k circles as a collection of Apollonian

packings, each excluding one circle when k ≥ 1.

Remarks. (1) The proof of Theorem 3.1 is a geometric analogue of the presentation

for the super-Apollonian group proved in Part I [4, Theorem 6.1].

(2) The analogous result to Theorem 3.1 fails to hold in all dimensions n ≥ 4,

as explained in Part III. The “nesting” property of the dual Apollonian configurations

resulting from “vertical” moves still exists and works in all dimensions. However, the

“horizontal” motions moving spheres around in Apollonian packings produces spheres

that cross in dimensions n ≥ 4, see Lemma 4.1 in [5].

(3) We cannot easily visualize a geometric super-packing as a completed object be-

cause the circles in it are dense in the plane. We can however picture a partial ver-

sion of it that pictures all circles of size above a given threshold, in some finite re-

gion of the packing. The integral super-packings we are most interested in have a pe-

riodic lattice of symmetries (see Theorem 6.1), so it suffices to examine a finite re-

gion of the packing. Figure 4 in Section 1 and Fig. 8 in Section 6 exhibit part of a

super-packing.

(4) Every circle C in a geometric super-packing AS[D] has associated to it a unique

Apollonian packing of which it is the bounding circle. If it is a depth k circle (relative

to the starting configuration D), then this Apollonian packing consists of all depth k+ 1

circles contained in the interior of C .

4. Integral Super-Packings

An Apollonian super-packing is integral if it contains one (and hence all) Descartes

configuration whose circles have integer curvatures.

An invariant of an integral super-packing is its divisor g, which is the greatest common

divisor of the curvatures of the circles in any Descartes configuration in the super-packing.

The quantity g is well-defined independent of the Descartes configuration chosen, using

the relation MD′ = UMD between two such configurations, where U ∈ AS . Since U is

an integer matrix with determinant±1, it preserves the greatest common divisor of each

column of the integer matrix MD. Here the first column encodes the curvatures of the

circle.

Theorem 4.1. For each integer g ≥ 1 there exists an integral Apollonian super-packing

with divisor g. The associated geometric super-packing is unique, up to a Euclidean

motion.

As an immediate corollary of this result, the integral super-packing with divisor g

contains at least one copy of every integral Descartes configuration having divisor g.

Each such Descartes configuration generates an integral super-packing with divisor g,

so the corollary follows by the uniqueness assertion.
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We defer the proof of Theorem 4.1 to the end of the section. It is based on a reduction

theory which finds inside any such integral super-packing a Descartes configuration

having particularly simple curvatures.

Theorem 4.2. Let D be an integral Descartes configuration, with divisor g :=
gcd(b1, b2, b3, b4). Then the Apollonian super-packing AS[D] generated by D contains

a Descartes configuration having a curvature vector permutation of either (0, 0, g, g)

or (0, 0,−g,−g), with the former case occurring if b1+b2+b3+b4 > 0 and the latter

case if b1 + b2 + b3 + b4 < 0.

Proof. Since the super-Apollonian group AS preserves the (total) orientation of Des-

cartes configurations, it is sufficient to show that for a positively oriented integral

Descartes configuration D with curvatures (b1, b2, b3, b4), b1 + b2 + b3 + b4 > 0,

there exists U ∈ AS and a permutation matrix Pσ such that

Pσ U(b1, b2, b3, b4)
T = (0, 0, g, g)T .

We measure the size of the curvature vector v = (b1, b2, b3, b4)
T of a Descartes

configuration by

size(v) := 1T v = b1 + b2 + b3 + b4.

We claim that for positively oriented integral Descartes configurations with greatest

common divisor g, we have

size(v) ≥ 2g,

and equality holds if and only if v is a permutation of (0, 0, g, g). If all curvatures

are nonnegative this is clear, since at most two can be zero, and the other two are

positive integers. Now in any Descartes configuration at most one circle can have negative

curvature, call it b1 = −a (a ∈ Z+), in which case it encloses the other three. Each of

these three enclosed circles has a larger curvature in absolute value than the bounding

circle, so bi ≥ a + 1 for i = 2, 3, 4. Thus size(v) ≥ −a + 3(a + 1) ≥ 2a + 3 > 2g,

which proves the claim.

We give a reduction procedure which chooses matrices in AS to reduce the size and

show that the procedure halts only at a vector of form (0, 0, g, g), up to a permutation. To

specify it, we observe that for the curvature vector v = (b1, b2, b3, b4)
T of any integral

Descartes configuration with b1 ≤ b2 ≤ b3 ≤ b4, we have

size(S4v) = 1T S4v ≤ 1T v = size(v) (4.1)

and equality holds if and only if b1b2 + b2b3 + b3b1 = 0. To see this, we have S4v =
(b1, b2, b3, b′4)

T where

b′4 = 2(b1 + b2 + b3)− b4 = b1 + b2 + b3 − 2
√

b1b2 + b2b3 + b3b1.

Thus

1T S4v− 1T v = b′4 − b4 = −4
√

b1b2 + b2b3 + b3b1 ≤ 0.
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Equality can hold if and only if b1b2 + b2b3 + b3b1 = 0, which proves the observation.

Note that b1 ≤ 0 when the equality in (4.1) holds. Also note that g = gcd(b1, b2, b3, b4)

is an invariant under the action of AS .

Starting with any positively oriented integral Descartes configuration with curvature

vector (b1, b2, b3, b4)
T , where bi is the largest number, we apply Si ∈ A. By (4.1), size(v)

decreases but cannot be negative, so after a finite series of Si we arrive at a positively

oriented integral Descartes configuration with curvatures v′ = (b′1, b′2, b′3, b′4)
T , where

gcd(b′1, b′2, b′3, b′4) = g and the smallest curvature, say b′1, satisfies b′1 ≤ 0, and the

size of v′ cannot be reduced by the action of the Apollonian group A. Call this the

basic reduction step. Note that the basic reduction step involves only matrices in the

Apollonian group and therefore moves around inside a single Apollonian packing.

If b′1 = 0 then necessarily b′2 = 0, whence the curvature vector is (0, 0, b′3, b′3)
T , and

by g = gcd(b′1, b′2, b′3, b′4), we have b′3 = g and the reduction halts. If b′1 < 0, applying

ST
1 , we get a new Descartes configuration with v′′ = (−b′1, b′2+2b′1, b′3+2b′1, b′4+2b′1)

T ,

which is positively oriented and lies in a new Apollonian packing and has

size(v′′) = size(v)+ 4b′1 < size(v).

Thus the size strictly decreases and is nonnegative. Now we may re-apply the basic

reduction step. Continuing in this way we get strict decrease of size(v) at each step, with

the only possible halting step being the smallest curvature equals zero. Since the size

of the curvature vector is bounded below and decreases by at least one at each step, the

procedure terminates at (0, 0, g, g), up to a permutation.

Proof of Theorem 4.1. For existence, the super-packing generated by a Descartes con-

figuration with curvature vector (0, 0, g, g), which is a homothetically scaled version of

the configuration (0, 0, 1, 1) pictured in Fig. 1, is necessarily integral with divisor g.

