
Apparition: Crowdsourced User Interfaces
That Come To Life As You Sketch Them

Walter S. Lasecki
Computer Science Department

University of Rochester
wlasecki@cs.rochester.edu

Juho Kim
CSAIL

MIT
juhokim@mit.edu

Nicholas Rafter
Independent Researcher

nicholas.rafter@gmail.com

Onkur Sen
Computer Science Department

Stanford University
onkursen@gmail.com

Jeffrey P. Bigham
HCI and LT Institutes

Carnegie Mellon University
jbigham@cmu.edu

Michael S. Bernstein
Computer Science Department

Stanford University
msb@cs.stanford.edu

ABSTRACT
Prototyping allows designers to quickly iterate and gather
feedback, but the time it takes to create even a Wizard-of-Oz
prototype reduces the utility of the process. In this paper, we
introduce crowdsourcing techniques and tools for prototyping
interactive systems in the time it takes to describe the idea.
Our Apparition system uses paid microtask crowds to make
even hard-to-automate functions work immediately, allowing
more fluid prototyping of interfaces that contain interactive
elements and complex behaviors. As users sketch their inter-
face and describe it aloud in natural language, crowd work-
ers and sketch recognition algorithms translate the input into
user interface elements, add animations, and provide Wizard-
of-Oz functionality. We discuss how design teams can use
our approach to reflect on prototypes or begin user studies
within seconds, and how, over time, Apparition prototypes
can become fully-implemented versions of the systems they
simulate. Powering Apparition is the first self-coordinated,
real-time crowdsourcing infrastructure. We anchor this in-
frastructure on a new, lightweight write-locking mechanism
that workers can use to signal their intentions to each other.

Author Keywords
Rapid prototyping; crowdsourcing; human computation

ACM Classification Keywords
D.2.2 Design Tools and Techniques

INTRODUCTION
The effort required to produce an interactive prototype is a
clear limiting factor in effective design practice. Prototyp-
ing grounds an iterative process of creation and reflection
[28], where the prototype becomes a mechanism for con-
tinuous course correction and ideation. This process, which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2015, April 18–23 2015, Seoul, Republic of Korea
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3145-6/15/04 $15.00
http://dx.doi.org/10.1145/2702123.2702565

David Kelley terms “enlightened trial and error”, is most ef-
fective when prototypes can be fluidly produced and evalu-
ated. However, even the most rapid interactive prototype con-
struction (e.g., Wizard-of-Oz prototyping) is easily an order
of magnitude slower than envisioning through a sketch.

Sensing this disparity, foundational work nearly 20 years ago
suggested that designers might be able to author interactive
prototypes simply by sketching [14]. However, while these
systems can transform simple elements such as rectangles
into buttons, they stop short of capturing the full variety of
interactive elements and behaviors a designer might envision.
If a designer wants to create a simple video game character,
make them follow a cursor, and destroy enemies by jumping
on them, they are facing hours in a code editor.

In this paper, we introduce tools and techniques for prototyp-
ing interactive systems in the time it takes to simply describe
the idea visually and verbally. Our system, called Apparition,
uses paid crowds to make even hard-to-automate functions
work immediately without the need for one-off control imple-
mentations, allowing fluid prototyping of interfaces contain-
ing interactive elements, complex animations, and intelligent
feedback. As users sketch their interface and describe it aloud
in natural language, crowd workers refine interface elements,
add animations, and control the prototype’s responses. Vi-
sual elements replace sketches within 8 seconds on average,
and interactive behaviors function in 3 seconds. The speed
of such prototypes makes it possible to create an interactive
prototype moments after thinking of the idea.

For Apparition to work, a group of microtask workers must
coordinate a complex set of goals and dependencies in real-
time. Apparition is the first crowdsourcing system to enable
self-managing, real-time crowd coordination. Unfortunately,
direct approaches yield blocking behaviors where multiple
workers all attempt the same task and conflict while other
tasks remain untouched. Introducing managers slows the sys-
tem beyond real-time responses. We introduce a lightweight
write-locking mechanism that lets workers signal to others
which elements they are editing and roles they are fulfilling.

