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SOFTWARE Open Access

APP: an Automated Proteomics Pipeline for the
analysis of mass spectrometry data based on
multiple open access tools
Erik K Malm, Vaibhav Srivastava, Gustav Sundqvist and Vincent Bulone*

Abstract

Background: Mass spectrometry analyses of complex protein samples yield large amounts of data and specific
expertise is needed for data analysis, in addition to a dedicated computer infrastructure. Furthermore, the
identification of proteins and their specific properties require the use of multiple independent bioinformatics
tools and several database search algorithms to process the same datasets. In order to facilitate and increase the
speed of data analysis, there is a need for an integrated platform that would allow a comprehensive profiling
of thousands of peptides and proteins in a single process through the simultaneous exploitation of multiple
complementary algorithms.

Results: We have established a new proteomics pipeline designated as APP that fulfills these objectives using a
complete series of tools freely available from open sources. APP automates the processing of proteomics tasks
such as peptide identification, validation and quantitation from LC-MS/MS data and allows easy integration of
many separate proteomics tools. Distributed processing is at the core of APP, allowing the processing of very large
datasets using any combination of Windows/Linux physical or virtual computing resources.

Conclusions: APP provides distributed computing nodes that are simple to set up, greatly relieving the need for
separate IT competence when handling large datasets. The modular nature of APP allows complex workflows to be
managed and distributed, speeding up throughput and setup. Additionally, APP logs execution information on all
executed tasks and generated results, simplifying information management and validation.

Keywords: Proteomics, Automation, Validation, Distributed processing

Background
Tandem mass spectrometry (MS/MS) analyses of hetero-
geneous protein samples typically provide large amounts
of data. Current methods allow the identification of
hundreds or even thousands of proteins from a given
complex sample. But the acquisition of such compre-
hensive MS data may require long machine running
times, sometimes measured in weeks, depending on the
type of analysis and number of replicates performed. The
thorough analysis of the complex data produced can be
achieved using multiple tandem MS search engines and
other specialist tools. However, the handling of proteomics
data is not a trivial task. In addition, processing can

be very demanding in terms of computer resource and
laboratories without a specialized computer infrastruc-
ture are limited in their analytical capacity. In order to
address these issues, we have developed an automated
proteomics pipeline designated as APP that integrates a
set of tools and allows distributed execution on most
available computers with minimal setup. APP also
addresses usability issues and minimizes the computer
skills needed to perform complex analyses. It is readily
usable in any laboratory environment, both locally and
with regards to cloud computing.

Implementation
The core components and plugins of APP were written
in Java version 7 using the Sun Netbeans IDE envi-
ronment (http://netbeans.org). Java was selected to aid
deployment over heterogeneous computer environments,
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thereby allowing Windows, OS X and Linux machines
to provide their own unique tools. APP is used through
two applications, i.e. a server/worker application and a
user interface application (Figure 1). The APP project
homepage provides prepackaged bundles of all tools
and a tutorial manual with step-by-step instructions for
server setup, installation of all components and use of
APP for the analysis of MS data. The bundles are regu-
larly updated to coincide with TPP releases. A process-
ing node functioning on either a Linux or Windows
system becomes available after unpacking the single
zip/tar.gz file corresponding to the packaged bundles.
Any adapted settings of APP can be mirrored by simply
copying the corresponding folder into a new system.
APP grids are built to function with minimal privilege.
Only the server needs to be accessible to the clients or
nodes, thereby placing no requirement for administra-
tive privilege on the other systems. APP does not aim to
supplement systems management tools for large deploy-
ments. If resources such as high-performance shared
storage are available, APP can utilize them but this is
not a requirement. APP can utilize binaries from any
location, including network shares, thereby allowing
access of shared folders to all APP nodes, or folder

syncing. APP allows file download from the server to
local drives for further work on the files. File security on
the nodes falls outside the reach of APP and the soft-
ware does not add any demand of accessibility to nodes.

Plugin model
Proteomics and other tools are provided by APP as plu-
gins. Each plugin has its own first in/first out (FIFO)
type of queue. Individual plugins use a set of files as
input and process them before specifying which output
files should be passed on to the next plugin. Thus, com-
plex tasks can be defined easily by linking sets of plugins.
Most of the plugins depend on open source tools, allowing
the backend tools to be distributed along with the APP
server software.