For uniqueness, Theorem 4.2 shows that any two geometric integral Apollonian

super-packings with divisor g each contains a Descartes configuration whose curva-

tures are (0, 0, g, g) up to permutation and orientation. Now it is true that any two such

Descartes configurations with identical curvature vectors are congruent, i.e. one is ob-

tainable from the other by a Euclidean motion. This is obvious by inspection for the

(0, 0, g, g) Descartes configuration, which necessarily consists of two touching circles

of radius 1/g and two parallel lines.

Now the Euclidean motion that takes one Descartes configuration to the other, also

takes the super-packing generated by the first configuration to the one generated by the

other, because the super-packing is defined by the action of the super-Apollonian group

on the left on the Descartes configuration WD, and this commutes with the Euclidean

motion acting as a Möbius transformation on the right. This establishes uniqueness.

We can use the freedom of a Euclidean motion allowed in Theorem 4.1 to make an

internal Apollonian super-packing strongly integral.

Theorem 4.3. For each integral geometric Apollonian super-packing there is a Eu-

clidean motion that takes it to a strongly integral geometric Apollonian super-packing.
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Proof. Using Theorem 4.2 each integral geometric Apollonian packing contains a

Descartes configuration D with curvatures (0, 0, g, g); note that for a geometric packing

the order and orientation of the Descartes configuration do not matter. The curvature

vector determines the Descartes configuration up to congruence. We can now find a

strongly integral Descartes configuration D′ with this curvature vector. For g = 1 such

a configuration is given explicitly by (6.1) below, and for larger g we obtain a strongly

integral configuration from it using the homothety (x, y) �→ (1/g)(x, y). There exists

a Euclidean motion that maps D to D′, since they are congruent configurations. This

motion maps the super-packing AS[D] to the super-packing AS[D′], which is strongly

integral.

5. Strongly Integral Super-Packings

A Descartes configuration D is strongly integral if its associated 4× 3 curvature center-

coordinate matrix MD is an integer matrix; this property is independent of ordering or

orientation of the Descartes configuration. A super-packing is called strongly integral

if it contains one (and hence all) Descartes configurations having this property. Since a

strongly integral super-packing is integral, it has a divisor g as an invariant.

Our main object in this section is to classify strongly integral super-packings, as

follows.

Theorem 5.1.

(1) For each g ≥ 1 there are exactly eight different geometric Apollonian super-

packings that are strongly integral and have divisor g.

(2) The set of all ordered, oriented Descartes configurations that are strongly integral

and have a given divisor g fill exactly 384 orbits of the super-Apollonian group.

This theorem classifies these super-packings as rigid objects, not allowed to be moved

by Euclidean motions. To prove this result we derive a normal form for a “super-root

quadruple” in a super-packing of the kind above, as follows.

Theorem 5.2. Given a strongly integral Apollonian super-packing As[D0] with the

divisor g ≥ 1, there exists a unique “reduced” Descartes configuration D ∈ AS[D0]

whose curvature-center coordinate matrix M = MD is of the form Am,n[g] or Bm,n[g]

for m, n ∈ {0, 1}, up to a permutation of rows, where

Am,n[g] = ±









0 0 1

0 0 −1

g m n

g m − 2 n









, Bm,n[g] = ±









0 1 0

0 −1 0

g m n

g m n − 2









, (5.1)

and the sign is determined by the orientation of D0.

Proof. For a strongly integral Apollonian super-packing AS[D0] with the divisor g, by

Theorem 4.2 there exists a strongly integral Descartes configuration D ∈ AS[D0] with
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curvatures±(0, 0, g, g). The two straight lines in D must be parallel to either the x-axis

or y-axis. It follows that the 4× 3 curvature-center coordinate matrix MD is of the form

Am,n[g], or Bm,n[g], for some m, n ∈ Z, up to a permutation of rows.

We now reduce m, n to take the values 0, 1 using the following identities, which are

easy to check:

P(34)S3Am,n[g] = Am−2,n[g], P(34)S3Bm,n[g] = Bm,n−2[g],

P(34)S4Am,n[g] = Am+2,n[g], P(34)S4Bm,n[g] = Bm,n+2[g],

P(12)S
T
1 Am,n[g] = Am,n+2[g], P(12)S

T
1 Bm,n[g] = Bm+2,n[g],

P(12)S
T
2 Am,n[g] = Am,n−2[g], P(12)S

T
2 Bm,n[g] = Bm−2,n[g],

where P(i j) is the permutation matrix that exchanges i and j . Also note that Pσ Si =
Sσ(i)Pσ , Pσ ST

i = ST
σ(i)Pσ . Hence there is a series of group operations in AS which takes

MD to a permutation of Am,n[g] or Bm,n[g] with m, n ∈ {0, 1}. This proves the existence

of the “reduced” Descartes configuration in the Apollonian super-packing AS[D0].

To prove the uniqueness, it suffices to show that the 24 × 8 × 2 = 384 Descartes

configurations, whose curvature-center coordinate matrices are

{PAm,n[g], PBm,n[g] | P ∈ Perm4, m, n ∈ {0, 1}},

are in different Apollonian super-packings. (There are two signs for each of Am,n[g]

and Bm,n[g].) In what follows we let Ãm,n[g] and B̃m,n[g] denote the unique 4 × 4

augmented curvature-center coordinate matrices extending Am,n[g] and Bm,n[g], re-

spectively; uniqueness holds by Theorem 3.1 of part I.

Note that each Si and ST
i preserves the (total) orientation of the Descartes configu-

ration, as well as the parity of every element of MD. First we show that the matrices

Am,n[g] and Bm,n[g] (m, n ∈ {0, 1}) are in distinct orbits of AS × Perm4. To see this,

for each integral vector v ∈ Z
4, let κ(v) be the number of even terms in v, and for any

strongly integral Descartes configuration D let

κ(MD) = (κ(v1), κ(v2), κ(v3)),

where v1, v2, v3 are the column vectors of MD. Then κ(MD) is invariant under the

action of AS × Perm4. For m, n ∈ {0, 1} and κ(Am,n[g]) and κ(Bm,n[g]) are all distinct

except κ(A1,0[g]) = κ(B0,1[g]) = (∗, 2, 2), where ∗ is 2 if g is odd, and 4 if g is even.

However, A1,0[g] and B0,1[g] cannot be equivalent under the action of AS × Perm4.

Arguing by contradiction, assume that there exists a matrix U ∈ AS × Perm4 such

that UA1,0[g] = B0,1[g]. This relation lifts to augmented curvature-center coordinates:

UÃ1,0[g] = B̃0,1[g]. It follows that U = (Ã1,0[g])−1B̃0,1[g] is unique. We can directly

verify that for m, n ∈ Z,

Ãm,n[g] =









2(n + 1)/g 0 0 1

2(1− n)/g 0 0 −1

(m2 + n2 − 1)/g g m n

((m − 2)2 + n2 − 1)/g g m − 2 n









,
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B̃m,n[g] =









2(m + 1)/g 0 1 0

2(1− m)/g 0 −1 0

(m2 + n2 − 1)/g g m n

(m2 + (n − 2)2 − 1)/g g m n − 2









, (5.2)

by checking that these satisfy the identity of Theorem 3.2 of part I necessary and

sufficient to be augmented curvature-center coordinates. Now it is easy to verify that

P(14)P(23)DÃ1,0[g] = B̃0,1[g], where D = −QD is defined as in Section 3 of Part I [4],

D = 1

2









−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1









. (5.3)

By the uniqueness P(14)P(23)D = U ∈ AS×Perm4, which is impossible sinceAS×Perm4

consists of integral matrices only, while D has half-integers. In conclusion, Am,n[g] and

Bm,n[g] (m, n ∈ {0, 1}) are in distinct orbits of AS × Perm4.