Envisioned Interaction
Lavanya is a developer at a small startup that is creating a
new real-time strategy game. She has just had an idea for a

Figure 1. Apparition allows designers to quickly create functional interface prototypes using sketches and verbal descriptions. (1) A collaborative
canvas where the user(s) and workers can draw. (2) Drawing tools and icons to quicken workers’ creation of UI elements. (3) A search function to help
workers find relevant icons. (4) A to-do list that shows what has been drawn by the user but not yet converted to UI elements. Workers can “accept”
tasks to signal what they are currently working on. (5) “In-progress” markers for workers to show where they are currently working to avoid conflicts.

new enemy character. Lavanya flags her coworker Ellen to
tell her about the idea, but Ellen is unsure whether the char-
acter will fit the feel of the game. In response, Lavanya opens
Apparition and begins to quickly sketch out a scenario.

As Lavanya sketches a version of the game UI, her sketches
are immediately converted into properly aligned interface el-
ements. In less than a minute, Lavanya has sketched a rough
version of the game’s UI, complete with a handful of enemy
characters. “See, these creatures run away when I get too
close,” Lavanya explains, “they find some distance and then
start following me again.” As she describes her idea in more
detail, the new enemy characters on screen begin to look and
act as she describes. Ellen then pulls out her tablet, connects
to the same Apparition session as Lavanya, draws a few of her
own characters, and sees how the system responds in various
situations. When Ellen finds situations that were underspeci-
fied, Lavanya describes aloud how the approach would work,
and the system-controlled characters change their behavior to
match. Impressed, Ellen tells Lavanya she should demo this
approach at the team meeting later that afternoon.

While Lavanya prepares her talk, she puts Apparition into
“Bake In” mode, which continues to improve the prototype
without further end-user intervention. A few hours later,
when demoing the system to the team, Lavanya notes that
the workers have replaced the early images with more re-
fined assets. The previously described behaviors are still in
effect but are continuously refined as people ask questions
and make suggestions. Team members can copy the interface
and branch, comparing ideas side-by-side.

Outline and Contributions
Apparition works to make near-instant prototyping possible
by using human computation to power interactions that au-
tomated systems cannot yet handle alone. Apparition users
can fluidly prototype designs by sketching and speaking on
a shared canvas. If its automatic sketch recognition algo-
rithm recognizes UI elements, Apparition replaces them with
higher-fidelity representations [14]. For all other elements —
friend lists, game characters, map interfaces — paid crowd
workers coordinate the transformation of each sketch into the
desired prototype element. Given more time to “bake in,” the
prototype visuals continue to develop. Users can speak de-
sired behaviors, e.g., “when I click the button, the friend list
slides over and the map pops up,” and crowd workers Wizard-
of-Oz the behavior the next time the action is triggered in
real-time.

We make the following contributions in this paper:
• The first crowdsourcing system where workers self-

coordinate to complete a complex task in real-time.
• The concept of intelligent prototyping tools powered by an

on-demand, self-coordinating crowd.
• Methods and tools for coordinating large groups of people

on simultaneous control and creation tasks.
• Apparition, a tool that lets crowds of online human workers

collectively help users create working interface prototypes
from sketches and verbal descriptions in seconds.

• Validation of our approach through examples of the types
of prototyping that Apparition makes possible.

We begin with a discussion of the background and related
work in design, prototyping, and crowdsourcing. We then

discuss how Apparition works and demonstrate that it can
quickly create accurate, functional prototypes. We conclude
with a discussion of our results and future directions of re-
search made possible by releasing Apparition.

BACKGROUND
Apparition builds on 20 years of Wizard-of-Oz prototyping
tools and demonstrates how paid crowds can form a scalable,
always-available set of wizards. It also extends the litera-
ture from static screenshots to functional prototypes with dy-
namic, intelligent behaviors. In this section, we discuss prior
work in UI sketching, prototyping, and crowdsourcing.

