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Abstract
This paper presents a quick and simple method for converting complex images and video to perceptually accurate
greyscale versions. We use a two-step approach first to globally assign grey values and determine colour ordering,
then second, to locally enhance the greyscale to reproduce the original contrast. Our global mapping is image
independent and incorporates the Helmholtz-Kohlrausch colour appearance effect for predicting differences be-
tween isoluminant colours. Our multiscale local contrast enhancement reintroduces lost discontinuities only in
regions that insufficiently represent original chromatic contrast. All operations are restricted so that they preserve
the overall image appearance, lightness range and differences, colour ordering, and spatial details, resulting in
perceptually accurate achromatic reproductions of the colour original.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display Algorithms

1. Introduction

The basic problem of greyscale transformation is to repro-
duce the intent of the colour original, its contrasts and salient
features, while preserving the perceived magnitude and di-
rection of its gradients. The transformation consists of two
interdependent tasks: a mapping that assigns a grey value to
each pixel or colour, and a discriminability constraint so that
the achromatic differences match their corresponding orig-
inal colour differences. Recent approaches solve discrim-
inability constraints to determine the grey values, produc-
ing images in which the original colour contrasts are highly
discriminable. However, the greyscale images may exhibit
exaggerated dynamic range, an arbitrary achromatic order
that differs among colour palettes, and a smoothing or mask-
ing of details. These modifications all contribute to make the
grey version appear dissimilar from its original and create
inconsistency among like images and video frames.

The goal of this work is to create a perceptually accurate ver-
sion of the colour image that represents its psychophysical
effect on a viewer. Such greyscale imagery is important for
printed textbooks and catalogues, the stylization of videos
and for display on monochromatic medical displays. A per-
ceptually accurate image is one that emulates both global
and local impressions: it matches the original values’ range
and average luminance, its local contrasts are neither ex-

aggerated nor understated, its grey values are ordered ac-
cording to colour appearance and differences in spatial de-
tails are imperceptible. Strong perceptual similarity is par-
ticularly important for consistency over varying palettes and
temporal coherence for animations.

We present a new two-step greyscale transformation that
combines a global mapping based on perceived lightness
with a local chromatic contrast enhancement. Our simple
algorithm yields comparable images to more complex ap-
proaches, and its linear runtime makes it suited to video
processing and accelerated graphics hardware implemen-
tations. First, the grey values are mapped pixelwise from
each colour’s apparent lightness, resulting in the reproduc-
tion of the original contrast and gradients. Second, the gra-
dient magnitudes are measured in perceptual difference ∆E
and adjusted to maintain or improve discriminability with
our multiscale chromatic contrast enhancement filter. This
twofold approach mimics aspects of the human visual sys-
tem, which processes global attributes while simultaneously
depending on local contrasts such as edges and surrounds.

We choose lightness as the quantity for the grey values (and
thus their ordering) because it is the achromatic response to
a colour stimulus, measuring how bright a colour appears
compared to an equally bright white. Colour studies show
that lightness depends largely on luminance, but that colour-
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fulness also contributes, as characterized by the Helmholtz-
Kohlrausch effect (H-K); a colourful stimulus appears more
light than a similar less colourful sample. The H-K effect has
been identified as an important factor in greyscale mapping,
and although it has been used for clipart greyscale map-
ping [BB04], no existing greyscale conversion for complex
images explicitly takes it into account. Our global appar-
ent lightness mapping is independent of the original colour
palette, incorporates the H-K effect so is sensitive to small
differences even between isoluminant colours, and yields
perceptually accurate gradient directions and an appropriate
dynamic range.

The mapping from a 3D to 1D colour space reduces the over-
all difference between colours, jeopardizing discriminabil-
ity. We are not too sensitive to this loss when it occurs be-
tween spatially distant colours, but with adjacent colours it
is immediately apparent, especially if an original contrast
becomes imperceptible. To solve this problem, we enhance
local contrast until its magnitude emulates that in the origi-
nal. The enhancement restores chromatic differences with-
out overemphasizing luminance differences by adaptively
increasing weak contrasts. Furthermore, the process is re-
stricted so that the polarity over edges, overall lightness and
colour ordering are preserved, thus maintaining perceptual
accuracy.