The final step is to show that for any permutation P �= I, PAm,n[g] (resp. PBm,n[g])

cannot be obtained from Am,n[g] (resp. Bm,n[g]) by an action of AS . That is, we claim:

if for a permutation matrix P ∈ Perm4, there exists a matrix U ∈ AS such that

UAm,n[g] = PAm,n[g] or UBm,n[g] = PBm,n[g],

then P = I.

To establish the claim, consider again the 4 × 4 augmented curvature-center coor-

dinate matrices Ãm,n[g] and B̃m,n[g]. From Section 3.1 of Part I [4], for any Descartes

configurationD, the curvature-center coordinate matrix MD can be uniquely extended to

a 4×4 augmented curvature-center coordinate matrix WD. It follows that if UAm,n[g] =
PAm,n[g], then the equality holds for their 4× 4 augmented curvature-center coordinate

matrices, i.e. UÃm,n[g] = PÃm,n[g]. It implies U = P ∈ AS ∩ Perm4. However, com-

paring the size of U and P, where the size of a matrix U is defined as f (U) := 1T U1, we

have f (P) := 1T P1 = 4 for P ∈ Perm4, and f (U) := 1T U1 ≥ 8 for any U ∈ AS, U �= I

(see Section 5 of Part I [4]). Therefore the only possibility is U = P = I. The same

argument applies to Bm,n[g], and the claim follows.

We conclude that a reduced Descartes configuration of the form (5.2) in any strongly

integral Apollonian super-packing exists and is unique.

Proof of Theorem 5.1. (1) Since there are 48 orbits of ordered, oriented Descartes con-

figurations corresponding to each geometric super-packing, to show there are exactly

eight geometric super-packings it suffices to show that the strongly integral Descartes

configurations form 384 orbits of the Apollonian group, which we do below.

(2) We enumerate the complete set of ordered, oriented Descartes configurations that

are strongly integral, with greatest common divisor g, as follows. By Theorem 5.2, any

such Descartes configuration is equivalent under the action of AS to a permutation of a

Descartes configuration whose 4 × 3 curvature-center coordinate matrix is of the form

Am,n or Bm,n , with m, n ∈ {0, 1}. The uniqueness of Theorem 5.2 asserts that the 24

permutations of Am,n[g] (Bm,n[g]) are all in distinct orbits of the super-Apollonian group.

Considering the two choices of orientations, we get 24× 8× 2 = 384 orbits.
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6. Primitive Strongly Integral Super-Packings

The strongly integral super-packings having a given curvature with greatest common

divisor g are each obtainable from one with g = 1 by homothety. A homothety (x, y) �→
r(x, y) changes all curvatures by 1/r while leaving (curvature) × (center) unchanged.

Applying the homothety with r = 1/g takes a strongly integral super-packing with

greatest common divisor g to one with greatest common divisor equal to 1.

We now consider strongly integral super-packings having g = 1, which we call

primitive super-packings. Results for them carry over easily to those with divisor g > 1

by applying a homothety. Theorem 5.1 showed there are exactly eight such packings.

For convenience we single out a particular one of them and term it the standard

strongly integral super-packing. We choose this to be the super-packing generated by

the ordered, oriented Descartes configuration having

MD1
=









0 0 1

0 0 −1

1 1 0

1 −1 0









so that WD1
=









2 0 0 1

2 0 0 −1

0 1 1 0

0 1 −1 0









. (6.1)

This corresponds to a (0, 0, 1, 1) Descartes quadruple, with the centers of the two cir-

cles lying along the x-axis and the circles touching at the origin (0, 0). The associated

geometric integral super-packing is the one pictured in Fig. 4. Results proved below for

the standard super-packing apply generally to all eight primitive integral super-packings,

using the Euclidean motions mapping between them described after the proof of Theo-

rem 6.1 below.

We first show that the geometric standard strongly integral super-packing has a large

group of symmetries, which form a crystallographic group of the plane.

Theorem 6.1. The geometric standard strongly integral super-packing is invariant

under the following Euclidean motions:

(1) The lattice of translations (x, y) �→ (x + 2, y) and (x, y) �→ (x, y + 2).

(2) The reflections (x, y) �→ (−x, y) and (x, y) �→ (x,−y).

The crystallographic group generated by these motions is the complete set of Euclidean

motions leaving the geometric standard strongly integral super-packing invariant.

Proof. The key fact used is that the action of the super-Apollonian group on Descartes

configurations commutes with the action of Euclidean motions acting on Descartes

configurations as Möbius transformations. This was shown in Part I [4, Theorem 3.3(4)].

(1) There is a Descartes configuration corresponding to D0 shifted by two in the x-

direction and the y-direction; call them Dx
0 and D

y

0 , respectively. These are given by the

actions of S4 and S⊥1 , respectively. Treating the x-shift first, we then have

AS[D0] = AS[Dx
0 ] = AS[tx (D

′
0)],

in which tx : z �→ z + 2 is the Euclidean motion translation by v = (2, 0) as in Ap-

pendix A of Part I, and the ordered, oriented Descartes configuration D′0 is a permutation
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of D0. Then the geometric super-packing associated to AS[D′0] is therefore identical

with that of AS[D0], and that of AS[tx (D
′
0)] translates it by (2, 0). Thus the geomet-

ric packing is invariant under this translation. The argument for translation by (0, 2) is

similar.

(2) This geometric Descartes configuration D0 is invariant under the reflections

(x, y) �→ (−x, y) and (x, y) �→ (x,−y) viewed as Möbius transformations. The effect

of these transformations on the ordered, oriented Descartes configuration is to permute

its rows. It follows as in (1) that the associated geometric Apollonian super-packings are

identical.

To see that these motions generate the full group of Euclidean motions leaving the

super-packing invariant, we observe that the full group acts discontinuously on the plane.

This is because the image of the (0, 0, 1, 1) configuration is either left fixed, or else it

moves a distance of at least two in some direction, so that its circles do not overlap.

Thus it must be contained in a crystallographic group whose translation subgroup is

given by (1) above. Now the only possibilities are to extend the group by a subgroup

of the finite point group of motions leaving (0, 0) fixed (of order 8) and leaving the

lattice Z[(0, 2), (2, 0)] of translations invariant. Here (2) gives an extension of order 4.

No larger extension occurs by observing that otherwise the image of the (0, 0, 1, 1) and

(−1, 2, 2, 3) configurations at the origin would cross themselves.

One can now check that the eight primitive geometric strongly integral super-packings

given by Theorem 5.1 are obtained from the standard strongly integral super-packing by

eight cosets of the Euclidean motions (x, y) �→ (x + 1, y), (x, y) �→ (x, y + 1) and

(x, y) �→ (y, x) with respect to the symmetries in Theorem 6.1. They are specified by

the location and orientation of the (0, 0, 1, 1) configuration.

