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Abstract

This work describes our solution in the second edition

of the ChaLearn LAP competition on Apparent Age Esti-

mation. Starting from a pretrained version of the VGG-16

convolutional neural network for face recognition, we train

it on the huge IMDB-Wiki dataset for biological age estima-

tion and then fine-tune it for apparent age estimation using

the relatively small competition dataset. We show that the

precise age estimation of children is the cornerstone of the

competition. Therefore, we integrate a separate “children”

VGG-16 network for apparent age estimation of children

between 0 and 12 years old in our final solution. The “chil-

dren” network is fine-tuned from the “general” one. We

employ different age encoding strategies for training “gen-

eral” and “children” networks: the soft one (label distribu-

tion encoding) for the “general” network and the strict one

(0/1 classification encoding) for the “children” network.

Finally, we highlight the importance of the state-of-the-art

face detection and face alignment for the final apparent age

estimation. Our resulting solution wins the 1st place in the

competition significantly outperforming the runner-up.

1. Introduction

Historically being one of the most challenging topics

in facial analysis [13], automatic age estimation from face

images has numerous practical applications such as demo-

graphic statistics collection, customer profiling, search op-

timization in large databases and assistance of biometrics

systems. There are multiple reasons why automatic age

estimation is a very challenging task. The most principal

among them are an uncontrolled nature of the ageing pro-

cess, a significant variance among faces in the same age

range and a high dependency of ageing traits on a person.

Recently, deep neural networks have significantly

boosted many computer vision domains including uncon-

strained face recognition [26, 19, 24] and facial gender

recognition [2]. However, the progress in unconstrained fa-

cial age estimation is much slower, due to the difficulty of

collecting and labelling large datasets which is essential for

training deep networks.

The vast majority of existing age estimation studies deals

with the problem of estimation of a person’s biological age

(i.e. objective age defined as the elapsed time since the

person’s birth date). However, in 2015, the first ChaLearn

Looking at People (LAP) competition on apparent age es-

timation (i.e. subjective age estimated from a visual ap-

pearance of a person) was conducted [6]. The organizers

collected a dataset of face images and developed a web ser-

vice where people could annotate these images with an ap-

parent age. More than 100 teams have participated in the

competition and the 5 best approaches were based on deep

Convolutional Neural Networks (CNNs).

In 2016, the second edition of the ChaLearn LAP Ap-

parent Age Estimation (AAE) competition has been orga-

nized [7]. We have participated in this competition and have

won the 1st place outperforming all other participants by a

significant margin. Our final solution is mainly inspired by

the solution of the previous year’s winners [21]. We im-

prove the approach of [21] by using: (1) a combination of

“general” apparent age estimation model with soft age en-

coding and “children” model with 0/1 age encoding, and (2)

precise face alignment prior to age estimation. In this paper,

we detail our winning solution in the ChaLearn LAP AAE

competition motivating the selected design choices.

The rest of the paper is organized as follows: in Sec-

tion 2, we present related works on biological and apparent

age estimation and existing age encoding strategies, in Sec-

tion 3, we describe external image datasets which we have

used for training in addition to the competition dataset, in

Section 4, we detail our data preprocessing and age estima-

tion approaches, in Section 5, we highlight the importance

of certain design choices in our solution by experimenting

on the validation dataset of the competition, in Section 6,

we present the final results of the competition, and we sum-

marize our contributions and conclusions in Section 7.
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Figure 1. Apparent age distribution in the ChaLearn LAP AAE competition datasets (training+validation): (a) 2015, (b) 2016.

2. Related work

2.1. Biological age estimation

As already mentioned in Section 1, the existing age esti-

mation studies mainly focus on biological age estimation.

There are 2 publicly available datasets which are mostly

used in the context of biological age estimation: FG-NET

dataset [1] and MORPH-II dataset [20]. FG-NET dataset

contains about 1000 images obtained mainly from scanning

old photos. MORPH-II dataset is bigger than FG-NET con-

taining about 55, 000 images. This dataset was collected by

American law enforcement services.

The most used metric for evaluating systems of auto-

matic estimation of a biological age is Mean Absolute Error

(MAE). MAE is simply defined as a mean value of absolute

differences between predicted ages x̂ and real (biological)

ages x: MAE = 1

N

N∑

i=1

|x̂i − x|.