We begin by describing other greyscale conversion tech-
niques and highlighting their effects on perceptual accuracy.
Then, in Section 3, we give a background on colour ap-
pearance models, compare H-K predictors and determine the
best suited to greyscale conversion. In Sections 4 and 5, we
present our global-local technique to solve greyscale con-
version. In Section 6, we compare the results of our tech-
nique to other standard results to accentuate the perceptual
aspects that are more accurately preserved, and demonstrate
our technique’s ability on various input types. Finally, we
conclude by discussing the implications of our findings, fu-
ture work and other possible applications.

2. Related Work

There are a variety of printing and display solutions catered
to the conversion of images from colour to greyscale. The
most straightforward conversion maps a colour to an equi-
luminant grey value, by desaturation or by picking a single
colour channel to mimic the effect of a colour filter.

In their short paper studying chromatic contrast for greyscale
conversion, Bala et al. [BE04] take a spatial approach
and introduce color contrasts in CIELAB LCH (lightness,
chroma, hue angle) by adding the high-pass filtered chroma
channel to the lightness channel. To prevent overshooting
in already bright areas, this correction signal is locally ad-
justed and its sign is taken from the lightness contrast. The
algorithm is susceptible to problems in chroma and light-
ness misalignment. Taking a local adaptive approach, Bala et

al. [BB04] propose a mapping method for business graph-
ics. The distinct colours of the image are sorted according
to a simplified lightness predictor that incorporates the H-K
effect. To maximize discriminability, adjacent pairs of light-
ness values are then respaced according to their relative color
differences. The approach is uniquely for graphics with up to
10 colours, and is not applicable to complex images.

Gooch et al. [GOTG05] find grey values that best match the
original color differences through an objective function min-
imization process. Original contrast between each pixel and
its neighbours is measured by a signed distance, whose mag-
nitude accounts for luminance and chroma difference and
whose sign represents the hue shift with respect to a user-
defined hue angle. It has O(N2) to O(N4) complexity, but
a recent extension to a multiresolution framework by Man-
tiuk et al. improves the algorithm’s performance [MMS06].
Rasche et al. [RGW05] propose a similar approach that finds
the linear transform matching pairwise grey differences to
corresponding color differences. The best transform is found
by minimizing an error function that can be evaluated over a
smaller set of colors to alleviate computation costs.

In recent work, Grundland et al. [GD07] find a global con-
tinuous mapping that adds lost chromatic information to
the luminance channel. Their algorithm achieves linear-time
performance thanks to Gaussian pairing sampling which
limits the amount of processed color differences. In Y PQ
color space, the color differences are projected onto the two
predominant chromatic contrast axes and are then added to
the luminance image. A saturation-controlled adjustment of
the output dynamic range is adaptively performed to balance
between the original range and the desired amount of en-
hancement. Recently, Neumann et al. [NCN07] present a
technique with linear complexity that requires no user inter-
vention. It stresses perceptual loyalty by measuring the im-
age’s gradient field by colour differences in their Coloroid
color space. After discarding all gradient field inconsisten-
cies, fast 2D integration determines the final grayscale im-
age.

