
Apparent Flexoelectricity due to

Heterogeneous Piezoelectricity

J. Yvonnet a,∗, X. Chen a,b, P. Sharma c

aUniv Gustave Eiffel, CNRS, MSME UMR 8208, F-77454 Marne-la-Vallée,
France

bKey Laboratory of Traffic Safety on Track, Ministry of Education, School of
Traffic & Transportation Engineering,Central South University, Changsha 410075,

China
cDepartment of Mechanical Engineering, Department of Physics, University of

Houston, Houston, TX, 77204

Abstract

Recent work has highlighted how the phenomenon of flexoelectricity can mas-
querade as piezoelectricity. This notion can not only be exploited to create artificial
piezoelectric-like materials without using piezoelectric materials, but may also ex-
plain measurement artifacts in dielectrics. In this article, we show that the reverse
is also possible and potentially advantageous in certain situations (such as energy
harvesting). By constructing a computational homogenization approach predicated
on the finite element method, we argue that composites made of piezoelectric phases
can conspire to endow the material with a distinct overall flexoelectric-like response
even though the native flexoelectricity of the constituent materials is negligible.
Full finite element procedures for numerical evaluation of the different effective ten-
sors, including the flexoelectric tensor, are provided. Numerical investigations are
conducted, showing variation of the effective flexoelectric properties with respect
to local geometry and properties of the composite in piezoelectric-piezoelectric and
polymer-piezoelectric composites. We find that the flexoelectric response can be
tuned to nearly five times higher than the constituents.
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1 Introduction

The ability of certain materials that can convert mechanical deformation into
electricity and vice-versa is a prized property with applications that are well
recorded in the vast literature on so-called “smart materials” [1, 2, 3, 4, 5, 6, 7,
8, 9, 10]. Piezoelectrics are the traditional material system that embody this
concept of electromechanical coupling and have found applications in energy
harvesting [11, 12], artificial muscles [13], sensors [14], actuators [15], robotics
among many others [16].

More recently, significant attention has been paid to another electromechani-
cal mechanism–flexoelectricity–which links strain gradients to electric fields 1

and electric field gradients to mechanical deformation [18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30]. This is in contrast to piezoelectrics which exhibit a
linear coupling between uniform strain and uniform electric fields. The follow-
ing comparison between the two phenomena is important to understand the
motivation underpinning our work:

(1) The advantage of flexoelectricity over piezoeletricity is that it is universal
and all dielectrics exhibit this phenomenon [27, 25]. This is in sharp con-
trast to piezoelectric materials that must possess a non-centrosymmetric
crystal structure and is thus is limited in nature to materials such as
quartz or ferroelectrics like barium titanate, lead zirconate titanate among
others.

(2) The price of the universality of flexoelectricity is that the electromechan-
ical coupling is rather weak. The intrinsic value of flexoelectric properties
for most dielectrics is such that unless extremely large strain gradients
are present (usually only possible for nanostructures or at the nanoscale),
the induced electric fields are small [25, 31].

(3) One of the most important applications of piezoelectricity is the prospects
of energy harvesting from mechanical motion [20, 26, 25, 32]. Flexure mo-
tion, in particular, is the most facile manner in which mechanical defor-
mation can be harvested into electrical energy. However, that said, simple
bending of piezoelectrics is not very efficient to generate electricity since
the compression on one side of the neutral axis produces electrical po-

1 Or alternatively to polarization gradients. Electrostatics offers a choice of multiple
independent variables and theories of electromechanical coupling can superficially
appear different based on this choice. We refer to the exposition by Liu [17] which
outlines this and other related aspects in detail
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larization that tends to counteract the polarization in the tensile portion
of the flexing element. A simple recourse is to use bimorphs–i.e. place-
ment of an inactive element that shift the neutral axis. Flexoelectricity,
if it were to be substantive, does not suffer from this handicap and is
perfectly suited to directly convert flexure motion into usable electricity
[33, 34, 35].

In hard ceramics such as BaTi03, the flexoelectric coefficients can be relatively
high [27], but the required local high strain gradient may be limited by the
high stiffness and brittle nature of these materials. To our knowledge, there
are very few such exceptional materials like BaTi03

2 . Two possible ways to
increase flexoelectricity is to consider electrets, i.e. to insert fixed charges in
the material [36, 35], or increase the local strain gradient by considering nanos-
tructures. In [35], Rahmati et al. [35] analyzed the behavior of electrets under
nonlinear bending and showed significant enhancement of flexoelectricity and
this notion was experimentally verified in [36].

Earlier works focused on exploiting flexoelectricity to design piezoelectric-like
materials without using piezoelectrics [37, 38]. A related notion is also of
how flexoelectricity could mimic piezoelectricity [39]. In this work we exam-
ine the reverse problem. Is it possible to use piezoelectrics to create a very
large flexoelectric response? As motivated earlier, if the flexoelectric response
is engineered to be substantive, energy harvesting can be made more efficient
especially for small scale structures. Accordingly in this work we consider the
use of architectured materials composed of heterogeneous piezoelectric phases
with an aim of achieving a large emergent flexoelectric response—one that
may effectively overshadow the materials native flexoelectricity. Indeed, it has
been shown in [40] that the recent progresses of material engineering and 3D
printing techniques allows designing heterogeneous piezoelectric structures or
materials with ”on-demand” microstructures.