The problem of biological age estimation has been stud-

ied for a long time. The very first works (notably [15]

(1999)) focused mainly on cranio-facial development the-

ory using geometrical ratios between different face regions

to identify a person’s biological age. Age estimation was

treated as a classification problem with coarse classes (ba-

bies, young adults, adults and seniors). Later studies ap-

proached biological age estimation from face images in a

conventional computer vision manner: designing of fea-

ture representations for input images and training regres-

sion functions or classifiers on the obtained representations.

In that context, feature designing to describe the ageing

pattern proved to be of particular importance. For exam-

ple, in 2007, [9] proposed to model the ageing pattern de-

fined as the sequence of a particular individual’s face im-

ages sorted in time order by constructing a representative

subspace: AGES (AGeing pattErn Subspace). Authors ob-

tained MAEs of 6.8 and 8.8 on FG-NET and MORPH-II,

respectively. While in 2009, [12] investigated a possibility

of applying Biologically Inspired Features (BIF) for age es-

timation. Authors proposed the “STD” operator for encod-

ing the ageing subtlety on faces. They obtained the MAE of

4.8 on FG-NET dataset. This result was further improved

by [10] in 2011 who proposed to combine BIF with Ker-

nel Partial Least Square regression (KPLS) and reached the

MAE of 4.2 on FG-NET dataset.

Finally, the recent development of deep learning meth-

ods (where feature designing and age estimation stages are

combined into one neural model) has allowed to further im-

prove automatic age estimation quality. Thus, [29] (2014)

is one of the first works to apply CNNs for age estima-

tion. Authors employed several shallow multiscale CNNs

on different face regions and obtained the MAE of 3.6 on

MORPH-II dataset. The most recent work of [28] (2015) is

also based on CNNs. Authors proposed using a ranking en-

coding for age and gender and reported the state-of-the-art

MAE of 3.5 on MORPH-II dataset.

2.2. Apparent age estimation

Despite being strongly correlated with each other, an ap-

parent age of a person can be very different from her (his)

biological age [6]. The first edition of the ChaLearn LAP

AAE competition [6] boosted the research in apparent age

estimation by making public the first dataset with appar-

ent age annotations of 4691 images. In the second edition

of the competition [7], this dataset has been extended to

7591 images (4113 images for training, 1500 for validation

and 1978 for test). Not only the number of images has in-

creased, but also the age distribution has changed with re-

spect to the first edition of the competition (see Figure 1).

In particular, the percentage of children images has signifi-

cantly increased in the second edition of the competition.
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Each image of the competition dataset is annotated with

a mean age µ and a corresponding standard deviation σ

(these statistics are calculated based on at least 10 human

votes per image). The metric which has been selected by

the competition organizers to evaluate apparent age estima-

tion systems is quite different from MAE which is used for

biological age estimation. The competition metric ǫ is de-

fined as the size of the tail of the normal distribution with

the mean µ and the standard deviation σ with respect to the

predicted value x̂: ǫ = 1− e−
(x̂−µ)2

2σ2 . Therefore, the appar-

ent age estimation errors on examples with a small standard

deviation (i.e. on examples on which human votes are close

to each other) are penalized stronger than the same errors on

examples with a high standard deviation (i.e. on examples

on which human votes disagree between each other).

Below, we present 3 winning entries of the first edition

of the competition. All of them are based on CNNs.

[21] are the winners of the first edition of the competi-

tion. Their approach is based on pretraining of the VGG-

16 CNN [23] on the ImageNet dataset [22], training this

network on the IMDB-Wiki dataset for the biological age

estimation task (this dataset has been collected and made

public by the authors) and, finally, fine-tuning for the ap-

parent age estimation task on the competition data. Authors

trained their CNN for a classification with 101 classes (ages

between 0 and 100 years old) and used the expected value

of 101 neurons as an age estimation at the test phase. The

resulting ǫ is 0.2650. [16] are the runners-up of the competi-

tion. Authors used the GoogLeNet CNN [25] as their basic

model. Authors pretrained the GoogLeNet CNN for face

recognition task on the CASIA WebFace dataset [30], then

the CNN was trained on CACD [4], WebFaceAge [18] and

Morph-II datasets for the biological age estimation task, and

finally, the CNN was fine-tuned on the competition data for

the apparent age estimation task. Authors combined CNNs

trained for age regression and for age classification with dis-

tributed labelling. As a result, they obtained ǫ of 0.2707.

The third result in the competition was achieved by [32].