Easier Prototyping with Sketching and Wizard-of-Oz
Tools such as Balsamiq (www.balsamiq.com) or JustInMind
(www.justinmind.com) allow designers to create interfaces
without requiring the same significant intervention during
testing that paper prototypes do. However, these applications
require training and a large amount of effort to create, making
them impractical during the earliest stages of design [14].

Systems such as SILK [14] and DENIM [20] reduce the over-
head of prototyping by recognizing designers’ sketches as in-
terface elements. Designers can then create a linked story-
board defining appropriate state transitions for different inter-
actions. While this is effective, the scope of elements they
recognize is limited and interactions can only result in indi-
vidual state updates.

d.tools [9] allows designers to begin with a rapid prototype
created from visual statecharts and move towards implemen-
tation versions by adding code to parts of the statechart.
d.note[8] allows users to revise both appearance and behav-
ior by annotating screenshots and storyboards. Apparition al-
lows similar revisions of behaviors and appearance in real-
time during interaction via speech and sketching.

The advantages of multi-modal interaction, e.g., combining
sketching with spoken natural language descriptions, have
been studied in diverse settings and contexts [3]. Natural lan-
guage provides a means of capturing many types of informa-
tion that is difficult or unnatural to capture in sketches, e.g.,
temporal relationships, behaviors, and spatially disjoint ele-
ments [3]. By integrating voice, these selection, scoping, and
description issues become single-interaction tasks rather than
multi-step processes. Apparition uses multimodality to expe-
dite the creation process for the end-user and clarify meaning
for crowd workers. We aim for a process like describing a
system to a co-located colleague.

Designing behaviors is difficult partly because of limitations
in tools available to designers—a vast majority of 267 inter-
viewed designers found programming behaviors more diffi-
cult than visual design [26]. More importantly, behaviors tar-
geted by these designers were too diverse to embed into any
one system with a fixed set of supported features. Apparition
addresses this problem by leveraging human intelligence with
spoken language to support highly diverse sets of behaviors
with just a simple description. These designers also strug-
gled to fully communicate their desired behaviors with the
developers building the system. One goal of Apparition is to

allow designers to easily create a “living spec” that develop-
ers interact with to better understand the designers’ intended
behaviors.

Wizard-of-Oz control simulates complex functionality in pro-
totypes [11] – a human “wizard” provides feedback or con-
trol to simulate difficult-to-implement features. For instance,
to test whether a chat-based support tool will help users bet-
ter find information on a webpage, an instant messenger tool
might be built into the site so that users can communicate with
a designer instead of an automated system.

Tools such as SketchWizard [5] make Wizard-of-Oz proto-
typing easier by allowing the end-user to create pen sketches,
and a wizard behind the scene converts their sketch into geo-
metric shapes and elements. Because of the speed and accu-
racy needed to keep up with even within-lab use cases, situa-
tional planning and practice is needed for wizards to support
trials with users in real-time. In contrast, Apparition provides
a canvas and coordination tools that allow many crowd work-
ers to share the work of keeping up with user interactions in
live sessions and demonstrations. Thus, Apparition provides
open-ended support without prior planning or setup.

Apparition’s ability to use speech also extends the expressive-
ness of the interfaces and behaviors that can be prototyped.
Turvy [24] used Wizard-of-Oz to control an intelligent agent
that users could instruct in natural language. Turvy let re-
searchers see how users would really interact with their agent,
leading to insights that can aid in the development and au-
tomation of a released system. Prior work has also explored
Wizard-of-Oz conversational interaction, including combin-
ing the input of human wizards and machines [7, 18, 27].

While quicker and easier than a full implementation, these
Wizard-of-Oz powered systems are generally one-off and can
still require significant development effort. Apparition over-
comes that by providing a set of broadly-applicable tools and
techniques for coordinating multiple workers so that com-
plex, concurrent actions are supported with relative ease.

Crowdsourcing and Real-Time Human Computation
Human computation engages people as part of a process
to solve problems that automated approaches cannot handle
alone. Crowdsourcing, where an open call is made to a pop-
ulation to elicit responses, effectively accesses human intel-
ligence for computational tasks. Workers can be recruited
on demand from platforms such as Amazon Mechanical Turk
and engaged for short time periods to complete a task. How-
ever, this process has the caveat that workers are unknown to
task requesters and might be of low quality or even malicious
in rare cases.