In [CF03], Calabria and Fairchild find that image lightness
strongly affects perceived contrast, meaning techniques that
can arbitrarily modify lightness, like approaches by Rasche
and Grundland, may affect image appearance in an adverse
way. A greyscale ordering that contradicts the colours’ lumi-
nance ordering also strongly impacts image appearance, yet
in several approaches, ordering is subjective and arbitrary:
the choice of hue angle in Gooch’s Color2Gray can change
all gradient directions, in Rasche’s approach a user-defined
threshold controls whether a colour is mapped to a darker
or lighter value (see Figure 7), and in Grundland’s approach
ordering depends on the image and parameter choice of the
color sampling method. Lastly, image details and salient fea-
tures may be lost by the choice of neighbourhood size in
Gooch’s Color2Gray or by unpredictable behavior in incon-
sistent regions of the gradient field in Neumann’s approach
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(see Figure 9). Since the discussed colour to grey methods
depend strongly on local image content, colour palettes and
user parameters, they are hindered in their perceptual accu-
racy and are not directly applicable to animation where the
colour palette is frequently modified and pixel correlations
change quickly due to occlusion and disocclusion. With this
as motivation, we attempt a different approach where per-
ceptual accuracy and consistency is paramount.

3. Apparent Lightness

In order to discuss colour, we must move into the realm
where colour exists - that is, in the observer’s mind. A
physical stimulus produces a perceptual response that we
name ‘colour’, or alternately, an achromatic response we
name ‘brightness’ or ‘perceived lightness’. Colour appear-
ance models take on the complex task of predicting a human
viewer’s perceptual response to colour stimulus - thus defin-
ing measures of colour. Throughout this paper, we work in
the CIELAB and CIELUV colour spaces, whose three axes
approximate perceived lightness L∗, chroma C∗ and hue an-
gle H∗. The first component, L∗, quantifies the perceptual
response of a human viewer to luminance and is defined
by Hunt as “the brightness of objects relative to that of a
similarly illuminated white”. Mathematically, it is defined
as L∗ = 116(Y/Y0)1/3 − 16 for luminance Y and reference
white luminance Y0.

While luminance is the dominant contributor to lightness
perception, the chromatic component also contributes, and
this contribution varies according to both hue and lumi-
nance. For example, cornflower blue seems brighter than a
dull golden yellow of equal luminance. This phenomenon
is characterized by the Helmholtz-Kohlrausch effect, where
given two isoluminant colours, the more colourful sample
appears brighter.

Helmholtz-Kohlrausch Effect A chromatic stimulus with
the same luminance as a white reference stimulus will ap-
pear brighter than the reference [Nay97].

There are two experimental approaches for measuring the H-
K effect: the Variable-Achromatic-Colour (VAC) approach,
in which an achromatic sample’s luminance is adjusted to
match a colour stimulus; and the Variable-Chromatic-Colour
(VCC) approach, in which the chromatic content of a colour
stimulus is adjusted until its brightness matches a given
grey stimulus [Nay98]. VAC is more common and was used
in the seminal 1954 Sanders-Wyszecki study, and again in
Wyszecki’s later 1964 and 1967 studies [Wys67].

3.1. Helmoltz-Kohlrausch Lightness Predictors

The H-K phenomenon is predicted by a chromatic light-
ness term that corrects L∗ based on the colour’s chromatic
component. We examine three such predictors published by

Fairchild and Nayatani for suitability to the greyscale prob-
lem. Existing models, like CIECAM02, account for many
more complex colour appearance aspects, like surrounding
colours, but are less suited to greyscale conversion due to
their complexity and because most disregard the Helmholtz-
Kohlrausch effect (the reader may refer to Table 17.1 in
[Fai05]).

Fairchild’s CIELAB chromatic lightness metric L∗∗ is fit to
Wyszecki 1967 data and is defined as [FP91]:

L∗∗ = L∗ +(2.5−0.025L∗)
(

0.116
∣∣∣∣sin

(
H∗−90

2

)∣∣∣∣+0.085
)

C∗

(1)

Chroma C∗ measures colourfulness and a sinusoidal curve
predicts the H-K effect’s decreased impact at yellow hues
and its strongest effect at blues.