Their approach is very similar to the one by [30]: also pre-

training of the GoogLeNet CNN on the CASIA WebFace

dataset, training for biological age estimation on publicly

available age datasets and the final fine-tuning for apparent

age estimation on the competition data. However, the par-

ticularity of the solution by [32] is the usage of the cascade

approach for age classification: firstly, a coarse classifica-

tion in one of 10 age groups and then a fine-grained intra-

group regression. The final result of [32] is ǫ of 0.2948.

Summarizing the approaches of the 3 winners of the first

edition of the ChaLearn LAP AAE competition, the follow-

ing common strategies can be highlighted:

1. All 3 winners use deep CNN architectures (either

VGG-16 or GoogLeNet) pretrained on large image

datasets (either ImageNet or CASIA-WebFace).

2. All 3 winners employ the same pipeline for training

their CNN: firstly, training on large datasets for bio-

logical age estimation and secondly, fine-tuning on the

competition dataset for apparent age estimation.

Relying on the success of these 2 strategies in the first edi-

tion of the competition, we also follow them in our solution

in the second edition of the competition.

2.3. Age labels encoding

In literature, there are 3 commonly used age labels en-

codings for automatic age estimation systems. These en-

codings are presented below:

1. Real number encoding. This is a pure regression ap-

proach. In real number encoding, the age labels are

encoded just as real numbers.

2. 0/1 classification encoding. This is a pure classifica-

tion approach. In 0/1 classification encoding, we pre-

define a certain number of classes (for example, 100

classes for ages between 0 and 99 years old) and the

age labels are encoded as binary vectors containing

a single non-zero value corresponding to the class to

which a certain example belongs to.

3. Label distribution encoding. Label distribution en-

coding [8] can be seen as the soft version of 0/1 clas-

sification encoding. In label distribution encoding, on

the one hand, we predefine a certain number of classes

(as in case of 0/1 classification encoding) but on the

other hand, the age labels are encoded not with binary

vectors but with real-valued vectors representing the

probability distributions of belonging to correspond-

ing classes. More precisely, assuming that we encode

an age x ∈ R with a label vector L of length N (N

classes), the label vector L will be defined as follows:

Li =
1

σ
√
2π

e−
(i−x)2

2σ2 ; i = 1, . . . , N , where σ is a pre-

defined parameter. In other words, in order to encode

an age x, we fit a normal distribution with an expected

value of x and a standard deviation of σ. The ad-

vantage of label distribution encoding with respect to

0/1 classification encoding is the fact that apart from

storing the information to which class a certain exam-

ple belongs to, a label vector also stores the informa-

tion about the neighbouring classes (i.e. neighbouring

ages). This additional information can be useful dur-

ing training. In particular, label distribution encoding

provides a machine learning model with the informa-

tion that, for example, it is better to predict 20 years

old instead of 21 years old, than 100 years old instead

of 21 years old. This information is missing in 0/1

classification encoding. Finally, it is worth noting that
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0/1 classification encoding is an extreme case of label

distribution encoding when σ → 0.

3. External data

In this section, we present the datasets which we have

used for biological age estimation training in our work.

IMDB-Wiki Inspired by the success of the 1st place win-

ners of the first edition of the ChaLearn LAP AAE compe-

tition [21], we have decided to use the IMDB-Wiki dataset

collected and used by them for the biological age estimation

training. Authors made this dataset public in 2016.

The dataset consists of 523, 051 images collected from 2

sources: IMDb1 (460, 723 images) and Wikipedia2 (62, 328

images). The distribution of ages in the IMDB-Wiki dataset

is presented in Figure 2.

Figure 2. Biological age distribution in the IMDB-Wiki dataset.

Due to the fact that each image contains a celebrity

(whose identity, gender and birth date are known) and a

timestamp, authors managed to automatically annotate all

images in the IMDB-Wiki dataset with biological ages.

However, for the majority of images from the IMDB-

Wiki dataset, the provided annotations are not directly us-

able. The problem comes from the fact that a lot of images

contain more than one person. Assuming that all faces in

the image are detected automatically, it is not obvious how

to automatically select a face to which the given annotation

corresponds to. To circumvent this problem, we have pur-

sued the 2 following approaches:

1. We have used those images for which the “Head

Hunter” face detector [17] has detected only one face

(a similar approach was employed by [21]). In this

1The Internet Movie Database: www.imdb.com
2The free Internet encyclopaedia: www.wikipedia.org

case, we can be sure that the detected face corresponds

to the provided age annotation. This approach has re-

sulted in 182, 019 images.