It is germane here to mention several relevant papers. Guinovart-Sanjuan et
al. [41] used a two scale asymptotic homogenization method to derive the
homogenized flexoelectric behavior in 1D rods. In [42], the effective flexoelec-
tric and piezoelectric behavior of fiber-reinforced nanocomposites with local
flexoelectric fibers was derived using an analytical approach. In [43], a homog-
enization technique was developed to predict the apparent piezo and flexoelec-
tric properties for specific (pantographic) structures with flexoelectric pivots
and bars. In [44] Mohammadi et al. considered a heterogeneous membrane

2 Flexoelectricity in soft materials is also an actively studied subject [34, 35]. The
value of coupling is, like most hard dielectrics, also small although higher strain
gradients may be easily achieved
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and derived its homogenized flexoelectric behavior. In [45], the effective flex-
oelectricity was studied in inhomogeneous dielectrics using direct (local) cal-
culations on microstructures. As already indicated, emergent flexoelectricity
has also been explored with embedded charges in materials—both theoreti-
cally and experimentally [35, 36]. Another promising approach is the use of
topology optimization to design heterogeneous piezoelectric structures so as
to maximize the flexoelectric effects. In [46], Nanthakumar et al. developed
a topology optimization framework for heterogeneous piezoelectric structures
and demonstrated a significant enhancement in energy conversion. In [47], the
same authors extended this framework to multi materials.

In all mentioned works, either analytical homogenization methods or direct
numerical calculations on structures or microstructures were performed to an-
alyze their apparent properties [48]. Numerical formulations, i.e. finite element
formulations, can be found e.g. in [49, 50, 51] and more general approaches
that tackle computational electrostatics may be found in the following and ci-
tations therein [52, 53] . While numerical approaches using e.g. FEM of FFT
for homogenization of piezoelectric composites in absence of strain gradient is
well-known (see e.g.[54, 55]), a computational homogenization framework for
effective flexoelectric materials is so far not available. Such homogenization
framework is required to study and optimize the above-mentioned related ap-
plications without the need to solve the full heterogeneous structure, especially
when the ratio between the characteristic dimensions of the heterogeneities
and those of the structure is very small (separated scales).

In the present paper we achieve our goal of designing flexoelectricity by using
heterogeneous piezoeletric phases through the development of a computational
homogenization framework. Specifically, the effective behavior is defined as a
Mindlin strain gradient medium [56, 57] enriched with energetic terms asso-
ciated with the electro mechanical coupling corresponding to flexoelectricity.
A finite element procedure is described to compute the different homogenized
(effective) tensors on a Representative Volume Element (RVE), including the
full fourth-order flexoelectric tensor.

This paper is organized as follows. In section 2, the notations used in this
work are summarized. In section 3, the equations of the local piezoelectric
problem on the RVE are presented. The homogenized model and the method
to compute the effective tensors is presented in section 4. Finally, numerical
investigations are performed in section 5 to analyze the effective flexoelec-
tric behavior of piezoelectric composites, including polymer-piezoelectric and
piezoelectric-piezoelectric microstructures.
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2 Preliminary notations

Vectors and second-order tensors, as well as matrices, are denoted by bold
letters A. Third-order tensors are denoted by calligraphic uppercase letters G,
fourth-order, fifth-order and sixth-order tensors are denoted by double case
letters A. Double contraction of indices for second order tensors A and B
is denoted by A : B = AijBij, dot product for two vectors a and b by
a ·b = aibi, and simple contraction of indices for a second order tensor A and
a vector b is denoted by (A · b)i = Aijbj. For the purpose of this paper, we
introduce the triple contraction of indices for two third-order tensors G and

B as: G ... B = GijkBijk. The gradient operator is denoted by ∇(.) and the
divergence operator by ∇ · (.).

Let u the displacement vector and x a material coordinate, we define:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1)

and the third-order strain gradient tensor as:

(∇ε)ijk =
1

2

(
∂2ui
∂xj∂xk

+
∂2uj
∂xi∂xk

)
. (2)

The second gradient displacements (third-order) tensor is defined as

Gijk =
∂2ui
∂xj∂xk

. (3)

It can be shown (see [57, 58] that these two tensors are related by

Gijk = (∇ε)ijk + (∇ε)ikj − (∇ε)jki. (4)

Let φ be the electric potential, we define the electric field as:

Ei = − ∂φ
∂xi

. (5)

3 Micro RVE problem

We assume a periodic medium characterized by an RVE defined in a domain
Ω ⊂ R2 whose boundary is denoted by ∂Ω (see Fig. 1 (c)). The RVE is
assumed to be subjected to a homogeneous strain ε, a homogeneous strain
gradient ∇ε and a homogeneous electric field E. The RVE is characterized by

5



Fig. 1. (a) heterogeneous structure; (b) Equivalent piezo-flexoelectric homogeneous
structure; (c) RVE embedding local piezoelectric phases.