Nayatani defines chromatic lightness metrics L∗NVAC
and

L∗NVCC
, for each experimental approach, based in CIELUV

[Nay97]. † A quantitative difference between them is that
L∗NVCC

is twice as strong L∗NVAC
(in log space). For each

method, chromatic object lightness is predicted by the fol-
lowing equations (see Appendix for more details):

L∗NVAC
= L∗+[−0.1340 q(θ)+0.0872 KBr] suv L∗ (2)

L∗NVCC
= L∗+[−0.8660 q(θ)+0.0872 KBr] suv L∗ (3)

suv is the chromatic saturation in terms of u
′
,v

′
which pre-

dicts the effect’s strength according to colourfulness. The
quadrant metric q(θ) predicts the change of the H-K effect
for varying hues, and constant KBr expresses the H-K effect’s
dependance on the adapting luminance La. These chromatic
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Figure 1: Lightness values from various H-K effect predic-
tors applied to a spectrum of isoluminant colours, compared
to CIE L∗.

lightness metrics solve a key challenge in greyscale conver-
sion because they predict differences between isoluminant

† For readability, we have used the notation from [Nay98].
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colours. Figure 1 plots the lightness measured by each met-
ric on a nearly equiluminant colour ramp. It can be seen that
more variation occurs when the H-K is being predicted, com-
pared to luminance-based L∗ which predicts nearly equal
lightness for all colours. Note that other colour pairs will
map to the same greyscale value, but that these are predicted
to be more similar than the isoluminant colours.

We now decide which predictor is best suited to greyscale
conversion. We prefer L∗∗ or L∗NVAC

, because the gathering of
VAC data on which they are modeled seems more akin to
the goal as it finds a grey that matches a colour. Moreover, in
testing L∗NVCC

, we observe that its stronger effect maps many
bright colours to white, making it impossible to distinguish
between very bright isoluminant colours [Nay98]. For that
reason, and by heeding Nayatani’s advice that L∗NVAC

, instead
of L∗NVCC

, should be used for predicting differences between
isoluminant colours, we decide not to use L∗NVCC

[Nay98].
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Figure 2: Lightness values from various H-K effect predic-
tors applied over a full spectrum. L∗∗ exhibits a small range
and at blue hues differs from L∗.

Because they are both fit to VAC data, the behaviours of L∗∗

and L∗NVAC
are very similar. Their differences stem from the

data on which they are based, and the flexibility of the mod-
els. L∗NVAC

is based on both Wyszecki 1964 and 1967 data,
theoretical arguments about H-K, and the effect of adapting
luminance. The L∗∗ model is based only on Wyszecki 1967
data and has a simpler treatment of hue which we expect is
responsible for the following: we observed L∗∗ of blue hues
is much higher than L∗, which reduces its range and makes
its ordering differ significantly from both L∗NVAC

and L∗, see
Figure 2. While the model fits the H-K effect perceptual data,
this range reduction is problematic for greyscale conversion
because colours with different L∗ become less discriminable,
an observation shared by Bala [BB04].‡ We therefore con-
clude that L∗NVAC

is the most suitable H-K predictor to use in
our global colour to greyscale mapping.

‡ Bala uses L∗∗1 = L∗ +0.143C∗.

4. Global Apparent Lightness Mapping

We now describe our global mapping according to apparent
lightness using the Nayatani model L∗N = L∗NVAC

described in
the previous section. The mapping process is as follows:

IRGB → ILUV → IL∗N → G (4)

We first convert the colour image to linear RGB by inverse
gamma mapping, then transform to CIELUV colour space.
Its apparent chromatic object lightness channel L∗N is cal-
culated according to Equation 2. We map L∗N to greyscale
Y values using reference white chromatic values for u∗ and
v∗. Finally, we apply gamma mapping to move from linear
Y space back to a gamma-corrected greyscale image G. As
shown in Figure 3 for several colour ramps, the mapping is
continuous, there is no colour reordering, no lost discrimi-
nation and the dynamic range is preserved.

Figure 3: On a colour test (left), G (right) preserves overall
appearance and lightness ordering.

Figure 4: Our approach maps isoluminant colours to
unique, properly ordered greyvalues.