2. We have developed a simple web interface for the man-

ual annotation of the remaining images. Given an in-

put image and a corresponding annotation (the person

identity, gender and age), a user has to simply select

a face in the image to which the given annotation cor-

responds to. By crowdsourcing the annotation process

via the described interface, we have managed to an-

notate 68, 548 images (26 persons participated in the

annotation campaign which lasted for 4 days).

Thus, in total, 250, 367 images from the IMDB-Wiki

dataset have been used in our experiments. In order to avoid

ambiguity with the whole IMDB-Wiki dataset, below, we

refer to this subset of 250, 367 images of the IMDB-Wiki

dataset as the “cleaned” IMDB-Wiki dataset.

Collected dataset with images of children As it is seen

in Figure 2, there are very few images of children younger

than teenage (i.e. 12 years old and younger) in the IMDB-

Wiki dataset. Therefore, an age recognition model which

is trained on this dataset is likely to perform poorly for age

estimation of children. This was not a major problem in the

first edition of the ChaLearn LAP AAE competition given

that there were very few children in the competition dataset

(see Figure 1(a)). However, this problem becomes very im-

portant in the second edition of the competition where chil-

dren occupy almost 10% of all images (see Figure 1(b)).

It should also be noticed that according to the compe-

tition dataset annotations, the average standard deviation of

human votes for images of children (between 0 and 12 years

old) is about 1, while the average standard deviation for all

other images is about 5. Thus, according to the competition

data, humans estimate an age of a child almost 5 times more

precisely than an age of an adult. As it is mentioned in Sec-

tion 2.2, the competition metric ǫ is defined in the way that

the same absolute error in age estimation is penalized more

for images with small standard deviation of human votes.

The above observation shows the importance of predict-

ing ages for children images with a very high precision and

the need of training children images with precise biologi-

cal age annotations. Therefore, we have manually collected

a private dataset of 5723 children images in the 0-12 age

category using the Internet search engines.

4. Proposed solution

ChaLearn LAP AAE competition is an “end-to-end”

competition meaning that given at input raw real-life im-

ages (from Wikipedia, social networks etc.), participants

have to output corresponding apparent age estimations.
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Required image preprocessing (e.g. face detection and

face alignment) is considered as a part of the challenge.

Therefore, our solution is split into 2 logical steps: image

preprocessing and apparent age estimation itself. In this

section, we present the mentioned steps one by one.

4.1. Image preprocessing

Face detection We have used the open source “Head

Hunter” face detector [17]. In particularly, we have em-

ployed the fast implementation by [19]. In order to detect

faces regardless of an image orientation, we rotate each in-

put image at all angles in the range [-90◦, 90◦] with the step

of 5◦. We then select the rotated version of the input im-

age which gives the strongest output of the face detector for

the face alignment step. If no face is detected in all rotated

versions of the input image, the initial image is upscaled

and the presented algorithm is repeated until a face is de-

tected. 2 upscaling operations has been enough to detect at

least one face in all images of the competition dataset. As

recommended in [21] (and also confirmed by our own ex-

periments), we extend the face area detected by the “Head

Hunter” face detector and take 40% of its width to the left

and to the right and 40% of its height above and below.

Face alignment We have integrated the state-of-the-art

face alignment solution by [27] in our image preprocessing

pipeline. The solution of [27] is based on the multi-view

facial landmark detection. There are 5 landmark detection

models: a frontal model, 2 profile models and 2 half-profile

models. Each of these models is tuned to work on one of the

corresponding facial poses. The face alignment follows the

face detection and requires running of all 5 landmark mod-

els on the detected face. Each model reports a confidence

score which shows how well the corresponding landmarks

are detected in the given face. We then select the model with

the highest confidence score and perform an affine transfor-

mation from the detected landmarks to the predefined op-

timal positions of these landmarks with respect to the de-

tected facial pose.

We have also tried to use an older commercial solution

for face detection and face alignment which is based on [31]

and [3] respectively. Our experiments presented in Sec-

tion 5 compare the 2 approaches and clearly demonstrate

the merits of the open-source state-of-the-art solutions.

4.2. Apparent age estimation

Following the winning solution from the previous edition

of the ChaLearn LAP AAE competition [21], we also em-

ploy the 2-steps strategy of CNN-training for apparent age

estimation: firstly, we train our CNNs for biological age

estimation on external datasets, and secondly, we fine-tune

them for apparent age estimation on the competition data.