Most work has focused on coordinating workers by dividing
work into small microtasks [21] or well-specified ongoing
roles [16]. Prior work has also explored how crowds them-
selves might be used to recursively generate these workflows
[13] with some end-user oversight. In constrast, Apparition
must be able to create new roles and tasks as soon as the user
describes an intent, so real-time coordination for defining and
adopting these roles is our goal.

Real-Time Crowdsourcing
Real-time human computation has been explored in systems
like VizWiz [2], which showed that the crowd could answer
visual questions in less than 30 seconds, and Adrenaline [1],
which formalized the retainer model for bringing a group of
crowd workers together in two seconds. Systems like Legion
[17] have explored how a synchronous crowd can work to-
gether effectively once recruited (in that case to collectively
control existing user interfaces). Apparition allows the end-
user to work with the crowd to produce an artifact.

Chorus [18] engaged a group of workers in a conversational
interaction with a user, using an incentive mechanism and
memory space to encourage the crowd to act as a single con-
sistent individual. Workers powering Apparition must also be
consistent because prototypes must reliably function in the
same way over multiple interactions with end-users.

Crowdsourcing for Drawing and Rapid Evaluation
Crowdsourcing inherently provides access to individuals with
diverse skills, which provides guidance to users during the
design process [22] and improves specific skills like draw-
ing. Limpaechter et al. collected sketch data from a crowd
of players of their DrawAFriend game and used the resulting
model to correct user-drawn lines in real-time [19].

Foundry [23] allows end-users to create “flash teams”,
computer-mediated teams of expert crowd workers that were
able to complete complex tasks such as design prototyping
and animation that are produced by experts, rather than mi-
crotask workers, from the crowd.

Glance [15] uses the crowd to help users explore video
datasets by quickly marking arbitrary user-specified events.
This divide-and-conquer process is common in crowdsourc-
ing because it allows the inherent parallelism of the crowd to
help solve problems faster. Apparition uses a similar division
of labor to make complex, parallel control tasks possible, but
unlike prior work in crowdsourcing, it supports worker self-
coordination and task-finding in real-time.

While existing Wizard-of-Oz approaches rely on a single user
who is an expert with a particular system, crowdsourcing has
the potential to provide an on-demand workforce that can be
hired for exactly the amount of time needed to power an in-
teraction. Crowds also have the potential for supporting more
complex, parallel actions than single controllers could.

APPARITION
Apparition’s goal is to let designers create prototypes, com-
plete with visual elements and behaviors, in real-time as they
freely sketch and describe their ideas. To do this, Appari-
tion connects the designer to a crowd of paid microtask work-
ers who collectively translate the designer’s intentions into a
functional prototype in real time.

The primary challenges are:
• supporting synchronous editing of interface mockups
• avoiding repetitive work and production blocking
• allowing the crowd to upgrade the interface over time
• remembering behaviors so that the interfaces are immme-

diately Wizard-of-Oz’ed

Figure 2. Designers roughly sketch their interface while describing it in
natural language (top). As they do, crowd workers collaboratively up-
date the interface into a low-fidelity prototype (middle). Over time, the
crowd workers further improve its quality (bottom). As these interfaces
are created, they are immediately functional, even when adding complex
behaviors via collective Wizard-of-Oz control by the crowd.

System Architecture Design
Apparition can be run from any device with a web browser,
making it possible to generate interfaces in settings where
generating high-fidelity UIs is currently impossible, such as
from a mobile device. Audio is streamed from the user to
each crowd worker using Adobe Media Server. Users can
pause the audio stream at any point they wish (for privacy).

Designers begin by sketching a low-fidelity version of their
interface using either a pen and tablet or a mouse. Auto-
matic gesture recognition identifies user strokes when pos-
sible (similar to SILK’s approach [14]). This is done using a
specially trained $1 Recognizer [29]. If the recognizer can-
not confidently classify and convert the sketch into the UI
element it represents, Apparition asks workers to produce a
higher fidelity rendering in real-time by using simple visual
prototyping tools provided to them.