Due to the compression of a 3D gamut to 1D, L∗N may map
two different colours to a similar lightness, which then are
quantized to the same grey value. This occurs only when
colours differ uniquely by hue, which is very uncommon
in natural images and well-designed graphics. Even for a
very challenging image that comprises equiluminant colours
sampled from Neumann et. al’s paper [NCN07], our global
mapping discriminates appropriately, predicting the H-K ef-
fect that makes a more colourful blue appear lighter than the
duller yellow, as shown in Figure 4 (view original colours
on a calibrated screen). Recall that our goal is perceptual
accuracy: the resulting low contrast properly represents the
low contrast of the colour image, and each unique colour is
mapped to a unique greyvalue. By incorporating the H-K ef-
fect, our global mapping partially solves the problem of grey
value assignment and appropriately orders colours that nor-
mal luminance mapping can not discriminate.
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5. Local Chromatic Contrast Adjustment

The mapping described in the previous section captures
some chromatic content in the greyscale image G according
to the H-K effect. However, because of dimension reduction
and unaccounted for hue differences, chromatic contrast may
be reduced. Humans are most sensitive to these losses at lo-
cal contrasts, regions where there is a visible discontinuity.
To counter the reduction, we increase local contrast in the
greyscale image G to better represent the local contrast of
original I. The technique is adapted according to the ratio
between colour and greyscale contrast, so that increases oc-
cur at underrepresented colour edges without unnecessarily
enhancing edges that already represent the original. We cater
the general adaptively-weigthed multiscale unsharp mask-
ing technique [NB98] to our goal of reintroducing chromatic
contrast. Recently, this general tool has been used to good ef-
fect for adjusting contrast of tone mapped images [KMS07]
and to restore contrast from depth perception [LCD06].

We perform contrast adjustments using the Laplacian pyra-
mid that decomposes an image into n bandpass images hi
and a single lowpass image l [BA83]. Laplacian pyramids
are built for I and G in CIELAB using a binomial coeffi-
cient filter of order 4. The hi of each channel measures its
local contrast, but as G contains no chromatic information,
its local contrasts are contained entirely in its L∗ channel. At
each scale in the Laplacian pyramid, we adaptively increase
local contrast hi(GL∗) by a perceptually-based amount λi,
which measures the amount of contrast needed to match
colour contrast hi(I). The enhanced greyscale image G′ is
computed by modifying GL∗ as follows:

G′
L∗ = GL∗ +

n−1

∑
i=0

kiλihi(GL∗) (5)

where parameters k1, . . . ,kn−1, ki ≤ 1 exist so that the spa-
tial effect can be controlled according to amount of discrim-
inability desired and the intended viewing conditions (image
size and viewing distance).

The goal of gain factor λi is to measure the remaining chro-
matic contrast to be restored during the enhancement. We
define it as:

λi =
(

∆E(hi(I))
|hi(GL∗)|

)p
(6)

∆E(hi(I)) is the colour contrast between a pixel and
its neighbourhood which we measure by ∆E(hi(I)) =
(hi(IL∗)2 + hi(Ia∗)2 + hi(Ib∗)2)

1
2 . Since the chromatic chan-

nels of G contain no contrast information, |hi(GL∗)| ∼=
∆E(hi(G)). The ∆E colour difference is used so that both
colour and grey contrasts are expressed in units of percep-
tual lightness. The parameter 0 ≤ p ≤ 1 is used to remap
the λ values to a non-linear scale so that weaker contrasts,
like those from isoluminant colours, can be enhanced with-
out over emphasizing stronger contrasts.

The parameters introduced exist to provide flexibility, allow-
ing users to tweak according to their preference for desired
discriminability. We criticize other approaches for being ad
hoc, so have ensured that the parameters provide flexibil-
ity without allowing uncontrolled changes to the image. The
overall lightness is not altered because we limit the number
of subbands that may be enhanced, preventing changes from
having too large an impact (in practice n ≤ 4 levels). Most
importantly, by definition of λ, edge polarity can not flip,
meaning the lightness order of adjacent regions can not be
changed.