a size `. Within the RVE, the different phases are assumed to be locally linear
piezoelectric and characterized by fourth-order elastic tensors Ci, second-order
tensors of dielectric properties αi and third order tensors of piezoelectric prop-
erties E i, i = 1, 2, ..., N , with N the number of phases. The local equations are
defined as:

∇ · σ(x) = 0 in Ω, (6)

∇ · d = 0 in Ω, (7)

where d denotes the dielectric displacement, and σ is the Cauchy stress tensor
with:

σij(x) = Cijkl(x)εkl(x)− Ekij(x)Ek(x) (8)

and

di(x) = Eijk(x)εjk(x) + αij(x)Ej(x). (9)

Quadratic boundary conditions have been introduced in several works (see e.g.
[59, 60, 61]) to prescribe an effective strain gradient over the RVE:

u(x) = ε · x +
1

2
G : x⊗ x + ũ(x) on ∂Ω, (10)

where G depends on ∇ε according to (4) and ũ(x) is either zero or periodic on
∂Ω. We have shown in [58, 62] that such boundary conditions alone can induce
several issues such as spurious gradient terms and a non-convergence of the
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effective higher order effective coefficients with respect to the RVE size. In [58],
we have introduced body forces in addition to the above quadratic boundary
conditions as an ingredient to remove the above mentioned spurious effects.
The body forces are such that when the RVE is homogeneous, the local strain
field is strictly linear. In this work, we extend this idea to the coupled electro-
mechanical problem. Then, for a linear strain field ∇ε · x in the RVE with
constant local properties C0 and E0, Eqs. (6) and (7) together with (8) and
(9) lead to

σij,j = C0
ijkl

(
∇ε
)
klj
, (11)

di,i = E0
pjk

(
∇ε
)
jkp
. (12)

Choosing C0 = C and E0 = E as the effective elastic and piezoelectric tensor
guarantees that when the material is homogeneous, the local properties go to
constant values equal to the local material properties. The definition of C and
E is provided in section 4.2. Then, an alternative local problem is defined as:

∇ · σ (u(x)) = f(∇ε) ∀x ∈ Ω, (13)

∇ · d(x) = r(∇ε) ∀x ∈ Ω, (14)

where

fi = Cijkl
(
∇ε
)
klj

(15)

r = E ijk
(
∇ε
)
jki
. (16)

The effective electric field can be prescribed using boundary conditions in the
form (see e.g. [63]):

φ(x) = −E · x + φ̃(x) on ∂Ω, (17)

where φ̃(x) is either zero or a periodic fluctuation over Ω. To summarize, we
define the localization problem to be solved on the RVE as follows:
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Given ε, ∇ε and E , find ε(x) and φ(x) such that:

∇ · σ (u(x)) = f(∇ε) ∀x ∈ Ω, (18)

where f is given by (15),

∇ · d(x) = r(∇ε) ∀x ∈ Ω, (19)

where r is given in (16),

σ (x) = C(x) : ε(x)− ET (x) · E, (20)

d(x) = E(x) : ε(x) +α(x) · E (21)

and subjected to:

u(x) =
1

2
G : x⊗ x + ε · x + ũ(x) on ∂Ω, (22)

φ(x) = −E · x + φ̃(x) on ∂Ω. (23)

Problem (18)-(23) can be solved classically by FEM (see e.g. [63]). For the
self-completeness of the paper, we have introduced the details in Appendix 8.
In this paper, we restrict the boundary conditions to purely quadratic ones,
i.e. ũ(x) = 0, φ̃(x) = 0. In [58] and [62], we have discussed the link between the
above quadratic boundary conditions and asymptotic expansion homogeniza-
tion techniques in the context of purely mechanical strain gradient problems.
Even though extensions are required, the same ideas can be applied in the
context of electromechanical coupling.

4 Effective piezo-flexoelectric model

In this section, the effective piezo-flexoelectric model is provided, and the
definition of its different tensors is provided from the RVE micro problem
solutions.

4.1 Macroscopic model

We introduce the energy density function (electrical enthalpy density) of an
effective piezo-flexo electric material as composed to classical terms related to
piezoelectric materials, terms of a Mindlin strain gradient model [56, 57], as
well as a term coupling strain gradient and electric current (see e.g. [64]):

W =
1

2
ε : C : ε− E · E : ε− 1

2
E ·α · E
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+E · F ... ∇ε+ ε : M ... ∇ε+
1

2
∇ε ... G ... ∇ε, (24)

where C denotes the fourth-order effective elastic tensor, α is the second-order
effective dielectric tensor, E is the third-order effective piezoelectric tensor, F
is a fourth-order flexoelectric tensor coupling electric field and strain gradient,
M is a fifth-order tensor coupling first and second order strains, and G is the
sixth-order strain gradient elasticity tensor. Note that in the above model, and
in contrast to [64], we neglected the terms involving electric current gradient
for the sake of simplicity. However, the present procedure could be extended to
evaluating the terms associated to the electric field gradient in future studies.