To bring the interface to life, behaviors can be animated by
moving, adding, and removing elements on the canvas. Natu-
ral language descriptions help the crowd fill in details of both
the interface layout and behaviors despite minimal content in
the initial sketch. Thus, designers can quickly iterate on their
ideas without having to sketch each version in detail.

While beyond the scope of this paper, it is worth noting that
our approach can even work without the user directly sketch-
ing their idea on real media (e.g., paper or whiteboard). From
a verbal description or gestures viewed via a webcam to help
ground the layout, workers can still get a rough idea of what
the designer intends and render it.

Below, we describe operational aspects of Apparition and
discuss features that allow workers to coordinate effectively
to create prototypes within seconds of when users initially
sketch them. These design decisions were made over the
course of building Apparition during informal evaluation ses-
sions with dozens of in-person volunteers, workers from Me-
chanical Turk and oDesk, and other contributors.

Canvas
Apparition’s canvas is a version of SVG-Edit
(code.google.com/p/svg-edit), a browser-based vector
graphic editor, that we modified to support multiple users.
Our synchronized version uses Meteor (www.meteor.com),
a JavaScript framework that allows us to quickly share
information between clients. Each worker connects to an
active session and can see the actions of others as they work.
The core tool is similar to Google Draw, but it includes
custom features making it possible to coordinate groups of
workers creating, editing, and animating simultaneously —
something Google Draw was not designed to do.

Apparition improves efficiency of workers with a library of
standard interface elements. The most common of these are
provided as top-level elements in a toolbar (seen on the left-
hand side of Figure 1). For the larger set of less frequently
used elements, we provide a search tool suggesting UI ele-
ments based on partial, related, or non-exact element names,
for example “profile”, “tab”, or “star.” Search helps prevent
workers from spending too long browsing for an element that
does not actually exist.

Roles
Apparition synchronizes canvases so that designer(s) and
crowd workers always see the current design. Roles can also
be defined for different user groups. The information shown
and synchronized can be modified to best fit the needs of each
type of user. For example, designers may not need to see
worker to-do items (discussed later) or workers’ in-progress
elements, so these are synchronized after completion. Con-
versely, a user’s input is shown immediately to workers.

Workers can also see who is online, and each worker has a
globally consistent and unique color assigned to them. This
color code applies to all interactions that a worker has with
the system, so other users can get a sense of what actions
are being performed by a single individual. This helps with
semantic grouping and understanding what tasks others are
performing — key elements in maintaining coordination.

ENABLING REAL-TIME WORKER COORDINATION
No one worker can keep up with a designer who is sketching
and describing interfaces in real time. Once a worker has con-
verted each sketch element or behavior task—each of which
can take several seconds—the designer has long since moved
on. For people, understanding is not typically the roadblock
in this setting, but rather creating the grounded representation
of the described concepts quickly enough. In early versions
of Apparition, workers fell prey to diffusion of responsibility
[4], and all would wait for someone else to pick up each task.
Making Apparition responsive required a method for coordi-
nating workers around very open-ended, potentially subjec-
tive tasks such that they do not conflict or repeat work.

To solve this problem, Apparition uses a write-lock coordi-
nation mechanism that allows workers to self-manage task
delegation in real time.

Naive coordination fails
To coordinate workers and ensure that no task is missed, even
when the designer is speaking quickly, Apparition uses a to-
do list that synchronizes short messages from the system and
workers to other workers. The intention is for this to-do list
to populate automatically as the designer works. Using a
partially-automated to-do list prevents the latency issues as-
sociated with completely manual curation of this set and any
resulting duplicated work.

Apparition automatically groups nearby sets of sketches into
a single unit and assigns them as a to-do item in the list. By
mousing over the to-do item, workers can see which canvas
elements are being referenced. Workers can claim to-dos and
add new ones if desired. In addition, sketches that the gesture
recognizer captures with only medium confidence are auto-
matically converted into to-do entries. This approach strikes
a balance between the benefits of automatic guessing and the
risks of introducing errors.