Original I and G G’Basic Unsharp

Figure 5: Compared to the basic unsharp mask (middle),
our chromatic enhancement (right) gains contrast where it
is low in G and high in I. In the gain images, green values
represent negative gain; p = 0.25 k = {2,1,1,0.6}.

We illustrate the effect of our local chromatic contrast adjust-
ment in Figure 5. Contrast is nearly below threshold between
isoluminant regions, especially among the bottom row of
colours. A basic sharpening of all contrast (middle) does lit-
tle to discriminate along that bottom row because the band-
pass contains next to no signal. With our chromatic adjust-
ment (right) it is possible to lift these contrasts above thresh-
old without over emphasizing existing contrasts, so the re-
sulting image better represents the original contrast.

6. Results and Discussion

The results presented here strive for perceptual accuracy, and
do not attempt to increase or exaggerate discriminability.
Therefore, the effects are apparent, but subtle. For compari-
son, we present either the CIE Y channel or Gimp greyscale
with a basic unsharp enhancement, so that the reader is able
to compare between images with matching overall sharp-
ness. Additionally, the images presented here are for viewing
on a calibrated colour screen (sRGB); for print, our result-
ing greyscale images should be mapped to the appropriate
printer gamut.

We begin by showing that we discriminate between isolumi-
nant colours by applying our approach to two images from
Gooch et al. [GOTG05] in Figure 6. In both images, nearly
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isoluminant regions are distinguishable (parameters p and
k, and thus n, are given with each image). We now com-
pare to previous work to support our claims of better percep-
tual accuracy. We illustrate the consistency problem of local
adaptive approaches in Figure 7 with Rasche’s result using
default parameters (top row) on similar images with vary-
ing colours (bottom row). While our results (middle row)
also use default parameters p = 0.5, k = {0.5,0.5,0,0}, the
correct flower brightness ordering is preserved and the grey-
values of leaves and backrounds are identical. Additionally,
our images do not exaggerate the overall lightness range. Be-
cause we maintain consistency, we are able to apply our ap-
proach to video, as shown for a single frame in Figure 8
with constant parameters p = 0.8, k = {0.2,0.8,0,0}. The
red flowers become more visible and bright without chang-
ing the overall video appearance and maintaining temporal
coherence. Please see the accompanying video or our project
website for the full animation and other examples of our ap-
proach applied over time [WWW08].

Figure 6: Our conversions discriminate between colours
even with similar luminance. Car p = 0.5 k = {0.5,0.5,0.5};
Island p = 0.8 k = {0.4,0}.

We consider changes to spatial content, as illustrated by
greyscale versions of Monet’s Impression Sunrise shown in
Figure 9. Gooch’s Color2Gray approach (bottom left) dilates
the sun and reflection and has a strong blurring effect. Neu-
mann et al. (bottom middle) masks details of the background
structures, and alters the water’s brightness, giving the im-
pression of another light source. Our approach preserves the
lightness of regions, the brightness of the sun, keeps all paint
strokes visible, and when visually compared to original con-
tains fewer spatial modifications (bottom right).

Finally, we show results on highly complex images that are
more perceptually accurate than similarly sharpened Gimp
greyscale. In Figure 10, the hats are more bright and the fur-
thest two are distinguished more easily. In Figure 11, the red
fish and stone advance and the two orange fish reappear.

Figure 7: Consistency and colour ordering: Rasche local
conversion top, our conversion (middle), original colour
(bottom) are recoloured versions from Rasche.

Original Video Frame Gimp greyscale

Frame from our G Frame from our G’ p=0.8,k={0.2,0.8,0,0}

Figure 8: A frame from our hummingbird video. Source:
www.naturelibrary.com.