Our next result shows that every primitive integral Descartes configuration with no

curvature zero occurs inside the geometric standard strongly integral super-packing in a

specified location.

Theorem 6.2. In the geometric standard strongly integral super-packing, for each

(unordered) primitive integral Descartes quadruple (a, b, c, d) except for (0, 0, 1, 1),

there exists a Descartes configuration having these curvatures, such that the center of

its largest circle lies in the closed unit square {(x, y): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. The

location of the center of this largest circle is unique.

Proof. To establish existence, we first show that a Descartes configuration of the curva-

tures occurs somewhere inside the standard integral super-packing. This holds because

the super-packing generated by such a configuration is an integral super-packing with

divisor 1, which by Theorem 4.1 is unique up to a Euclidean motion. Thus the standard

strongly integral super-packing must contain an isometric copy of it. Now that we have

such a configuration inside the packing, we can use the translation symmetries in The-

orem 6.1 to move it so that its largest circle has its center inside the half-open square

{(x, y): −1 ≤ x < 1,−1 ≤ y < 1}. If we have −1 ≤ x < 0 then we apply the

symmetry (x, y) �→ (−x, y), while if −1 ≤ y < 0 we apply (x, y) �→ (x,−y), as

necessary.
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To establish uniqueness, we argue by contradiction. If uniqueness failed, there would

exist a Euclidean motion taking one of these Descartes configurations to the other.

Since a single Descartes configuration generates the entire super-packing, we conclude

that the super-packing is left invariant under this extra Euclidean motion. Theorem 6.1

described all such automorphisms and all of them, except the identity, map every point

in the interior of the unit square square strictly outside the square. This contradicts the

assumption that the center of the largest circle of the first configuration is mapped to that

of the second, when at least one of these points is strictly inside the unit square. In the

remaining cases where both centers lie on the boundary, one shows they are must lie on

the same boundary edge and that the automorphism leaves this edge fixed, so they are

identical. Note that this argument shows in passing that the largest circle is unique, once

(0, 0, 1, 1) is excluded.

We come now to the main result of this section, which asserts that the geometric

standard super-packing contains a copy of every integral Apollonian circle packing in a

canonical way. The circles in the geometric standard super-packing can be foliated into

a union of geometric Apollonian packings.

Theorem 6.3.

(1) Each circle in the standard super-packing with its center inside the half-open

unit square {(x, y): 0 ≤ x < 1, 0 ≤ y < 1} is the exterior boundary circle of

a unique primitive integral Apollonian circle packing contained in the geometric

standard integral super-packing.

(2) Every primitive integral Apollonian circle packing, except for the packing

(0, 0, 1, 1), occurs exactly once in this list.

Proof. (1) Let the circle C be given. Recall from the proof of Theorem 3.1 that there is a

unique minimal length normal form word UmUm−1 · · ·U1[D0] of generators of the super-

Apollonian group that yields a Descartes configuration D containing the given circle C ,

say in its j th position. Normal form requires that Um = Sj or S⊥i for some i �= j . Then

multiplying by S⊥j also gives a normal form word, and the Descartes configuration

D′ := S⊥j [D] = S⊥j UmUm−1 · · ·U1[D0]

consists of the circle C plus three new circles nested inside the interior of C . This

Descartes configuration D′ generates an Apollonian packing having the circle C as the

outer boundary, contained in the standard strongly integral super-packing. It is unique,

because if there were a second Apollonian packing inside the bounding circle it would

contain circles crossing those in the first packing, contradicting Theorem 3.1.

(2) Recall from Sections 3 and 4 in [3] that inside each integer Apollonian packing

is a positively oriented Descartes configuration whose absolute values of curvatures

(a, b, c, d) are minimal, which is called a root quadruple. Theorem 4.1 of [3] showed

that aside from the root quadruple (0, 0, 1, 1) every root quadruple is of the form a <

0 < b ≤ c ≤ d . Root quadruples are characterized by satisfying the extra condition

a + b + c ≥ d. (6.2)
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All the circles in the resulting Apollonian packing are contained inside a bounding circle

of curvature N = |a|, i.e. radius 1/N . Theorem 6.2 shows that for each root quadruple,

with all curvatures nonzero, there is a matching Descartes configuration whose largest

circle has its center inside the unit square and this largest circle is unique. The Apollonian

packing contained inside this circle is the integral packing with the given root quadruple,

and it is unique by the result of (1). (In some cases, like (−1, 2, 2, 3) the root configuration

is not unique, but the root quadruple and the packing itself are always unique.) Thus every

primitive integer Apollonian circle packing, except (0, 0, 1, 1), occurs exactly once with

the bounding circles having their centers in the closed unit square.

The initial part of the standard super-packing to depth 200 inside the unit square is

pictured in Fig. 8.

One can make further computer experiments plotting the circles having various curva-

tures restricted (mod 4) inside the unit square. The results for circles having curvatures 1

(mod 2), 2 (mod 4) and 0 (mod 4) and size at most 200 are pictured in Figs. 9–11.

0 mod 1

Fig. 8. A “deeper” initial part of a super-packing (square of sidelength 1).
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1 mod 2

Fig. 9. Circles of curvature 1 (mod 2).

The figures empirically indicate that the following extra reflection symmetries occur;

the line of symmetry is indicated on the figure with a dotted line:

(a) 1 (mod 2) circles are symmetrical under reflection in the line x = 1− y.

(b) 2 (mod 4) circles are symmetrical under reflection in the horizontal line y = 1
2
.

(c) 0 (mod 4) circles are symmetrical under reflection in the vertical line x = 1
2
.

Based on this experimental evidence, one of the authors (CLM) conjectured that these

symmetries hold. They were subsequently proved by Northshield [10].

We may also illustrate these symmetry properties at the level of circles of a fixed

curvature. Recall from Section 3 that each such circle contains a unique Apollonian

packing having it as the outer circle. Such a circle can then be labeled by root quadruple

in the sense of [3] of this integral Apollonian packing. The cases of curvature −6, −8

and −9 corresponding to the three cases above were pictured in Section 2. In our paper

considering number-theoretic properties of integral Apollonian packings, it was shown

in Theorem 4.2 of [3] that the number of distinct primitive integral Apollonian packings

with a given curvature −n of the outer circle had an interpretation as a class number

h±(−4n2) of positive definite binary quadratic forms of discriminant 
 = −4n2, under
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2 mod 4

Fig. 10. Circles of curvature 2 (mod 4).

GL(2, Z)-equivalence. One can raise the question whether there is some interpretation

of the extra symmetries (a)–(c) above in terms of the associated class group structure

under SL(2, Z) equivalence.

7. The Super-Apollonian Group Has Finite Covolume

In this section we show that the super-Apollonian group is of finite volume as a discrete

subgroup of the real Lie group Aut(QD) ≃ O(3, 1). This follows from the fact that

the integer Lorentz group O(3, 1;Z) has finite covolume in O(3, 1), and the following

result.

Theorem 7.1.

(1) The super-Apollonian group AS is a normal subgroup of index 48 in the group

Aut(Q D, Z). The group Aut(Q D, Z) is generated by the super-Apollonian group

and the finite group of order 48 generated by the 4 × 4 permutation matrices

and ±I.
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0 mod 4

Fig. 11. Circles of curvature 0 (mod 4).