Unfortunately, our early observations were that this approach
produced significant conflict. Workers focused on their self-
defined tasks and often missed looking at the to-do list on the
side of the screen at a critical time. This resulted in block-
ing actions where multiple workers would try to complete the
same task — in the worst case, accidental conflicts caused
work to be undone.

Ad hoc leaders with delegation power can be extremely ef-
fective for short-lived teams [12]. Thus, we tried specifying
some workers as “managers” who could create tasks and as-
sign others to tasks. However, requiring that a worker first tag
and route a task introduced unacceptable latency.

Write locks enable effective distributed coordination
The to-do list was insufficient because workers placed their
primary attention on the actual canvas. In other words, it was
not a problem of the input jobs, but a problem with write-
locking the actual “data”.

To overcome this, we added a form of informal write-locking
where workers can click a location and drop an “in-progress”
marker that tells other workers that they are working in that
general vicinity (Figure 3). These markers do not actually

Figure 3. An example of Mechanical Turk workers using “in-progress”
markers in a live trial. Each worker’s marker is a different color (here,
green for worker 1 and blue for worker 2) translucent to interface ele-
ments and editing actions and can be added in two clicks. By making it
easy for workers to signal to others what they are working on, produc-
tion blocks and repeated work are avoided.

prevent any edits within the designated region, but they al-
low a worker to signal to others that they are working on a
task associated with this area. Markers can be tied to specific
to-do entries, or they can be used in place of them when no
text is needed to describe the task that they are performing
based on context. At most one of these markers is visible for
any worker at a time, and placing a new one automatically
removes the prior one. While they are displayed on top of all
canvas elements, markers are partially transparent and com-
pletely un-selectable, preventing them from blocking others
who are currently editing canvas content.

Because we typically expect fewer than 10 workers to be
present simultaneously, these markers also do not clutter the
interface as it is being edited. They also do not appear to end-
users, who only see the results generated by workers, not the
coordination elements they use.

Using these markers, workers self-manage and implicitly or
explicitly claim elements of the to-do list. This increases par-
allelism and reduces conflicts.

Supporting Concurrent Editing: Replace-at-Layer
One significant hurdle to concurrent editing in small regions
of the document arises from element layering. The most com-
mon practice of visual design tools with respect to layering is
to have the layer index of an element be determined by the
temporal ordering of creation (as seen in Adobe Photoshop,
Google Draw, etc.). This means that if a window is sketched
and then a button is drawn, the button will be one layer above
the window. This is a natural interaction in single-user set-
tings — but when a crowd of workers is simultaneously edit-
ing a single region of the canvas, replacing a window sketch
by adding a window element to the canvas results in the win-
dow element arriving as the top-most selectable and visible
item, covering up any other elements that other workers might
be attending to. This leads to a production block for everyone
working in that area, and in practice, often leads to errors be-
ing introduced by workers performing actions not meant for
the now-topmost window.

To overcome this, we added a replace-at-layer feature that
lets workers select a sketched figure, create a replacement el-
ement, and then replace the sketch with the new element at

the same layer index in a single operation. This means that
workers can create elements behind others in a single click.

To prevent mistaken operations, replace-at-layer first checks
for spacial proximity to see if the new element overlaps with
the same approximate region (in our case 150% of the size
of the original sketch). We also require the worker to ex-
plicitly select the element they wish to replace first, as a sep-
arate selection action, so that the automatic selection of an
element after initial creation will not be used to trigger a re-
placement (so that sequential creation operations can be done
seamlessly). An optional replacement confirmation message
can also be enabled if a safety check is desired. Once we
have determined that the worker intends to replace a given el-
ement, we find that element’s location in the display stack, re-
move the initial sketched element, and then add the worker’s
newly-created element at the same relative location (above
and below the same content as the original sketch).

Protecting Against Malicious Workers
During initial trials, we saw that reliability might be a con-
cern, as it often is with crowdsourcing tasks. We ran five trials
with three workers in each. In three of five trials, one worker
moved elements out of place, negatively impacting the final
result. In two of these cases, that worker was the last one to
edit the prototype.