Server software
The server software handles the central parts of APP,
job submission, execution scheduling, timing out non-
responsive tasks and tracking of results. It can also
be run in worker mode, allowing it to connect to an
already running server, and be served single jobs to
execute, acting as a simple grid node (Figure 1). This
offloads computing tasks from the main server and

Figure 1 Job handling on APP. Overview of the general APP server and worker setup with jobs being distributed and executed on workers.
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allows parallel processing of jobs without requiring the
complex task of setting up a standard grid or rewriting
any software for distributed computing. Workers can be
added and removed during runtime, allowing use of
computers as they become available. For example, office
computers can be used to process long running tasks
overnight and then be reclaimed by their owners without
affecting the overall processing. Virtualized servers can
also be added easily to cope with increased demand. This
allows easy use of local computers or computing resources
from a cloud computing service such as Amazon Web
Services or Microsoft Azure. Since the APP core is written
in Java, the server software is inherently cross-platform.
Most plugin codes are automated to find and use either
Linux or Windows binaries, thereby enabling easy mixing
of GNU/Linux and Windows systems. Plugins for use
with the Trans-Proteomic Pipeline (TPP) are included
with all installations of APP along with a set of freely
redistributable database search engines and their plugins.
Each worker client can be configured independently.
Possible setups include a central server with a set of
desktop computers connected for executing tasks at low
priority, allowing computer power not needed for desk-
top tasks to be used by APP. In other setups, specific
search engines are executed only on computers with
enough computing power while slower computers handle
less computationally intensive tasks. APP can accept data
in different formats at any stage of the analysis, including
raw MS data from vendors such as Waters, Agilent or
Thermo Scientific, as well as mgf, pkl and dta files. APP
automatically manages file formats containing fixed paths.
All APP jobs are executed using a temporary path struc-
ture to ensure non-destructive processing and the jobs
are updated to their primary paths upon successful
completion. Thus, execution can indifferently take place
locally or remotely. Files generated on the server can be
referenced directly when submitting new jobs, avoiding
needless transfer and replication of data. Nodes have
tasks submitted and then request needed files. Two
methods are deployed to avoid bottlenecks. By default,
each node accepts 110% worth of its free core in jobs.
This allows file transfers to be performed while the
node is processing important jobs. Additionally, file
checksums are stored when received and sent. Thus,
files that are repeatedly used, such as databases, are only
transferred once to the node. The file cache is cleared
after no job has utilized a file for a preset time, with the
smallest files being cleared first. Finally, APP can be
pointed to folders containing commonly used files,
which will then be passed by reference rather than
transferred. This is useful for storage of databases on all
nodes or mapping of shared storage solutions. Very
large files such as .raw files can cause bottlenecks for
initial transfer to processing nodes, but this is normally

not rate limiting because processed raw data are trans-
ferred faster than they are processed.
The most salient advantage of APP is the integration

of multiple plugins for a whole range of tools (Figure 2).
This is illustrated by the combination of currently avail-
able plugins, i.e. MsConvert (ProteoWizard) for raw data
format conversion, and database search engines such as
X!Tandem [1], Myrimatch [2], OMSSA [3], Comet [4],
InsPecT [5], SpectraST [6] and MS-GF+ [7]. The current
pipeline also integrates several plugins for validation of
the search results, namely PeptideProphet [8], including
support for LIBRA, XPRESS and ASAPRatio for iTRAQ
or SILAC quantitation [9], iProphet [10] and ProteinPro-
phet [11]. In addition, a separate general search settings
plugin reads post-translational modifications in Unimod
format [12] and generates a universal parameter format
that can be used for all search engine plugins. A label-free
quantitation plugin is also available, which can utilize
spectral counting or MS2 TIC values [13] as a basis of
protein quantitation. Additional plugins provide smaller
services such as standardizing the names of spectra,
allowing extraction of specific peptide information and
images of spectra, or converting additional formats such
as BioLynx XML files into appropriate formats for use
in APP workflows. APP is packaged together with most
of the tools it supports, such as the TPP base installa-
tion and all database search engines supported. In cases
where underlying software cannot be legally redistribu-
ted, plugins can be downloaded individually from the
project homepage. The server software typically runs
with a user interface to allow easy configuration, but it
can also be run completely from a command-line inter-
face for use on server operating systems. It is also pos-
sible to configure a server using the GUI and then run it
headless.