Assuming only perfect interfaces between phases, the effective strain and elec-
tric fields are classically defined as:

ε = 〈ε(x)〉 , E = 〈E(x)〉 , ∇ε = 〈∇ε(x)〉 . (25)

It has been shown in several works (see e.g. [65, 66]) that using quadratic
boundary conditions as in section 3, the relation ∇ε = 〈∇ε(x)〉 does not
hold. Some attempts have been made to correct this point, such as in [66].
In the present work, we do not intend to satisfy this relationship exactly and
only consider the definition of ∇ε as an applied macroscopic quantity defined
through the boundary conditions (22) and body forces in (18) and (19). This
point could be improved in future studies.

Then the effective stress tensor σ, effective electric displacement d and effec-
tive hyperstress tensor S are defined, respectively, by:

d = −∂W
∂E

= E : ε+α · E− F ... ∇ε (26)

σ =
∂W

∂ε
= C : ε− ET · E + M ... ∇ε, (27)

S =
∂W

∂∇ε
= MT

: ε+ FT · E + G ... ∇ε (28)

where
(
FT · E

)
i

= FijklEi.

Let Ω ⊂ R2 a domain associated with the homogeneous strain gradient medium
and ∂Ω its boundary (see Fig. 1 (c)), balance equations are given by (see e.g.
[56]):

∇ · σ −∇ ·
(
∇ · S

)
= 0 in Ω, (29)

∇ · d = 0 in Ω (30)
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with boundary conditions:

u = u∗ on ∂Ωu, (31)

σ · n−
(
∇ · S

)
· n− F

∗
= 0 on ∂ΩF , (32)

S · n⊗ n = 0 on ∂Ω, (33)

(see e.g. [17] for a justification), and where ∂Ωu and ∂ΩF are the Dirichlet and
Neumann parts of the boundary ∂Ω, and:

φ = φ
∗

on ∂Ωφ, (34)

d · n = d
∗
n on ∂Ωd, (35)

where ∂Ωφ and ∂Ωd are the Dirichlet and Neumann parts of the boundary ∂Ω
for the dielectric problem. This problem can be solved with appropriate C1

finite elements discretizations (see e.g. [51, 67]).

4.2 Definition of effective tensors

The problem (18)-(23) being linear, using the superposition principle, the local
strain field ε(x) and local electric fields E(x) can be expressed as:

ε(x) = A0(x) : ε+ B0(x) · E + A1(x)
... ∇ε, (36)

E(x) = D0(x) : ε+ h0(x) · E + D1(x)
... ∇ε, (37)

where:

• A0
ijkl(x) is the strain solution εij(x) solution of (18)-(23) with ε = 1

2
(ek ⊗ el + el ⊗ ek),

E = 0, ∇ε = 0.
• B0

ijk(x) is the strain solution εij(x) solution of (18)-(23) with ε = 0, E = ek,

∇ε = 0.
• A1

ijkl(x) is the strain solution εij(x) solution of (18)-(23) with ε = 0, E = 0,

∇ε = 1
2

(ek ⊗ el + el ⊗ ek)⊗ em.
• D0

ijk(x) is the electric field solution Ei(x) solution of (18)-(23) with ε =
1
2

(ej ⊗ ek + ek ⊗ ej), E = 0, ∇ε = 0.
• h0

ij(x) is the electric field solution Ei(x) solution of (18)-(23) with ε = 0,

E = ej, ∇ε = 0.
• D1

ijkl(x) is the electric field solution Ei(x) solution of (18)-(23) with ε = 0,

E = 0, ∇ε = 1
2

(ej ⊗ ek + ek ⊗ ej)⊗ el,
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where ei are unitary basis vectors. In [58], we have introduced a correction on
the localization operators associated with the strain gradient tensor to separate
purely strain gradient effects and other loads, and which has been shown also
as a second ingredient to remove spurious strain gradient remaining effects in
a homogeneous medium. Following [58], we introduce a corrected expression
of the localized fields as:

ε(x) = A0(x) : ε+ B0(x) · E + Ã1(x)
... ∇ε, (38)

E(x) = D0(x) : ε+ h0(x) · E + D̃1(x)
... ∇ε, (39)

with

Ã1(x) = A1(x)− A0(x)⊗ x (40)

and

D̃1(x) = D1(x)−D0(x)⊗ x. (41)

Computing the effective energy of the system:

W =
1

2
〈ε(x) : C(x) : ε(x)〉 − 〈E(x) · E(x) : ε(x)〉

−1

2
〈E(x) ·α(x) · E(x)〉 , (42)

introducing (38) in (39) in (42) and comparing the different terms of the re-
sulting equation with (24), we obtain, after some calculations:

C =
〈(

A0(x)
)T

: C(x) : A0(x)

−2
(
D0(x)

)T
· E(x) : A0(x)−

(
D0(x)

)T
·α(x) · D0(x)

〉
, (43)

α =
〈
−
(
B0(x)

)T
: C(x) : B0(x)

+2
(
h0(x)

)T
· E(x) : B0(x) +

(
h0(x)

)T
·α(x) · h0(x)

〉
, (44)
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G =
〈(

Ã1(x)
)T

: C(x) : Ã1(x)

−2
(
D̃1(x)

)T
· E(x) : Ã1(x)−

(
D̃1(x)