(2) The super-Apollonian group AS is a normal subgroup of index 96 in the group

G = J0 O(3, 1;Z)J−1
0 , where

J0 =
1

2









1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1









.

The group G is generated by Aut(Q D, Z) and the duality matrix D, and consists

of matrices with integer and half-integer entries.

The duality matrix D is given by (5.3) in Section 5. This result allows us to associate to

the super-Apollonian group the normal subgroup ÃS := J−1
0 ASJ0 of the integer Lorentz

group O(3, 1;Z), of index 96.

The proof of Theorem 7.1 is derived in a series of four lemmas. Let Ŵ be the group

generated by adjoining to A the elements of the finite group of order 48 given by

Perm4 and ±I , and let Ŵ̃ = 〈Ŵ, D〉. The lemmas prove that Ŵ = Aut(Q D, Z) and
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Ŵ̃ = J0 O(3, 1;Z)J−1
0 . Then analysis of cosets of A in these groups permits us to

determine the index of A in these groups and show normality.

To determine Ŵ and Ŵ̃ we will show

Ŵ ≤ Aut(Q D, Z) ≤ Ŵ̃ = G.

It is easy to show that Ŵ is a subgroup of Ŵ̃ of index 2, and D ∈ Ŵ̃ but D /∈ Aut(Q D, Z),

so we get Aut(Q D, Z) = Ŵ = 〈AS, Perm4,±I〉. It is easy to check the inclusion Ŵ ≤
Aut(Q D, Z) since the generators Si , ST

i , Pσ and ±I of Ŵ are all in Aut(Q D, Z). The

inclusion Aut(Q D, Z) ≤ G is proved in Lemma 7.2. The equation G = Ŵ̃ is proved in

the next three lemmas. In Lemma 7.3 we prove that the integer Lorentz group is exactly

the group Aut(LZ) of invertible linear transformations that leave the integral Lorentz

cone LZ invariant. Lemma 7.4 states that in order to show that a group G of invertible

linear transformations of LZ equals Aut(LZ), it is enough to show that (1) the action

of G on LZ is transitive, and (2) there exists a point v ∈ LZ such that the stabilizer

Sv = {U ∈ Aut(LZ) | Uv = v} is a subset of G. Using Lemma 7.4, we check that (1) the

action of J0Ŵ̃J on LZ is transitive, and (2) J0Ŵ̃J contains the stabilizer Sv of the point

v = (1, 1, 0, 0) ∈ LZ. This proves G = Ŵ̃.

Lemma 7.2. It is true that

Aut(Q D, Z) ≤ G = J0 O(3, 1;Z)J−1
0 .

Proof. Let U ∈ Aut(Q D, Z). We need to show that the entries of J−1
0 UJ0 = J0UJ0 are

all integers. Since J0 = 1
2
11T − T, where

T =









0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0









,

we have

J0UJ0 = 1
4

(

∑

i, j

Ui j

)

11T − 1
2
11T UT− 1

2
TU11T + TUT, (7.1)

where TUT is an integer matrix.

From UT QDU = QD and QD = 1
2
(2I− 11T ), we have

UT (2I− 11T )U = 2I− 11T . (7.2)

Denote by vi the i th column of U, and by size(v) := 1T v the size of a vector v. Equating

the entries of (7.2) we get 2vi · vj − size(vi ) size(vj ) = 2δi j − 1. In particular, size(vi ),

i = 1, 2, 3, 4 are odd integers. It follows that the matrix 1
2
11T UT is integral.

Note that Aut(Q D, Z) is closed under transposition. This is because

U ∈ Aut(Q D, Z) �⇒ UT QDU = QD �⇒ UT QDUQDUT = UT

�⇒ UQDUT = (UT QD)−1UT = (QD)−1 = QD

�⇒ UT ∈ Aut(Q D, Z). (7.3)
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Applying the same argument of the preceding paragraph to UT , we then prove that the

matrix 1
2
TU11T is integral.

Again using 2vi · vj − size(vi ) size(vj ) = 2δi j − 1, summing over i, j = 1, . . . , 4,

we get

(

∑

i, j

Ui, j

)2

= 2(v1 + v2 + v3 + v4) · (v1 + v2 + v3 + v4)+ 8.

Note that v1+ v2+ v3+ v4 = (size(r1), size(r2), size(r3), size(r4))
T where ri is the i th

row of the matrix U. The sum
∑

i (size(ri ))
2 is a multiple of 4 since each size(ri ) is odd.

It follows that (
∑

i, j Ui, j )
2 is a multiple of 8. Since

∑

i, j Ui, j is an integer, we conclude

that
∑

i, j Ui, j is a multiple of 4 and the matrix 1
4
(
∑

i, j Ui j )11T is integral. This proves

Lemma 7.2.

ClearlyAS , Perm4 and±I are subgroups of Aut(Q D, Z). Let Ŵ be the group generated

by AS , Perm4 and ±I, and let Ŵ̃ := 〈Ŵ, D〉. Then Ŵ is a subgroup of Ŵ̃ of index 2.

The Lorentz light cone is the set of points {(y0, y1, y2, y3)
T ∈ R

4: −y2
0+y2

1+y2
2+y2

3 =
0}. Let LZ be the set of integer points in the Lorentz light cone, i.e.,

LZ := {(y0, y1, y2, y3)
T ∈ Z

4: −y2
0 + y2

1 + y2
2 + y2

3 = 0},

and let Aut(LZ) be the set of linear transformations that leave LZ invariant.

Lemma 7.3. Aut(LZ) = O(3, 1, Z).

Proof. It is clear that O(3, 1;Z) ⊆ Aut(LZ). To show the other direction, let U ∈
Aut(LZ). For any integer point v ∈ LZ, Uv ∈ LZ. Therefore (Uv)T QL(Uv) = 0, i.e.

vT (UT QLU)v = 0. It is easy to check that the only symmetric matrices Q satisfying

vT Qv = 0 for all v ∈ LZ are of the form Q = diag[−a, a, a, a]. Hence UT QLU =
c2QL, where c = det(U).

Let

X =









1 1 1 1

1 −1 0 0

0 0 1 0

0 0 0 1









.

Note that every column vector of X is an integer point in LZ. Let Y = UX and Z = U−1X.

Since U ∈ Aut(LZ), every column of Y and Z is also an integer point in LZ. Therefore

det(Y) = c det(X) = −2c, and c det(Z) = det(X) = −2. For each (y0, y1, y2, y3)
T ∈

LZ, we have y2
0 = y2

1 + y2
2 + y2

3 . It follows that either y0, y1, y2, y3 are all even, or y0

and exactly one of y1, y2, y3 are even. In both cases, det(Y) and det(Z) are even. This

forces c = ±1. Hence UT QLU = QL, i.e. U ∈ O(3, 1).

Since U maps points (1,±1, 0, 0)T , (1, 0,±1, 0)T , (1, 0, 0,±1)T to integer points,

if (a, b, c, d) is a row of U, then a ± b, a ± c, a ± d ∈ Z. Thus there exist integers

a′, b′, c′, d ′ of the same parity such that a = a′/2, b = b′/2, c = c′/2, d = d ′/2.