However, there are several key novelties in our approach

with respect to the approach of [21]. We highlight these

novelties below:

1. As it is mentioned in Section 3, the precision of the

apparent age estimation on children images has a very

high influence on the final score in the second edition

of the ChaLearn LAP AAE competition. Therefore,

we have trained a separate model for estimating appar-

ent ages of children (0-12 years old) using the external

data described in Section 3. The gain of integrating

this separate CNN in the final solution is quantitatively

evaluated in Section 5.

2. We combine 2 age labels encoding strategies which are

presented in Section 2.3. On the one hand, we employ

a label distribution age encoding for training the “gen-

eral” CNNs which allows our neural networks to better

capture the concept of an apparent age (which is rather

a range of values than a precise real value). On the

other hand, we employ a 0/1 classification encoding for

the “children” CNNs because for children, a possible

range of apparent age values is very narrow and, there-

fore, it is meaningful to encode each year as a com-

pletely separate class.3 Our experiments have shown

that using this combined age labels encoding strategy

is advantageous with respect to using only distributed

age encoding or only 0/1 classification encoding for

both “general” and “children” CNNs.

3. Our experiments in Section 5 demonstrate that the

quality of image preprocessing has a very strong im-

pact on the final ǫ-score. Therefore, we employ the

state-of-the-art open source solution from [27] for face

alignment in our final approach.

4.2.1 Training pipeline

The integral training pipeline of all apparent age estima-

tion CNNs is presented in Figure 3. Starting with the pre-

trained VGG-16 CNN from [19], we train a “general” CNN

for biological age estimation of all ages between 0 and 99

years old on the “cleaned” IMDB-Wiki dataset using the la-

bel distribution age encoding. From the obtained network,

we fine-tune a “children” CNN for biological age estima-

tion of children between 0 and 12 years old. This time,

the 0/1 classification age encoding is used. The next step

is fine-tuning of 2 resulting CNNs (the “general” one and

the “children” one) for apparent age estimation. In case of

the “general” CNN, we combine all training and validation

images from the competition dataset (5613 images in total)

3Here and below, we refer to the CNNs which estimate all ages between

0 and 99 years old as the “general” ones, while to the CNNs which estimate

only ages of children between 0 and 12 years old as the “children” ones.
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VGG-16 trained for biological 

age estimation (0-99) 

VGG-16 pre-trained on 2M 

images for face recognition 

VGG-16 trained for biological 

age estimation of children (0-12) 

VGG-16 trained for apparent 

age estimation (0-99) 

VGG-16 trained for apparent 

age estimation of children (0-12) 

Ensemble of 11 models 

Ensemble of 3 models 

training using 

distribution label 

encoding on “cleaned” 
IMDB-Wiki 

11-fold CV fine-

tuning using 

distribution label 

encoding on 

ChaLearn LAP 

fine-tuning using 0/1 

classification encoding 

on the private children 

dataset 

3 full fine-tunings using 

0/1 classification 

encoding on children 

of ChaLearn LAP 

Figure 3. Training pipeline.

and fine-tune 11 “general” CNNs for apparent age estima-

tion using 11-fold cross-validation where the size of each of

11 training datasets is 5113 images and the size of each of

11 non-overlapping validation datasets is 500 images. In

case of the “children” CNNs, we combine all images of

children between 0 and 12 years old from the training and

validation parts of the competition dataset (there are 543 of

them). Due to the small number of available images, we

fine-tune the “children” CNNs for apparent age estimation

without any validation saving the CNN weights at 3 prede-

fined points which have been chosen by experimenting on

the validation dataset4. As a result, we obtain 3 “children”

CNNs for apparent age estimation.

4.2.2 Testing pipeline

The pipeline of our final solution at test stage is presented

in Figure 4. An input image is firstly processed by a face

detector which defines a face box and rotates the image ac-

cordingly. Then the detected face is aligned and the result-

ing image is resized to 224x224 pixels (the size of an input

to the VGG-16 CNN). From the obtained image, we gen-

erate its 7 modified versions: the mirrored one, the ones

rotated at ±5◦, the ones shifted by 5% on the left/right and

the ones scaled in/out by 5%. This is done in order to com-

pensate a negative impact from minor face alignment errors

(which are inevitable given the difficulty of the competition

dataset). In total, there are 8 images including the origi-

nal one. All these images are processed by 11 “general”

CNNs. We take the values of 100 output neurons after each

4We do not guarantee that 3 is an optimal number of “children” net-

works. Due to time constraints, we have not tested an ensemble of more

than 3 “children” networks.