)T
·α(x) · D̃1(x)

〉
, (45)

E =
〈
−
(
B0(x)

)T
: C(x) : A0(x) +

(
h0(x)

)T
· E(x) : A0(x)

+
(
B0(x)

)T
: E(x) · D0(x) +

(
h0(x)

)T
·α(x) · D0(x)

〉
, (46)

F =
〈(
B0(x)

)T
: C(x) : Ã1(x)−

(
h0(x)

)T
· E(x) : Ã1(x)

−
(
B0(x)

)T
: ET (x) · D̃1(x)−

(
h0(x)

)T
·α(x) · D̃1(x)

〉
, (47)

M =
〈(

A0(x)
)T

: C(x) : Ã1(x)−
(
D0(x)

)T
· E(x) : Ã1(x)

−
(
A0(x)

)T
: ET (x) · D̃1(x)−

(
D0(x)

)T
·α(x) · D̃1(x)

〉
. (48)

4.3 Vector and matrix forms of effective tensors

In this work, we only consider composites with infinitely long parallel fibers.
Then, we consider 2D plane strain conditions. In this case, the 2D vector and
matrix forms of the different tensors are provided in what follows. The vector
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form associated with the nonsymmetric components of ∇ε can be written as:

[
∇ε

]
=



(
∇ε
)

111(
∇ε
)

221

2
(
∇ε
)

122(
∇ε
)

222(
∇ε
)

112

2
(
∇ε
)

121


=



∂2u1
∂x21

∂2u2
∂x1∂x2

∂2u1
∂x22

+ ∂2u2
∂x1∂x2

∂2u2
∂x22

∂2u1
∂x1∂x2

∂2u1
∂x1∂x2

+ ∂2u2
∂x21


. (49)

We then introduce the vector containing the components of the hyperstress
tensor S as:

[
S
]

=



S111

S221

S122

S222

S112

S121


. (50)

In matrix form, the constitutive equations (26), (27), and (28) are given by:

[d] = [E ]T [ε] + [α]E− [F][∇ε], (51)

[σ] = [C][ε]−
[
E
]
E + [M][∇ε], (52)

[
S
]

= [M]
T

[ε] + [F]
T
E + [G][∇ε], (53)

where [d] is a column vector, and

[α] =

α11 α12

α12 α22

 , (54)

[C] =


C1111 C1122 C1112

C1122 C2222 C2212

C1112 C2212 C1212

 , (55)
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[E ] =


E111 E211

E122 E222

E112 E212

 , (56)

[F] =

F 1111 F 1221 F 1122 F 1222 F 1112 F 1121

F 2111 F 2221 F 2122 F 2222 F 2112 F 2121

 , (57)

[M] =


M11111 M11221 M11122 M11222 M11112 M11121

M22111 M22221 M22122 M22222 M22112 M22121

M12111 M12221 M12122 M12222 M12112 M12121

 , (58)

and

[G] =



G111111 G111221 G111122 G111222 G111112 G111121

G221221 G221122 G221222 G221112 G221121

G122122 G122222 G122112 G122121

G222222 G222112 G222121

Sym. G112112 G112121

G121121


, (59)

where we have taken into account the symmetries of these tensors, which are
expressed as:

E ijk = E ikj, Fijkl = Fikjl, (60)

Cijkl = Cklij = Cjikl = Cijlk, (61)

Gijklmp = Glmpijk = Gjiklmp = Gijkmlp, (62)

Mijklm = Mjiklm = Mijlkm. (63)
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5 Numerical investigation

5.1 Composite with piezoelectric phases

In this first example, we investigate the effective flexoelectric properties of a
two-phase periodic composite whose phase are both made of piezoelectric ma-
terials. The representative Volume Elements (RVE) are composed of periodic
unit cells. Two geometries are investigated: one with triangular inclusions (Fig.
2(a)) and one with a fully asymmetric geometry as depicted in Fig. 2(b). Both
geometries are chosen to limit the number of symmetries to increase the gradi-
ent effects. We assume that both phase are made with the same piezoelectric
material but that there is a rotation mismatch between the main directions
of the crystal in phases 1 and 2 by an angle θ, which creates a material het-
erogeneity as the different mechanical, dielectric and piezoelectric tensors are
assumed to be fully anisotropic.

A

B

C

D

EC

A

B

(a) (b)

0 0

1

2

q
2

q

1

Fig. 2. (a) unit cell with triangular inclusions; (b) asymmetric unit cell.

The geometric description of the different unit cells is provided below. For
the unit cell with triangular inclusions (Fig. 2 (a)), A = {−a`; a`} , B =
{a`; 0} , C = {−a`;−a`} . For the unit with asymmetric inclusions (Fig.
2 (b)), A = {−b`; b`} , B = {b`; b`} , C = {b`; 0} , D = {0; 0} , E =
{−b`;−b`}., with a =

√
0.8`/2 and b = 0.4`. The parameter a is chosen

such that both unit cells correspond to the same volume fraction f = 0.4.
Then, the RVE is assumed to be made of N ×N unit cells. Unless otherwise
specified, the length of the RVE is chosen as L = N`, with ` = 1 mm.