To address potential worker confusion, we added tutorials and
examples. To flag malicious or contrarian workers from dis-
proportionately impacting a task, we looked at the history of
workers’ operations. If a worker is performing a specific ac-
tion repeatedly over time, the system flags them as potentially
malicious. For example, a user removing many elements cre-
ated by others (where no other worker finds that those ele-
ments need to be removed) might be deleting useful elements.
On the other hand, a worker creating a large set of elements
when others are not might be spamming.

INCREASING FIDELITY AND ADDING BEHAVIORS
In this section, we explore how Apparition can move beyond
quick mock-ups and static interfaces by making these inter-
faces improve themselves over time and come alive.

From Mock-Up to Polished Prototype
Apparition’s real-time nature means that the level of detail
of the immediately-available interface is limited — we don’t
want workers to spend extensive amounts of time worrying
over small details. However, over time, workers can refine
elements to create a more polished version. This additional
time might arise when the user leaves for a period of time,
such as for lunch, overnight, or over a weekend. As such, we
assume that this additional interface refinement can operate
as an asynchronous offline process.

To draw on prior work that has shown parallel prototyping
leads to more creativity [6], we use a branch-and-merge algo-
rithm similar to Multiverse [25]. When users set the system
to “bake in” mode, they select time and cost bounds and Ap-
parition automatically begins to create parallel copies (typi-
cally 3-5 per round) of the current interface. Each of these
copies is distributed to multiple crowd workers who work to

improve the existing prototype either synchronously or asyn-
chronously (in our experiments, we allow for either depend-
ing on workers’ arrival time). For context, workers are also
able to access the original user descriptions of the interface
(via audio and screen recording).

Once several different workers (typically 5-8) have con-
tributed to each prototype, the final results of each are shown
to a new group of workers to select the best version. The
winning version is then copied into multiple universes for the
next iteration and those are again redistributed to new work-
ers. This iterative process continues as many times as the time
and cost bounds will permit. At the end, the result is a sin-
gle “best” refinement of the original mock-up. For example,
in Figure 2, we can see the initial sketch in the top frame,
the immediately-available version in the middle, and a more
polished version that was created a few moments later, after
workers had time to find graphic resources on the web.

Prototyping Interactive Behaviors
We have described how Apparition allows designers to
quickly see an improved version of the interface they de-
scribe, and given more time, see an even higher-fidelity ver-
sion if they choose. But interfaces are not static artifacts.

Apparition allows designers to describe the desired behav-
ior of their prototype out loud, and then immediately interact
with a working version of their interface. Workers hear the
description of the correct action and then can immediately
Wizard-of-Oz the behavior as needed. To modify or correct
results, the end-user can simply describe them verbally and
click if direct reference to an object is needed.

The to-do list can again be used by workers to coordinate
roles in supporting repeated interaction. For simple behav-
iors, such as popping up a window, workers might be able
to accept multiple tasks, while for more complex behaviors,
such as controlling a character in a video game so that it hides
from the player as they move, a worker might need to focus
on only that task. Once a worker has assigned themselves to a
task, they can continue to monitor it until they choose to leave
or hand off responsibility.

Showing User Interactions
When describing to-be-supported actions in natural language,
users often will use language that requires supporting con-
text to understand [10]. For example, if a user says “When I
click here, the value of the counter will increase,” the position
referenced by “here” must be specified. While this is done
naturally in communication between co-located individuals,
Apparition supports this using a shared visualization of user
interaction on the canvas. When a user clicks a position on
the canvas, the point where they clicked is displayed as a dot
animation to all workers. The animation lasts ∼2 seconds, but
when paired with speech, it provides a clear signal to workers.
Support for swipes and other gestures using line animations
can also be added. These gestures support not only referen-
tial phrases, but also interactions with the interface that are
not mentioned in speech directly.