Interface software
The interface application is designed to be as intuitive
as possible, automatically detecting any APP servers
running on a local network and facilitating the setup
and submission of complex pipelines by simply linking
one plugin to another. The interface also allows users to
browse previous tasks and results from the server, easily
retrieving any file for local storage. When setting up a
task APP pre-calculates the result of each operation,
allowing browsing of exactly which output files will be
created and forwarded in the task. When attempting to
submit a task for processing, a series of checks are run
to ensure that each plugin will be provided with proper
inputs, for example ensuring that a database search
engine is receiving a search-settings file, at least one
data file and a target database. Any plugin that fails a
test is highlighted to the user and its requirements are
presented.
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Results and discussion
APP and similar software
Several commercial platforms for the analysis of MS-
based proteomics data, such as Sorcerer (Sage-N
Research), SCAFFOLD (Proteome Software) and PEAKS
(Bioinformatics Solutions Inc.) are available, but their
access is typically expensive. Other pipelines that in-
corporate solutions for analyzing and validating results
from several MS/MS search engines are freely available,
e.g. OpenMS/TOPP [14], TPP [15], CPAS (Labkey Soft-
ware Foundation) and MASPECTRAS [16]. However,
they typically require specific knowledge of each sup-
ported search engine, such as parameter formats and
supported input and output formats. Compared to the
abovementioned tools, APP has the advantage of offer-
ing a user-friendly proteomics server software enabling

distributed computing with minimal configuration. The
flexible plugin model allows the establishment of unique
proteomics pipelines tailored to the needs of the data.
This makes routine use of complex workflows feasible
and allows simple scaling of processing capacity with
demand. Since submitted tasks can be continuously
monitored during execution, APP provides feedback at
every step of the process and is never a black box for
the user.
The need for a general solution to distribute software

tools has been acknowledged by projects such as Taverna
Workbench (http://www.taverna.org.uk/) [17], YABI (http://
www.ncbi.nlm.nih.gov/pmc/articles/PMC3298538/), Knime
(http://tech.knime.org/community/bioinf/openms) and
Galaxy (https://usegalaxyp.org/). However, these depend
on the maintenance of one or several grid engines to

Figure 2 Sample task. All workflows on APP clusters are provided as a set of linked plugins. The figure shows how the major plugins are linked
in the example task. Housekeeping plugins such as SpectrumNamefixer and IDConvert are excluded for legibility.
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provide distributed and remote processing. Knime relies
on a functional setup of Sun GridEngine. Likewise both
Galaxy and Taverna Workbench depend on the estab-
lishment and maintenance of an existing computational
cluster. YABI can utilize a number of such grid engines,
but does not fundamentally change the need for advanced
setup and maintenance. This is beyond both the abilities
and needs of many research groups. APP focuses on
simplifying setup of IT infrastructure on commodity
computers and does not depend on any tool outside of the
core application for distributed processing. Any virtual or
physical machine capable of executing APP can easily be
made part of its processing network. For this reason, the
task of setting up and maintaining a processing infrastruc-
ture is practical for “pure research” groups and precludes
the need for access to core shared infrastructure.
APP aims to make task execution as simple and

powerful as possible by providing distributed processing
for multiple search engines compatible with TPP. For
advanced and automated workflows, it is possible to
script pipelines, but this places great demands on user
computer skills and does not by default handle distribu-
tion, parameter generation or job monitoring. Unlike the
Petunia web-based interface provided by TPP, APP ad-
dresses these issues by providing a number of template
tasks and default optimized executions without any
need to know specific commands or parameter input
formats. The APP plugin model preserves much of the
flexibility of the scripting approach. Thus, APP com-
bines the great flexibility of scripted pipelines while
providing a simple way to execute standard tasks. Users
are encouraged to refer to the tutorial section of the
APP manual available on the project homepage to gain
a good understanding of the APP task model.