of 88(= 8∗11) CNN forward passes, average them and nor-

malize them to sum up to 1. Thus, we obtain a vector p of

100 values representing probabilities of belonging to ages

between 0 and 99 years old. The final “general” age pre-

diction is calculated as an expected value of these probabil-

ities: general age =
99∑

i=0

i ∗ pi. If the predicted “general”

age is superior to 12, it is considered as the final appar-

ent age estimation and the algorithm stops. In the opposite

case, we process the same 8 images as before by 3 “chil-

dren” CNNs. We take the values of 13 output neurons after

each of 24(= 8 ∗ 3) CNN forward passes, average them and

normalize them to sum up to 1. Thus, we obtain a vector p

of 13 values representing probabilities of belonging to ages

between 0 and 12 years old. The final “children” age predic-

tion is calculated as an expected value of these probabilities:

children age =
12∑

i=0

i ∗ pi. The predicted “children” age is

considered as the final apparent age estimation.

Running the final age estimation system on all 1987 test

images takes about 3.5 hours.

4.3. Training details

In this work, on multiple occasions, we initialize the

weights of a CNN A with the weights of the trained CNN

B, while CNNs A and B have different output layers. In all

such cases, we initialize all layers but the output (last) one

of the CNN A with the corresponding layers of the CNN B,

while the output layer of the CNN A is initialized randomly.

“General” and “children” VGG-16 CNNs have identi-

cal architectures (the one from [23] without the softmax

layer of 1000 neurons) with the exception of the output

fully-connected layer. In “general” CNNs, the output layer

101



VGG-16 trained for 

apparent age estimation 
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Figure 4. Testing pipeline.

CNN
Learning

rate

# training

iterations

Training

time

“general” for

biological age
10−3 5 ∗ 104

≈ 1.5

days

“children” for

biological age
10−4 3 ∗ 103 ≈ 2 hours

“general” for

apparent age
10−2 7.5 ∗ 103 ≈ 5 hours

“children” for

apparent age
10−3 103

≈ 40

minutes
Table 1. Training details.

contains 100 neurons corresponding to ages between 0 and

99 years old and sigmoid activations, while in “children”

CNNs, the output layer contains 13 neurons corresponding

to ages between 0 and 12 years old and a global softmax

activation. All CNNs are optimized by the gradient descent

with momentum of 0.9 using the mini-batches of 32 images

(other optimization details are given in Table 1). All CNNs

in this work have been trained using Caffe deep learning

framework [14] on the Tesla K40c GPU.

We use the 5-times data augmentation when fine-tuning

“general” and “children” CNNs for apparent age estimation

on the competition data. Apart from the original images,

we use their mirrored versions, randomly rotated versions

(the absolute rotation angle is no more than 5◦), randomly

shifted versions (the absolute shift length is no more than

5% of the image size) and randomly scaled versions (the

scaled size is between 95% and 105% of the original size).

5. Experiments

In this section, we present the results of our experiments

on the validation dataset of the competition illustrating the

impacts of certain design choices from Section 4 on the ap-

parent age estimation quality.

The experimental results on the validation dataset of the

competition are regrouped in Table 2.

In the first line of Table 2, we present the ǫ-score of the

model which has been trained for biological age estimation

on the “cleaned” IMDB-Wiki dataset. This score (0.3927) is

to be compared with the line 3 score (0.2986) which repre-

sents the performance of our model fine-tuned on the train-

ing dataset of the competition for the apparent age estima-

tion task. The large gap of almost 0.1 of ǫ-score (i.e. 24%)

between these 2 results clearly demonstrates the difference

between apparent and biological age estimations as well as

the importance of fine-tuning on the competition data.

Lines 2 and 3 of Table 2 highlight the impact of the qual-

ity of face detection and alignment on the competition re-

sults. Using the state-of-the-art open-source face detection

and face alignment solutions by [17] and [27] respectively

has allowed us to gain 0.01 of ǫ-score (i.e. 3%) with respect

to the older commercial solution based on [31] and [3].