The inclusions (material 2 in Fig. 2) are made of a transversely anisotropic
ceramic (lead zirconium titanate - PZT) whose parameters are given in 2D,
and for an orientation of the piezoelectric crystal main direction along x1, by
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[68]:

[C1] =


131.39 83.237 0

83.237 154.837 0

0 0 35.8

 (GPa), (64)

[E1] =

−2.120582 −2.120582 0

0 0 0

 (C.m−2) (65)

[α1] =

 2.079 0

0 4.065

 (nC.m−1.V−1). (66)

Then, the properties of phase 2 (inclusion) are defined with respect to the
angle θ according to:

α2
ij = RipRjqα

1
pq, (67)

E2
ijk = RipRjqRkrE1

pqr, (68)

C2
ijkl = RipRjqRkrRlsC1

pqrs, (69)

where R is a rotation matrix defined by:

R =

 cos(θ) −sin(θ)

sin(θ) cos(θ)

 . (70)

Examples of deformed configurations corresponding to the elementary loads
are depicted in Fig. 3.

We first investigate the convergence of the effective flexoelectric properties
with respect to the number of unit cells N along each direction in the RVE.
The triangular unit cell (Fig. 2 (a)) is chosen here. Results for the components
F1221 and F2112 are provided in Fig. 4. In this case, we have chosen θ = π. We
can appreciate a quick convergence with respect to N .

Next, we compute the evolution of some components of F with respect to
the mismatch angle θ for both triangular and asymmetric unit cells. We only
depict the coefficients F1221, F2221, F1112 and F2112. These coefficients represent
the polarization induced by bending, while the other coefficients are associated
with polarization induced by more complex strain gradient modes, difficult to
obtain practically.
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j) (k)

Fig. 3. d2(x) electric displacement field in deformed (×0.2) configurations for RVE
with triangular inclusions: (a) [ε] = [1; 0; 0], ∇ε = 0, E = 0; (b) [ε] = [0; 1; 0],
∇ε = 0, E = 0; (c) [ε] = [0; 0; 1/2], ∇ε = 0, E = 0; (d) [ε] = 0, ∇ε = 0,
[E] = [1; 0]; (e) [ε] = 0, ∇ε = 0, [E] = [0; 1]; (f) [ε] = 0, ∇ε = [1; 0; 0; 0; 0; 0],
E = 0; (g) [ε] = 0, ∇ε = [0; 1; 0; 0; 0; 0], E = 0; (h) [ε] = 0, ∇ε = [0; 0; 1; 0; 0; 0],
E = 0; (i) [ε] = 0, ∇ε = [0; 0; 0; 1; 0; 0], E = 0; (j) [ε] = 0, ∇ε = [0; 0; 0; 0; 1; 0],
E = 0; (k) [ε] = 0, ∇ε = [0; 0; 0; 0; 0; 1], E = 0.

From Fig. 5 (triangular unit cell), we can first note that when θ = 0 (homo-
geneous medium), the flexoelectric effects vanish as expected. A maximum of
the components F1221 and F2112 is found in this case for θ = π, where both
crystal phases are in the same direction but coefficients have opposite signs.
The other components (F2221 and F1112) have very small values as compared
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Fig. 4. Convergence of effective flexoelectric properties with the number of unit cells
in the RVE.

to F1221 and F2112 and exhibit local minima.

In Fig. 6 (assymmetric unit cell), we can note that in this case the compo-
nents F1221 and F2112 have two extrema with a maximum value for F1221 at
approximatively θ ' 1.2π.

Comparing both case, we can see that the maximum value of the coefficient
F2112, which corresponds to the variation of polarization in the direction x2

with respect to bending around an out of plane axis x3 (Fig. 3 (j)) is larger
for the triangular inclusion (0.124 ×10−3 C.m−1 as compared to (0.090 ×10−3

C.m−1 for the assymmetric case). Then we show that choosing appropriately
direction mismatch between crystal directions and shapes, important increase
of flexoelectric effects can be achieved. It is also worth noting that the obtained
values are quite high as compared to naturally flexoelectric materials such as
BaTiO3 whose flexoelectric coefficients are of the order of 10−5 C.m−1.

5.2 Piezoelectric-elastic composite

Next, a composite whose matrix is made of a piezoelectric material and an
elastic inclusion is considered. The same geometries than in the previous ex-
ample are considered (triangular shape, Fig. 2 (a)) and asymmetric geometry,
Fig. 2 (b)). The material parameters of the matrix are the same as in the
previous example (Eqs. (64), (65), (66)). The properties of the inclusions are
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Fig. 5. Evolution of effective flexoelectric components with respect to the mismatch
angle θ for the RVE with triangular inclusions.
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Fig. 6. Evolution of effective flexoelectric components with respect to the mismatch
angle θ for the RVE with asymmetric inclusions.

here assumed to be linear isotropic elastic:

[C2] =


λi + 2µi λi 0

λi λi + 2µi 0

0 0 µi

 (GPa), (71)