Example of a workflow
An example of data processing using APP is pre-
sented in Figure 2. The data representing an in-gel
plasma-membrane digest of the recent proteomics
study of Srivastava et al. [18] were used for the ana-
lysis. They were converted from 48 mgf files into 144
mzML files using the MSConvert plugin, each mzML
file containing a portion of the spectra from its par-
ent file. This was done to allow more efficient
parallelization of data processing. The task included
multiple database search engines, i.e. Comet, MS-GF
+, Myrimatch and X!Tandem using both K!Score and
Native scores. Searches were performed against the
black cottonwood (Populus trichocarpa) protein se-
quence database [19] concatenated to its own reverse
protein sequences. Searches were performed using
tryptic settings, with one tryptic missed cleavage
allowed. A precursor tolerance of 50 ppm and a frag-
ment tolerance of 0.1 Da were used. The fixed peptide

modification selected was ethanoylated Cys. A single
variable mode for oxidized Met was used. The Myri-
match output was processed through the APP Spec-
trumNameFixer plugin to standardize the naming of
the spectra. MS-GF+ had its output mzID files con-
verted to pep.xml using IDConvert, prior to the
standardization of the names of the spectra with the Spec-
trumNameFixer plugin. Results from each search engine
were validated using PeptideProphet/iProphet and Pro-
teinProphet. The iProphet output from each search en-
gine was then combined using iProphet and a resultant
protein list created using ProteinProphet. A spectral li-
brary was then constructed using high scoring peptide
spectral matches (PSMs) from the combined iProphet
result. This spectral library was combined with search
results from the two additional gel samples ran previ-
ously in [18]. Decoy spectra were added to the final
spectral library at a ratio of 1 decoy spectrum per real
spectrum. SpectraST was then used to perform a spectral
search on all files utilizing the newly generated spectral
library. The spectral search results were analyzed using
PeptideProphet/iProphet and database and spectral search
outputs were combined using an iProphet plugin. A Pro-
teinProphet plugin was used to create the final protein list.
The input data contained around 58000 MS/MS spectra.
Two setups were used to compare results from centralized
and distributed executions: (i) a single high-end compute
optimized Amazon instance was used to process the task,
which is equivalent to the utilization of a single very
powerful computer; (ii) several smaller compute optimized
instances were used to illustrate distributed processing
over several smaller nodes.
Amazon computing power can be measured in virtual

CPUs (vCPU). The total number of vCPUs was kept
constant, with 32 vCPUs for the single c3.8xlarge com-
pute instance and an equivalent 32 vCPUs for the 8 c3.
xlarge Amazon instances (distributed execution). This
approach illustrates any impact of APP scheduling on
task speed. While the network IO and drives are faster
for the single powerful instance, this difference is less
important than pure processing power since APP handles
file transfers during processing of previous jobs, allowing
workers to process continuously while jobs are provided.
A second task was also submitted to the APP server. In
this case, the Label Free Data Extractor plugin was used
to export peptides and PSMs from all combined results
and search engines, using the following criterion: each
ProteinProphet protein with a probability above 0.95
had supported peptide sequences with a probability
above 0.9 indexed. These had all post-translational
modifications (PTMs) stripped and each supporting
PSM with a probability above 0.5 was exported. PSMs
with a probability above 0.5 are treated as supportive by
ProteinProphet and thus gave a positive contribution
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to peptide probability. The exported results were
filtered to keep only a single instance of any repeat
PSMs or stripped peptide sequences. Additionally,
before counting unique peptide sequences all Leu resi-
dues were replaced with Ile since these residues are
indistinguishable by MS.

Results from the workflow used as an example
The results obtained from the above example workflow
are depicted in Additional file 1: Figures S1 and S2, and
summarized in Table 1. The versions of the software
used are listed in Additional file 1: Table S1. The exe-
cution time for all tasks in the distributed setup was
6 h whereas the single instance required a somewhat
longer execution time of about 8 h. It is noteworthy
that a majority of computation time was spent to
process the MS-GF+ search results, with an average
processing time of over 1 hour per data file in both
setups (Table 1). This is more than at least 10 times
longer than needed for the other search engines to
process the same data. It is thus a limitation for users
with limited computer resources. However, MS-GF+
search jobs are run in parallel, which uses less total
time than sequential runs of jobs. Some differences in
speed were experienced with different plugins running
on a single instance compared to the distributed exe-
cution. Typically, Comet was slightly faster in the
single instance execution mode, while X!Tandem with
Native score was slower. Likewise, Myrimatch proc-
essed its results slightly faster using a single node,
while MS-GF+ was slower despite the fact that the
amount of memory available and disk speed is advan-
tageous in the single node execution setup. Most
differences in processing speed are offset by increased
parallelism in the distributed task, with Myrimatch

executing 8 parallel instances when distributed, but
only a single job utilizing all 32 vCPUs on average
when running on the single instance mode. Overall,
the observed execution times show that distribution of
processing is at least as performant for large tasks as
runs on a single powerful computer. This illustrates
the ability to assemble an efficient processing infra-
structure from multiple slower nodes.