The data augmentation during the fine-tuning for appar-
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Biological

age training

Apparent age

fine-tuning

Image

preprocessing

(face detection +

face alignment)

Data

augmentation

during apparent

age fine-tuning

Data

augmentation

during testing

Children

model

ǫ-

score

Yes No [17] + [27] No No No 0.3927

Yes Yes [31] + [3] No No No 0.3086

Yes Yes [17] + [27] No No No 0.2986

Yes Yes [17] + [27] Yes No No 0.2825

Yes Yes [17] + [27] Yes Yes No 0.2782

Yes Yes [17] + [27] Yes Yes Yes 0.2609

Table 2. Experimental results of a single model on the competition validation dataset.

ent age estimation (line 4 of Table 2) has proved to be very

efficient gaining us about 0.015 of ǫ-score (i.e. 5%) with re-

spect to fine-tuning without data augmentation. The data

augmentation during the test stage (as explained in Sec-

tion 4.2) has been efficient as well: the gain of about 0.005

in terms of ǫ-score i.e. 2% (line 5 of Table 2).

Finally, the last line of Table 2 proves the importance

of the accurate age estimation of children. Adding a sepa-

rate model for this age category has improved our validation

score by about 0.017 of ǫ-points (i.e. 6%).

6. Competition results

Position Team ǫ-score

1 OrangeLabs 0.2411

2 palm seu 0.3214

3 cmp+ETH 0.3361

4 WYU CVL 0.3405

5 ITU SiMiT 0.3668

6 Bogazici 0.3740

7 MIPAL SNU 0.4569

8 DeepAge 0.4573
Table 3. Final results of the second edition of the ChaLearn LAP

AAE competition.

The final results of the second edition of the ChaLearn

LAP AAE competition are presented in Table 3.

Our team (OrangeLabs) has won the 1st place largely

outperforming all other participants. Our final score on the

test dataset (ǫ = 0.2411) improved our best result obtained

on the validation dataset (ǫ = 0.2609) by about 0.02 of ǫ-

points (i.e. 8%). As in the solutions of the previous year’s

competition [21, 16, 32], we have experienced a signifi-

cant gain of performance due to merging of multiple models

which have been trained using cross-validation.

In Figure 5, we present some examples of apparent age

estimation by our solution on images from the competition

test dataset.

Figure 5. Apparent age estimation examples.

7. Conclusions and future work

In this work, we have presented our winning solution for

the second edition of the ChaLearn LAP AAE competition.

The starting point of our approach is the training pipeline

from the winning solution by [21] of the first edition of

the competition: firstly, training the VGG-16 CNN for bi-

ological age estimation and then fine-tuning it for apparent

age estimation. However, we have managed to improve the

previous year’s results by (1) using a separate age estima-

tion model for images of children between 0 and 12 years

old, (2) combining age encoding strategies: label distribu-

tion encoding for the “general” model and 0/1 classification

encoding for the “children” model, and (3) integrating the

state-of-the-art solution for face alignment by [27].

Our results are fully reproducible as we make the source

codes and the trained CNN models publicly available5.

Several works [11, 5] have shown the existence of certain

interdependency between different soft biometrics traits (as

age, gender and others) which has not been yet explored in

this work due to time constraints. This path will be studied

in our future work.

5Our final solution can be downloaded at https://cactus.

orange-labs.fr/apparent-age-estimation/

103

https://cactus.orange-labs.fr/apparent-age-estimation/
https://cactus.orange-labs.fr/apparent-age-estimation/


References

[1] Fg-net aging dataset. http://fipa.cs.kit.edu/

433_451.php.

[2] G. Antipov, S.-A. Berrani, and J.-L. Dugelay. Minimalistic

cnn-based ensemble model for gender prediction from face

images. Pattern Recognition Letters, 70:59–65, 2016.

[3] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Ku-

mar. Localizing parts of faces using a consensus of exem-

plars. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(12):2930–2940, 2013.

[4] B.-C. Chen, C.-S. Chen, and W. H. Hsu. Cross-age reference

coding for age-invariant face recognition and retrieval. In

Proceedings of European Conference on Computer Vision,

2014.

[5] A. Dantcheva, C. Velardo, A. Dangelo, and J.-L. Dugelay.

Bag of soft biometrics for person identification. Multimedia

Tools and Applications, 51(2):739–777, 2011.

[6] S. Escalera, J. Fabian, P. Pardo, X. Baro, J. Gonzalez, et al.

Chalearn looking at people 2015: Apparent age and cultural

event recognition datasets and results. In Proceedings of

IEEE International Conference on Computer Vision Work-

shops, 2015.

[7] S. Escalera, M. Torres, B. Martinez, X. Baro, H. J. Escalante,

et al. Chalearn looking at people and faces of the world: Face

analysis workshop and challenge 2016. In Proceedings of

IEEE conference on Computer Vision and Pattern Recogni-

tion Workshops, 2016.