However, by (7.3) UQLUT = QL. This implies −a2 + b2 + c2 + d2 = ±1. Therefore
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b′2 + c′2 + d ′2 ≡ a′2 (mod 4). Hence a′, b′, c′, d ′ must all be even, which means a, b,

c, d are integers, and U ∈ O(3, 1;Z).

Lemma 7.4. Let G be a group of linear transformations that preserves LZ. If the action

is transitive, and there exists a point v ∈ LZ such that the stabilizerSv = {U ∈ Aut(LZ) |
Uv = v} ⊆ G, then G = Aut(LZ).

Proof. Clearly, G ⊆ Aut(LZ). For any P ∈ Aut(LZ), assume P(v) = v′. Since G acts

transitively on LZ, there exists G ∈ G such that G(v′) = v. That is, GP(v) = v. So

GP ∈ Sv ⊆ G, and then P ∈ G−1G = G. This proves Aut(LZ) ⊆ G.

Lemma 7.5. Ŵ̃ = G = J0 O(3, 1;Z)J−1
0 .

Proof. By Lemma 7.3, it is sufficient to prove that

J−1
0 Ŵ̃J0 = J0Ŵ̃J0 = Aut(LZ). (7.4)

It is straightforward to check that J0Si J0, J0ST
i J0, J0Pσ J0 and J0DJ0 are integer matrices.

In particular,

J0S1J0 =









2 −1 −1 −1

1 0 −1 −1

1 −1 0 −1

1 −1 −1 0









,

J0P34J0 = P34 and J0DJ0 = diag[1,−1,−1,−1]. Therefore J0Ŵ̃J0 ⊆ O(3, 1;Z) =
Aut(LZ).

For any integer point (y0, y1, y2, y3) ∈ LZ, −y2
0 + y2

1 + y2
2 + y2

3 = 0 implies y0 +
y1 + y2 + y3 ≡ 0 (mod 2). Hence J0(y0, y1, y2, y3)

T is integral. It follows that

J0(LZ) = {(a1, a2, a3, a4) ∈ Z
4: (a1, a2, a3, a4) are curvatures

of a Descartes configuration}.

Then Theorem 4.2 implies that J0Ŵ̃J0 acts transitively on the integral Lorentz light cone

LZ, where −I exchanges the total orientation of a point in LZ.

We use Lemma 7.4 to prove (7.4) with G = J0Ŵ̃ J0. Let v := (1, 1, 0, 0) ∈ LZ and

consider its stabilizer

Sv := {U ∈ O(3, 1;Z): Uv = v, UT QLU = QL}.

Assume U = (ui, j )
4
i, j=1. Solving the equations

U(1, 1, 0, 0)T = (1, 1, 0, 0)T , UT QLU = QL, (7.5)

we obtain the following linear and quadratic relations between the entries of U:

u12 = 1− u11, u13 = u23, u14 = u24,

u22 = 1− u21, u32 = −u31, u42 = −u41,
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and

u2
33 + u2

43 = u2
34 + u2

44 = 1, u33u34 + u43u44 = 0,

u13 = u31u33 + u41u43, u14 = u31u34 − u41u44,

u21 = 1
2
(u2

31 + u2
41).

It follows that the matrix U can be expressed as

U =









1+ t −t gm + hn km + ln

t 1− t gm + hn km + ln

m −m g k

n −n h l









, (7.6)

where t = (m2 + n2)/2, g2 + h2 = k2 + l2 = 1, and gk + hl = 0. Since g, h, k, l ∈ Z,

we must have (g, h), (k, l) ∈ {(±1, 0), (0,±1)}.
We can classify matrices of the form (7.6) into four types, up to a possible multipli-

cation by P34) as follows:

Type I:









1+ t −t m n

t 1− t m n

m −m 1 0

n −n 0 1









,

Type II:









1+ t −t m −n

t 1− t m −n

m −m 1 0

n −n 0 −1









,

Type III:









1+ t −t −m n

t 1− t −m n

m −m −1 0

n −n 0 1









,

Type IV:









1+ t −t −m −n

t 1− t −m −n

m −m −1 0

n −n 0 −1









,

where t = (m2 + n2)/2 and m, n, t ∈ Z.

We denote a matrix of type X with parameters m, n by U(m, n;X). The following

equations can be easily checked:

U(m, n; I)U(k, l; I) = U(m + k, n + l; I),

U(m, n; II)U(k, l; I) = U(m + k, n − l; II),

U(m, n; III)U(k, l; I) = U(m − k, n + l; III),

U(m, n; IV)U(k, l; I) = U(m − k, n − l; IV).
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Also we have

U(1, 1; I)−1 = U(−1,−1; I), U(1,−1; I)−1 = U(−1, 1; I).

Therefore the stabilizer Sv is generated by P34, U(0, 0; I), U(0, 0; II), U(0, 0; III),
U(0, 0; IV) together with A = U(1, 1; I), B = U(1,−1; I).

Note that U(0, 0; I)=U(0, 0; II)2, U(0, 0; III)=P34U(0, 0; II)P34 and U(0, 0; IV)=
U(0, 0; II)U(0, 0; III). ThusSv is generated by the matrices P34, A, B and C = U(0, 0; II).

Now one can check that

P34 = J0P34J0 ∈ J0Ŵ̃J0,

C = diag[1, 1, 1,−1] = J0(−IP23P14D)J0 ∈ J0Ŵ̃J0,

A = (J0S1J0) diag[1, 1,−1,−1] = J0(S1P12P34)J0 ∈ J0Ŵ̃J0,

B = (J0P34J0)C(J0S2J0)C ∈ J0Ŵ̃J0.

Hence Sv ⊆ J0Ŵ̃J0. By Lemma 7.4 J0Ŵ̃J0 = Aut(LZ) = O(3, 1;Z), or, equivalently,

Ŵ̃ = J0 O(3, 1;Z)J−1
0 . This finishes the proof.

Proof of Theorem 7.1. Lemmas 7.2 and 7.5 show that Ŵ ≤ Aut(Q D, Z) ≤ G. Hence

Ŵ = Aut(Q D, Z) since Ŵ is a subgroup of G of index 2 and the duality matrix D is not in

Aut(Q D, Z). In other words, Aut(Q D, Z) is generated by the super-Apollonian groupAS

and the finite group of order 48 generated by the 4×4 permutation matrices and±I . The

super-Apollonian groupAS is a normal subgroup of Aut(Q D, Z), since Pσ Si Pσ−1 = Sσ(i),

and Pσ ST
i Pσ−1 = ST

σ(i). The index is 48 since AS ∩ (Perm4 × {±I}) = I (see Section 5

of Part I [4]).

By Lemma 7.5, the group G is generated by Aut(Q D, Z) and D. Note that D2 = I

and DSi D = ST
i . It follows that the super-Apollonian group is a normal subgroup of G

with index 96.