[E2] =

 0 0 0

0 0 0

 (C.m−2) (72)
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[α2] =

αi 0

0 αi

 (nC.m−1.V−1). (73)

with λi and µi the Lamé’s parameters related to the Young’s modulus and
Poisson’s ratio through λi = Eiνi/((1 + νi)(1 − 2νi)), µi = Ei/(2(1 + νi)),
and αi is an isotropic dielectric coefficient. We first investigate the effect of
varying the elastic modulus of the inclusion for a fixed Poisson’s ratio νi = 0.4
and αi = 3.72 × 10−2 nC.m−1.V−1. Computations are conducted using 4 × 4
cells. Results are presented in Figs. 7 and 8 for the triangular and asymmetric
shape, respectively. Surprisingly, the evolution of the effective coefficients is
not monotonous and exhibit local extrema.
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Fig. 7. Evolution of effective flexoelectric components with respect to the Young
modulus of the inclusion for the RVE with triangular inclusions.
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Fig. 8. Evolution of effective flexoelectric components with respect to the Young
modulus of the inclusion for the RVE with asymmetric inclusions.
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Finally, we now evaluate the effect of varying the dielectric coefficient αi for
a fixed value Ei = 102 GPa, νi = 0.4. Results are depicted in Figs. 9 and 10,
exhibiting again non monotonous evolution of the flexoelectric coefficients with
respect to the dielectric properties of the inclusion. Such complex evolutions
show that such computational homogenization method could be used in future
studies as a tool to optimize the effective flexoelectric properties of composite
with respect to geometry and properties of phases.
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Fig. 9. Evolution of effective flexoelectric components with respect to dielectric
properties the inclusion for the RVE with triangular inclusions.
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Fig. 10. Evolution of effective flexoelectric components with respect to dielectric
properties of the inclusion for the RVE with asymmetric inclusions.
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6 Concluding Remarks

There are several instances of physical significance where we may prefer a
flexoelectric response as opposed to piezoelectricity. In this work, we put con-
crete ideas on how to obtain a large effective flexoelectric response by creat-
ing composites constructed from piezoelectric phases. The constituents may
exhibit negligible flexoelectricity. Specifically we have proposed a computa-
tional framework for estimating the effective linear flexoeletric behavior of
such piezoelectric composites. As opposed to prior work, the present method
allows evaluation of the full anisotropic flexoelectric tensor, by means of finite
element numerical calculations over Representative Volume Elements (RVE),
and then for arbitrary local geometries of phases. A corrected scheme has
been proposed to remove spurious effects of previous strain gradient numer-
ical homogenization schemes. Numerical investigations have been conducted
to evaluate the evolution of flexoelectric coefficients with respect to local ma-
terial properties and geometry of the composite phases, showing the potential
of the approach for future optimization-based design of efficient flexoelectric
systems and concomitant applications in fields such as energy harvesting.
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7 Appendix: Numerical evaluation of effective tensors

The discrete form associated with (38) and (39) is given by:

[ε(x)] = A0(x)[ε] + B0(x)E + Ã1(x)
[
∇ε

]
(74)

E(x) = D0(x)[ε] + h0(x)E + D̃1
[
∇ε

]
(75)

with

Ã1(x) = A1(x)−A0
x(x) (76)

D̃1(x) = D1(x)−D0
x(x). (77)

Before defining the different above matrices, we introduce the matrices:

Uu =
[
u1; u2; u3

]
; Vu =

[
u4; u5

]
; Wu =

[
u6; u7; u8; u9; u10; u11

]
(78)

where u1, u2, and u3 are the respective vector columns containing the nodal
displacement solution of the problem (18)-(23) with ε11 = 1, all other strain
components to zero, E = 0, ∇ε = 0, ε22 = 1, all other strain components
to zero, E = 0, ∇ε = 0, ε12 = 1/2, all other strain components to zero,
E = 0, ∇ε = 0, u4, u5 are respectively the vector columns containing the
nodal displacement solution of the problem (18)-(23) with E1 = 1, all other
electric field components to zero, ε = 0, ∇ε = 0, E2 = 1, all other electric
field components to zero, ε = 0, ∇ε = 0, and u6, u7, u8,u9, u10, u11 are the
respective vector columns containing the nodal displacement solution of the
problem (18)-(23) with ∇ε111 = 1, all other components of the strain gradient
tensor to zero, ε = 0, E = 0, ∇ε221 = 1, all other components of the strain
gradient tensor to zero, ε = 0, E = 0, ∇ε121 = 1, all other components of the
strain gradient tensor to zero, ε = 0, E = 0, ∇ε222 = 1, all other components
of the strain gradient tensor to zero, ε = 0, E = 0, ∇ε112 = 1, all other
components of the strain gradient tensor to zero, ε = 0, E = 0, ∇ε121 = 1, all
other components of the strain gradient tensor to zero, ε = 0, E = 0.
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Furthermore, we define:

Uφ =
[
φ1;φ2;φ3

]
; Vφ =

[
φ4;φ5

]
; Wφ =

[
φ6;φ7;φ8;φ9;φ10;φ11

]
(79)

where φ1, φ2, φ3 are the respective vector columns containing the nodal elec-
tric potentials solution of the problem (18)-(23) with ε11 = 1, all other strain
components to zero, E = 0, ∇ε = 0, ε22 = 1, all other strain components to
zero, E = 0, ∇ε = 0, ε12 = 1/2, all other strain components to zero, E = 0,
∇ε = 0, φ4, φ5 are respective the vector columns containing the nodal electric
potentials solution of the problem (18)-(23) with E1 = 1, all other electric field
components to zero, ε = 0, ∇ε = 0, E2 = 1, all other electric field compo-
nents to zero, ε = 0, ∇ε = 0, and φ6, φ7, φ8,φ9, φ10, u11 are the respective
vector columns containing the nodal electric potentials solution of the problem
(18)-(23) with ∇ε111 = 1, all other components of the strain gradient tensor
to zero, ε = 0, E = 0, ∇ε221 = 1, all other components of the strain gradient
tensor to zero, ε = 0, E = 0, ∇ε122 = 1, all other components of the strain
gradient tensor to zero, ε = 0, E = 0, ∇ε222 = 1, all other components of the
strain gradient tensor to zero, ε = 0, E = 0, ∇ε112 = 1, all other components
of the strain gradient tensor to zero, ε = 0, E = 0, ∇ε121 = 1, all other
components of the strain gradient tensor to zero, ε = 0, E = 0.

Using the above definitions, we set:

A0(x) = B(x)Uu (80)

B0(x) = B(x)Vu (81)

A1(x) = B(x)Wu (82)

A0
x(x) = B(x)Wx

u (83)

with

Wx
u(x) =

[
x× u1; y × u1;x× u2; y × u2;x× u3; y × u3

]
(84)

and

D0(x) = −Bφ(x)Uφ (85)

h0(x) = −Bφ(x)Vφ (86)

D1(x) = −Bφ(x)Wφ (87)

D0
x(x) = −Bφ(x)Wx

φ (88)
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with

Wx
φ(x) =

[
x× φ1; y × φ1;x× φ2; y × φ2;x× φ3; y × φ3

]
. (89)

Introducing (74) and (75) in (4.2)-(48) we obtain:

[C] =
〈(

A0
)T

[C]A0(x)− 2
(
D0
)T

[E ]A0 −
(
D0
)T

[α]D0
〉

[α] =
〈
−
(
B0
)T

[C]B0 + 2
(
h0
)T

[E ]B0 +
(
h0
)T

[α][h0]
〉

[G] =
〈(

Ã1
)T

CÃ1 − 2
(
D̃1
)T

[E ]Ã1 −
(
D̃1
)T

[α]D̃1
〉

[E ] =
〈
−
(
B0
)T

[C]A0 +
(
h0
)T

[E ]A0 +
(
B0
)T

[E ]D0 +
(
h0
)T

[α]D0
〉

[F] =
〈(

B0
)T

[C]Ã1 −
(
h0
)T

[E ]Ã1 −
(
B0
)T

[E ]T D̃1 −
(
h0
)T

[α]D̃1
〉

[M] =
〈(

A0
)T

[C]Ã1 −
(
D0
)T

[E ]Ã1 −
(
A0
)T

[E ]D̃1 −
(
D0
)T

[α]D̃1
〉
,

where we have omitted the dependence to x to alleviate the notations.
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8 Appendix: FEM discretization of local RVE equations

In this section we introduce the weak form and the FEM discretization for
piezoelectricity in 2D. The weak form associated with the coupled problem
(18)-(19) is given by:

∫
Ω

D · ∇(δφ)dΩ = −
∫

Ω

{
E : ∇εx

}
· ∇(δφ) dΩ, (90)

∫
Ω
σ : ε(δu)dΩ =

∫
Ω
∇ ·

{
C : ∇εx

}
ε(δu)dΩ. (91)

Introducing (9) and (8) in (90)-(91) yields:

∫
Ω

(E : ε(u) +α · E(φ)) · ∇(δφ)dΩ = −
∫

Ω

{
E : ∇εx

}
· ∇(δφ) dΩ, (92)

∫
Ω

(
C : ε(u)− ET · E(φ)

)
: ε(δu)dΩ =

∫
Ω
∇ ·

{
C : ∇εx

}
: ε(δu)dΩ. (93)

Introducing classical FEM discretization in (92)-(93) we obtain the linear sys-
tem of coupled equations:

Kφφ Kφu

−KT
φu Kuu


φe

ue

 =

Fφ

Fu

 , (94)

with

Kφφ =
∫

Ω
(Bφ)T [α]BφdΩ, (95)

Kφu =
∫

Ω
(Bφ)T [E ]BdΩ, (96)

Kuu =
∫

Ω
(B)T [C]BdΩ,

where Bφ with and B are shape function derivatives such that ∇(φ) = Bφφ
e

and [ε] = Bue, where φe and ue denote nodal potential and displacement
vectors, respectively, and [ε] denotes the vector form od the strain tensor ε.

Fφ = −
∫

Ω
(Bφ)T [E ][η] (97)

Fu =
∫

Ω
BT [C][η] (98)
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and

[η] =


∇ε111x1 +∇ε112x2

∇ε221x1 +∇ε222x2

∇ε121x1 +∇ε122x2

 . (99)

31