Future developments
APP is a plugin-based infrastructure with virtually
unlimited opportunities for expansion. It allows the
management of all aspects of proteomics analysis through
a single interface. APP distributes the processes and wraps
applications in a way that does not require their
re-writing. It will be continuously upgraded through
the implementation and addition of new plugins. For
example, we are currently integrating an external
MASCOT server support (http://www.matrixscience.com)
as well as support for MSBlender [20] and IDPicker [21]
to allow other validation pathways. More integration
targets are UniNovo [22] for use in de novo sequencing
and Blast2GO [23] for the functional annotation of
search results, along with plugins for the generation of
inclusion and exclusion lists for use in repeated MS/MS
runs. Plugins allowing the structured export of data
from APP projects into other data backends will also be
released to aid integration of APP with an external data-
base repository or other analysis tools. The additional
plugins will be released on the project homepage as they
are tested and pass quality controls.

Conclusions
APP is a user-friendly and powerful tool that allows
research groups to easily set up and perform distributed

Table 1 Summary of number of hits and processing time for each search engine (seconds to execute a search job using
1000 MS/MS spectra; note that many such jobs can be run in parallel)

X!Tandem: Native score X!Tandem: K-score Myrimatch

PSMs 3457 6166 6348

Peptides 1594 2357 2337

Average execution time (s) [distributed] 25 26 345

Average execution time (s) [single instance] 26 26 375

MS-GF+ SpectraST Comet

PSMs 8655 1050 6155

Peptides 3407 578 2312

Average execution time - Distributed 3747 18 30

Average execution time - Single instance 4477 20 14

All database search All DB Search and SpectraST

PSMs 13029 13232

Peptides 3505 3501

See Additional file 1: Figure S1 for an overview of the output provided by each search engine.

Malm et al. BMC Bioinformatics  (2014) 15:441 Page 6 of 8

http://www.matrixscience.com


proteomics processing. Its modular plugin nature greatly
facilitates complicated proteomics tasks, such as analysis
by several database search engines. APP also greatly sim-
plifies information management and provides multiple
tools for non-search related tasks, including spectral
counting or housekeeping tasks such as fixing spectral
references in search engine outputs. Deploying APP
computing nodes for database searches is as easy as
unzipping a single archive. Thus, even groups without
dedicated IT support are able to perform large scale
distributed computing independently. The parallel
utilization of several search engines provides signifi-
cant advantages over the use of a single engine, both in
terms of coverage and validation. Each search engine iden-
tifies a number of unique peptide sequences and spectra
that are missed by other search engines. Individual
engines also provide their own scores for use in valid-
ation of commonly identified peptides. In the example
provided here, MS-GF+ and Myrimatch identified
the largest number of spectra and peptides, whereas
Myrimatch and X!Tandem with K-Score identified the
largest number of peptide sequences not matched by
another search engine. Comet and X!Tandem have a
very high performance and might be the recommended
pair of search engines to use when performing searches
on limited hardware.

Availability and requirements
Project name: Automated Proteomics Pipeline.
Project home page: https://sourceforge.net/projects/
automatedproteo.
Programming language: Java version 7.
Operating system: Platform independent, packaged for
Windows and Ubuntu.
Other requirements: Java runtime 1.7 or higher; the
web portion requires Perl 5.16 and Apache web server.

Additional file

Additional file 1: Table S1. Software versions used for example tasks.
Figure S1. Output of the example workflow. a) Number of identified
peptide sequences by each search engine; while many peptides are
common, each search engine provides a unique set of identified peptides.
b) Equivalent output as in a), but for PSMs; the figure highlights matched
spectra rather than peptide sequences. Figure S2. Output of the combined
workflow. Venn diagrams showing the extent of overlap between different
combinations of search engines. a) and b) represent overlap of unique
identified peptide sequences and PSMs, respectively. Note that iProphet
filters out low-scoring PSMs and peptides.
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