The second part of Theorem 7.1 can be rephrased as asserting that the conjugate group

ÃS = J0AJ0 is a normal subgroup of index 96 in O(3, 1). Its generators S̃j = J0Sj J
−1
0

and S̃⊥j = J0S⊥j J−1
0 are given by

S̃1









2 −1 −1 −1

1 0 −1 −1

1 −1 0 −1

1 −1 −1 0









and S̃2 =









2 −1 1 1

1 0 1 1

−1 1 0 −1

−1 1 −1 0









and

S̃3 =









2 1 −1 1

−1 0 1 −1

1 1 0 1

−1 −1 1 0









and S̃4 =









2 1 1 −1

−1 0 −1 1

−1 −1 0 1

1 1 1 0











30 R. L. Graham, J. C. Lagarias, C. L. Mallows, A. R. Wilks, and C. H. Yan

The generators S̃⊥j = J0S⊥j J−1
0 are given by

S̃⊥j = (S̃j )
T ,

which follows using S⊥j = ST
j and J0 = JT

0 = J−1
0 .

8. Super-Integral Super-Packings

This section treats the strongest form of integrality for super-packings, which is that

where one (and hence all) Descartes configurations in the super-packing have an integral

augmented curvature-center coordinate matrix WD. We say that a Descartes configura-

tion with this property is super-integral, and the same for the induced super-Apollonian

packing. The following result classifies such packings.

Theorem 8.1.

(1) These are exactly 14 different geometric super-packings that are super-integral.

(2) The set of ordered, oriented Descartes configurations that are super-integral

comprise 672 orbits of the super-Apollonian group.

These packings are classified here as rigid objects, not movable by Euclidean motions.

To prove this result, it suffices to determine which strongly integral configurations are

super-integral. The next result classifies the possible types of super-integral Descartes

configurations, according to the allowed value of their divisors.

Theorem 8.2. Suppose that an ordered, oriented Descartes configuration D in R
2 has

integral curvature-center coordinates M = MD, and let g = gcd(a1, a2, a3, a4), where

(a1, a2, a3, a4) is its first column of signed curvatures. Then D has integral augmented

curvature-center coordinates WD if and only if one of the following conditions hold:

(i) g = 1, or

(ii) g = 2, and each row of M has the sum of its last two entries being 1 (mod 2), or

(iii) g = 4, and the last columns rows of M are congruent to









1 0

1 0

1 0

1 0









or









0 1

0 1

0 1

0 1









(mod 2).

Proof. By Theorem 5.2, there exists a matrix U ∈ AS and a permutation matrix P such

that

PUMD = Am,n[g] or Bm,n[g],

for some m, n ∈ {0, 1}, where Am,n[g] and Bm,n[g] are given in (5.1), and their cor-

responding augmented curvature-center coordinate matrices are Ãm,n[g] and B̃m,n[g],

given in (5.2). Since each generator of AS preserves the super-integrality, as well as the
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parity of every element of WD, it follows that WD is integral if and only if one of the

following conditions holds:

1. g = 1, or

2. g = 2, and m2 + n2 − 1 ≡ 0 (mod 2), or

3. g = 4, and the reduced form is A0,1[4] or B1,0[4], up to a permutation of rows.

In case 2 we need m + n ≡ 1 (mod 2); in case 3 the condition is equivalent to the one

stated in the theorem.

Proof of Theorem 8.1. (1) Since each geometric super-packing corresponds to 48 dis-

tinct orbits of the super-Apollonian group on ordered, oriented Descartes configurations,

to show there are exactly 14 geometric super-packings, it suffices to show there are ex-

actly 672 orbits of the super-Apollonian group that are super-integral, which is (2).

(2) Theorems 5.2 and 8.2 allow us to classify the set of ordered, oriented Descartes

configurations that are super-integral by the action of AS . From the criterion of Theorem

8.2, we have:

1. For g = 1, any strongly integral Descartes configuration is super-integral.

2. For g = 2, half of those orbits are super-integral, namely, those whose reduced

forms are A0,1[2], A1,0[2], B0,1[2] or B1,0[2], up to a permutation of rows.

3. For g = 4, one-fourth of those orbits are super-integral, namely, those whose

reduced form are A0,1[4] or B1,0[4], up to a permutation of rows.

4. For g �= 1, 2, 4, there are no super-integral Descartes configurations.

More details of this calculation are given in Table 1. To explain the notation in

Table 1, for any 4 × 4 integral matrix W, let gi be the greatest common divisor of

entries w1,i , w2,i , w3,i , w4,i in the i th column. Then the action of AS preserves the

vector g = (g1, g2, g3, g4). (For W = WD, g2 is the greatest common divisor of the

curvatures.) In each row of the table we give the number of orbits of AS formed by

the set of ordered, oriented Descartes configurations that are super-integral with the

Table 1. Orbits of super-integral Descartes configura-

tions classified by g.

Number of orbits

g of AS Representative

(1, 1, 1, 1) 96 A1,1[1], B1,1[1]

(2, 1, 1, 1) 96 A1,0[1], B0,1[1]

(1, 1, 2, 1) 48 A0,0[1]

(1, 1, 1, 2) 48 B0,0[1]

(4, 1, 2, 1) 48 A0,1[1]

(4, 1, 1, 2) 48 B1,0[1]

(1, 2, 1, 1) 96 A1,0[2], B0,1[2]

(2, 2, 2, 1) 48 A0,1[2]

(2, 2, 1, 2) 48 B1,0[2]

(1, 4, 2, 1) 48 A0,1[4]

(1, 4, 1, 2) 48 B1,0[4]
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given g. We also list the representatives of those orbits. Note that each entry in the

column labeled “Representative” stands for 48 orbits, obtained by taking two choices

of (total) orientation, and 24 choices of permutation of rows. Also note the symmetry

that the configurations with g are inverse of the ones with g′ = P12g. We conclude from

the table that the set of ordered, oriented Descartes configurations that are super-integral

comprise of 384(1+ 1
2
+ 1

4
) = 672 orbits of the super-Apollonian group.

9. Concluding Remarks

This paper showed that the ensemble of all primitive, strongly integral Apollonian circle

packings can be simultaneously described in terms of an orbit of a larger discrete group,

the super-Apollonian group, acting on the standard strongly integral super-packing.

Study of the locations of the individual integer packings inside the standard super-

packing, presented in Section 6, leads to interesting questions, not all of which are

resolved. The standard super-packing also played a role in analyzing the structure of the

super-Apollonian group as a discrete subgroup, carried out in Section 7.

The various illustrations show the usefulness of graphical representations, as a guide

to both finding and illustrating results. This contribution is due in large part to the

statistician co-authors (CLM and ARW). Graphics were particularly useful in finding

extra symmetries of these objects, such as those illustrated in Figs. 9–11 and subsequently

proved by Northshield [10]. However, one must not forget the adage of Stark [12, p. 225]:

“A picture is worth a thousand words, provided one uses another thousand words to justify

the picture.” Section 3 of this paper provides such a justification for certain features of

Fig. 4.

There remain some open questions, particularly concerning the classification of all

integer root quadruples classified by fixed curvature −N of the bounding circle. This

quantity is known to be interpretable as a class number, as described in Theorem 4.2

of [3]. In Section 6 we observed some symmetries of these root quadruples inside the

standard super-packing, see Figs. 4–6. There is a new invariant that can be associated to

such quadruples, which is their nesting depth as defined in Section 4 with respect to the

generating quadruple D0 of the standard super-packing. It would be interesting to see

whether this invariant might give some further insight into class numbers.
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Appendix. Strong Integrality Criterion

This appendix establishes that to show that a Descartes configuration is strongly integral

it suffices to show that three of its four circles are strongly integral. This affirmatively

answers a question posed to us by K. Stephenson.
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Theorem A.1. A Descartes configurationD has integral curvature-center coordinates

MD if and only if it contains three circles having integer curvatures and whose curvature

× centers, viewed as complex numbers, lie in Z[i].