We implemented our conversion in Octave using the Colour
Engineering Toolbox and a Matlab toolbox for Laplacian
pyramids. Our runtime depends on image resolution and
the speed of colour mapping and pyramid construction. We
specify times for both 1 and 4 storey pyramids, computed
on an Intel4 3 GHz CPU. The Impression Sunrise image
(311×223 pixels) takes 1.8 or 3.2 seconds; the Impatiens im-
age (570×593) takes 6.7 or 10.8 seconds; and the Humming-
bird video (192×144) single scale conversion takes 136.3
seconds with 0.96 seconds for each of the 142 frames. We
also provide a single-scale GIMP plugin at [WWW08].
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7. Conclusions and Future Work

In this paper, we have presented a new approach to color
to grey conversion. Our approach offers a more perceptu-
ally accurate appearance than standard luminance mapping
and generates a closer response to the original than other
approaches. In particular, we have incorporated the H-K ef-
fect which we consider fundamental to obtaining faithful
greyscale reproductions. Our two-step approach is a good
compromise between a fully automatic technique (first step)
and user control (second step) making this approach well
suited for natural images, photographs, artistic reproductions
as well as business graphics. Finally a major benefit is the
consistency we ensure by avoiding changes in color order-
ing. This makes this technique well adapted to the treatment
of videos and image sets.

The main limitation of our approach is the locality of the
second step. It can not restore chromatic contrast between
non-adjacent regions. This step also risks introducing tem-
poral inconsistencies, which is prevented by constant local
parameters. Our algorithm may enhance artifacts from un-
reliable chromatic information, which occurs in low-quality
agressively compressed media. With respect to colour ap-
pearance, we have not taken into account changes of chro-
matic contrast due to the context of the pixel, specifically its
appearance with respect to its surrounding colours.

In future work, we plan to predict image appearance with
respect to its color and spatial surrounding by incorporating
the masking effect of colour patterns and measuring the vis-
ibility of the original contrasts using the contrast sensitivity
function (CSF) for chromatic channels [Mul85] as a func-
tion of spatial frequency. We also plan to investigate meth-
ods for modifying enhancement parameters over time while
maintaining temporal coherence. Further investigation into
the problem of converting video to greyscale or to a reduced
colour set is important for video stylization, processing and
display on limited devices. We hope our work has fostered
new ideas in this direction.
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Appendix A: Nayatani Chromatic Lightness Model

In CIELUV colour space u
′
,v
′

are CIE 1976 chromaticity of test
stimulus and u

′
c,v

′
c are chromaticities of the reference white and

La adapting luminance, set by default to 20 as suggested by Nay-
atani. Following are equations used in chromatic lightness L∗NVAC
and L∗NVCC

[Nay97, Nay98].

KBr = 0.2717
6.469+6.362L0.4495

a

6.469+L0.4495
a

(7)

suv = 13[(u
′
−u

′
c)

2 +(v
′
− v

′
c)

2]
1
2 (8)

θ = tan−1 v
′ − v

′
c

u′ −u′c
(9)

q(θ) = −0.01585−0.03017cosθ−0.04556cos2θ

−0.02667cos3θ−0.00295cos4θ

+0.14592sinθ+0.05084sin2θ

−0.01900sin3θ−0.00764sin4θ (10)
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K. Smith et al. / Apparent Lightness Greyscale

Original GIMP greyscale

Our G’ p=0.75 k=[0.2,0.6,0.4,0.4]Neumann et al.Gooch Color2Gray

Our G

Figure 9: Our impression is more like the original because it preserves the paint strokes especially in the sky and background.
Gooch’s image is strongly blurred with a dilated sun and Neumann masks the background and lightens the water.

Original Our G’ p=0.75 k={0.4,0.4,0.3,0.2}Unsharp masked GIMP greyscale

Figure 10: The extreme brightness of the hats is more apparent in our image than Gimp’s greyscale which highlights the
differences between the furthest two hats. Source: www.vischeck.com.
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Figure 11: Our approach accentuates the red fish and stone, and restores salience to the orange fish (bottom left and right
side).Source: Getty Images.
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