[8] X. Geng, C. Yin, and Z.-H. Zhou. Facial age estimation by

learning from label distributions. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 35(10):2401–2412,

2013.

[9] X. Geng, Z.-H. Zhou, and K. Smith-Miles. Automatic age

estimation based on facial aging patterns. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 29(12):2234–

2240, 2007.

[10] G. Guo and G. Mu. Simultaneous dimensionality reduction

and human age estimation via kernel partial least squares re-

gression. In Proceedings of IEEE conference on Computer

Vision and Pattern Recognition, 2011.

[11] G. Guo and G. Mu. Human age estimation: What is the influ-

ence across race and gender? In Proceedings of IEEE con-

ference on Computer Vision and Pattern Recognition Work-

shops, 2015.

[12] G. Guo, G. Mu, Y. Fu, and T. S. Huang. Human age estima-

tion using bio-inspired features. In Proceedings of IEEE con-

ference on Computer Vision and Pattern Recognition, 2009.

[13] H. Han, C. Otto, and A. K. Jain. Age estimation from face

images: Human vs. machine performance. In Proceedings of

IEEE International Conference on Biometrics, 2013.

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, et al.

Caffe: Convolutional architecture for fast feature embed-

ding. CoRR, abs/1408.5093, 2014.

[15] Y. H. Kwon and N. da Vitoria Lobo. Age classification from

facial images. Computer Vision and Image Understanding,

74(1):1–21, 1999.

[16] X. Liu, S. Li, M. Kan, J. Zhang, S. Wu, et al. Agenet: Deeply

learned regressor and classifier for robust apparent age esti-

mation. In Proceedings of IEEE International Conference on

Computer Vision Workshops, 2015.

[17] M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool.

Face detection without bells and whistles. In Proceedings of

European Conference on Computer Vision, 2014.

[18] B. Ni, Z. Song, and S. Yan. Web image and video mining to-

wards universal and robust age estimator. IEEE Transactions

on Multimedia, 13(6):1217–1229, 2011.

[19] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face

recognition. In Proceedings of British Machine Vision Con-

ference, 2015.

[20] K. Ricanek Jr and T. Tesafaye. Morph: A longitudinal image

database of normal adult age-progression. In Proceedings of

IEEE conference on Automatic Face and Gesture Recogni-

tion, 2006.

[21] R. Rothe, R. Timofte, and L. V. Gool. Dex: Deep expecta-

tion of apparent age from a single image. In Proceedings of

IEEE International Conference on Computer Vision Work-

shops, 2015.

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, et al.

ImageNet Large Scale Visual Recognition Challenge. Inter-

national Journal of Computer Vision, 115(3):211–252, 2015.

[23] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[24] Y. Sun, X. Wang, and X. Tang. Deeply learned face repre-

sentations are sparse, selective, and robust. In Proceedings

of IEEE conference on Computer Vision and Pattern Recog-

nition, 2015.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, et al. Going

deeper with convolutions. In Proceedings of IEEE confer-

ence on Computer Vision and Pattern Recognition, 2015.

[26] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face verifica-

tion. In Proceedings of IEEE conference on Computer Vision

and Pattern Recognition, 2014.

[27] M. Uricár, V. Franc, D. Thomas, A. Sugimoto, and V. Hlavác.

Real-time multi-view facial landmark detector learned by the

structured output svm. In Proceedings of IEEE conference on

Automatic Face and Gesture Recognition, 2015.

[28] H.-F. Yang, L. B-Y, C. K-Y, and C. C-S. Automatic age es-

timation from face images via deep ranking. In Proceedings

of British Machine Vision Conference, 2015.

[29] D. Yi, Z. Lei, and S. Z. Li. Age estimation by multi-scale

convolutional network. In Proceedings of Asian Conference

on Computer Vision, 2014.

[30] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face represen-

tation from scratch. CoRR, abs/1411.7923, 2014.

[31] L. Zhang, R. Chu, S. Xiang, S. Liao, and S. Z. Li. Face detec-

tion based on multi-block lbp representation. In Proceedings

of IEEE International Conference on Biometrics, 2007.

[32] Y. Zhu, Y. Li, G. Mu, and G. Guo. A study on apparent age

estimation. In Proceedings of IEEE International Confer-

ence on Computer Vision Workshops, 2015.

104

http://fipa.cs.kit.edu/433_451.php
http://fipa.cs.kit.edu/433_451.php