Proof. The condition is clearly necessary, and the problem is to show it is sufficient. We

write the circle centers as complex numbers zj = x j + iyj . So suppose D contains three

circles with curvatures b1, b2, b3 ∈ Z and with curvature× centers b1z1, b2z2, b3z3 ∈
Z[i]. We must show that the fourth circle in the configuration has b4 ∈ Z and b4z4 ∈ Z[i].

For later use, we note that Theorem 3.1 of Part I [4] has a nice interpretation using

complex numbers z to represent circle centers. This was formulated in [6] as the Complex

Descartes Theorem. It gives

b2
1z2

1 + b2
2z2

2 + b2
3z2

3 + b2
4z2

4 = 1
2
(b1z1 + b2z2 + b3z3 + b4z4)

2. (A.1)

and

b2
1z1+b2

2z2+b2
3z3+b2

4z4= 1
2
(b1z1+b2z2+b3z3+b4z4)(b1+b2+b3+b4). (A.2)

We claim that b4 ∈ Z. This is proved in the following two cases.

Case 1: b1b2b3 �= 0. We first suppose that z1 = 0. If both x2 and x3 are zero, then

−1/b1 = 1/b2+1/b3, which means b1b2+b2b3+b3b1 = 0. Hence b4 = b1+b2+b3 ∈ Z.

Otherwise by permuting z2 and z3 if necessary we may assume that x2 �= 0. Then the

following equations encode the distance between the circle centers, since the circles

touch:

x2
2 + y2

2 =
(

1

b1

+ 1

b2

)2

, (A.3)

x2
3 + y2

3 =
(

1

b1

+ 1

b3

)2

, (A.4)

(x3 − x2)
2 + (y3 − y2)

2 =
(

1

b2

+ 1

b3

)2

. (A.5)

We wish to solve these equations for y3 in terms of b1, b2, b3, x1 and x2. To this end we

subtract the first two equations from the third and obtain

2(x2x3 + y2 y3) =
(

1

b1

+ 1

b2

)2

+
(

1

b1

+ 1

b3

)2

−
(

1

b2

+ 1

b3

)2

:= R.

Calling the right side of this equation R, we obtain

x3 =
1

2x2

(R − 2y2 y3),

where the division is allowed since x2 �= 0. Substituting this in the second equation

yields a quadratic equation in y3, with x3 eliminated, namely (after multiplying by 4x2
2 ),

4(x2
2 + y2

2)y2
3 − 4Ry2 y3 + R2 − 4x2

2

(

1

b1

+ 1

b3

)2

= 0.
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Since y3 is rational, this equation has rational solutions, so the discriminant 
 must be

the square of a rational number. After some calculation one obtains


 = 162x2
2

(

b1b2 + b1b3 + b2b3

(b1b2b3)2

)

.

Since x2, b1, b2 are nonzero it follows that b1b2 + b2b3 + b1b3 is a perfect square.

Viewing the Descartes equation as a quadratic equation in b4 we obtain the formula

b4 := b1 + b2 + b3 ± 2
√

b1b2 + b2b3 + b1b3, which shows that both roots are integers.

These are the oriented curvatures of the two possible choices for the fourth circle in the

Descartes configuration, so b4 ∈ Z.

Now assume that z1 = x1 + iy1 is arbitrary. Define

(s2, t2) := (x2 − x1, y2 − y1) and (s3, t3) := (x3 − x1, y3 − y1).

Then s2, t2, s3, t3 are rational numbers, and they also satisfy (A.3)–(A.5) (just replace

x2, y2, x3, y3 in (A.3)–(A.5) by s2, t2, s3, t3, respectively). By the preceding argument,

we again have 16s2
2(b1b2 + b2b3 + b1b3)/(b1b2b3)

2 = q2 for some rational number q .

This implies that b1b2 + b2b3 + b1b3 is a perfect square and consequently that b4 is an

integer.

Case 2: b1b2b3 = 0. This is proved similarly, with an easier calculation.

The claim follows, so b4 ∈ Z.

We now proceed to show that b4z4 ∈ Z[i]. Now (A.1) gives

b4z4 = b1z1 + b2z2 + b3z3 ± 2
√

b1z1b2z2 + b2z2b3z3 + b1z1b3z3. (A.6)

Equation (A.2) gives

(b1 + b2 + b3 − b4)b4z4

= 2(b2
1z1 + b2

2z2 + b2
3z3)− (b1 + b2 + b3 + b4)(b1z1 + b2z2 + b3z3). (A.7)

We treat two mutually exhaustive cases.

Case 1: b1+ b2+ b3 �= b4. Then (A.7) gives b4z4 = x4+ iy4 for some rational numbers

x4, y4. However, b1z1, b2z2, b3z3 are integers by hypothesis, whence (A.6) shows that

b4z4 is an algebraic integer. Since x4, y4 are rational, we conclude that b4z4 must be an

integer, i.e. in Z[i].

Case 2: b1 + b2 + b3 = b4. In this case we have b1b2 + b2b3 + b1b3 = 0. Now from

(A.7), we have

b2
1z1 + b2

2z2 + b2
3z3 = (b1 + b2 + b3)(b1z1 + b2z2 + b3z3),

which can be simplified to

b2b3z1 + b1b3z2 + b1b2z3 = 0.
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Thus

(b1z1)(b2z2)+ (b2z2)(b3z3)+ (b3z3)(b1z1)

= b1(b2z2 + b3z3)
b1b3z2 + b1b2z3

−b2b3

+ (b2z2)(b3z3)

= −b2
1z2

2 − b2
1z2

3 + z2z3

(

b2b3 −
b2

1

b2b3

(b2
2 + b2

3)

)

= −b2
1(z2 − z3)

2.

Now b1(z2−z3) is a Gaussian rational number whose square is integral. Hence b1(z2−z3)

must be integral. It follows that b4z4 = b1z1 + b2z2 + b3z3 ± 2b1(z2 − z3)i is

in Z[i].

Since the Apollonian group consists of integer matrices, all Descartes configurations

in an Apollonian packing generated by a strongly integral Descartes configuration are

strongly integral. This explains the integrality properties of curvatures and curvature ×
center pictured in the packing in Section 1, for example. The previous result now gives

a weaker necessary and sufficient condition for an Apollonian packing to be strongly

integral.

Theorem A.2. An Apollonian circle packing is strongly integral if and only if it contains

three mutually tangent circles which have integer curvature-center coordinates.

Proof. Suppose we are give three mutually tangent circles in the packing that are

strongly integral. Any set of three mutually tangent circles in the packing is part of some

Descartes configuration in this packing. This follows from the recursive construction of

the packing, which has a finite number of circles at each iteration. If iteration j is the

first iteration at which all three tangent circles are present, at that iteration they neces-

sarily belong to a unique Descartes configuration. Theorem A.1 now implies that this

Descartes configuration is strongly integral. It then follows that the whole Apollonian

packing is strongly integral. This proves the “if” direction, and the “only if” direction is

immediate.
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