Adding Constraints
While Apparition’s prototypes are meant to be dynamic, users
might want to specify that some sub-component of their sys-
tem is complete, while wanting others to be improved or iter-
ated on. Apparition lets users specify elements which should
be “locked” in place as immutable either at the beginning of
any round during the UI refinement process or during editing
in a live setting where animations might otherwise move a
given element. When a canvas-wide lock mode is toggled,
these elements are made immutable for both workers and
users to prevent these locked elements from being modified
during interactions.

However, freezing an element in place is not always the right
constraint. In some situations, users might wish for an ele-
ment to simply remain in a certain region or have a certain
range of motion during animation. For example, a user may
want to bound a map pin to stay within the map. To allow for
this, users can define bounding boxes around elements that
restrict the motion of that element to a specific region when
lock mode is activated.

In combination, locks and bounding boxes help workers cre-
ate accurate animations and effects with minimal effort. For
example, to create an accurate slider animation, a line or bar
can be locked in place, and a handle element can be restricted
to a narrow horizontal region on top of that line (Figure 4).
Then, when the canvas is locked, workers are only able to
move the handle of the slider along the axis, and only within
the bounds of the corresponding line element. This avoids
jitter and makes the animating worker’s task simple.

EXPERIMENTS
To verify Apparition’s ability to create interface prototypes
in real time, we first selected a set of five common inter-
face types to mock up and had a UX designer create napkin
sketches of each as a starting point. We added appropriate
behaviors to each, resulting in the following data set:
• Map viewer: Contains – zoom bar, divider bar, main win-

dow, and selector buttons (x3). Behaviors – zoom in (x3),
zoom out (x3), click to change window contents (x4).

• Profile manager: Contains – divider bar (x2), main win-
dow, and selector buttons (x6). Behaviors – zoom in (x3),
zoom out (x3), click to change window contents (x4).

• Document editor: Contains – main window, option but-
tons (x2), back arrow, and selector buttons (x5). Behaviors
– button click to change window contents (x3), button click
to change button color (x6).

• Platformer game (e.g., Super Mario Bros.): Contains
– game character, separated ground (x2), large floating
block, small floating block, stacked boxes (x3), and sun.
Behaviors – move to clicked location (x4).

• Real-time strategy game: Contains – player character, en-
emy characters (x3), radar, control menus (x2), divider bar,
menu button. Behaviors – follow player character with 3
enemies (x2), follow player character with 3 enemies (x3).

We recruited 46 workers from Amazon Mechanical Turk us-
ing LegionTools [15], a tool for quickly recruiting and direct-
ing synchronous crowds of workers. We ran 10 trials, two for

Figure 4. An example of an interface being created during one of our
trials. End-user input consisted exclusively of a pencil tool and natural
language speech, which workers converted to UI elements.

each of our five example interfaces (with 23 workers in each
half). Trials were moderated by a researcher who acted as the
end-user and tried to re-create the mockups we obtained from
the UX designer. Each trial lasted approximately 5 minutes
for workers, including the tutorial, and paid $0.95 ($19/hour).
We limited our tasks to U.S.-based workers with an approval
rate of at least 90%. We recruited 3-6 synchronous workers to
convert the interface that they were shown. The task consisted
of both a creation and editing phase, as well as a behaviors
and actions phase. In half of the trials, workers did not have
access to “in-progress” markers, while in the rest they did.

We measure precision using the number of actions taken that
were intended by the requester and recall using the number of
actions intended by the requester that the crowd completed.
If, after a short while, the request had to be repeated or high-
lighted to workers, the first request was counted as a miss and
the second question counted as a separate instance.

8 Seconds from Sketches to Interfaces
Creating and editing interface elements includes all steps
taken by workers to convert sketches to real elements, create
or remove elements from verbal cues, change an element’s
static position, resize elements, and change their color. These
actions had a median latency of 8.3 seconds (mean 10.9s,
sd = 6.2s), with 90.8% precision and 97.6% recall.

Workers React with Behaviors in 3 Seconds
Behaviors and animations include any element placement,
coloration, dynamic movement, or visibility that is an effect
of interacting directly with the interface (e.g., clicking a but-
ton), rather than a direct user request to change the state of
the interface. Performing these actions had a median latency
of just 3 seconds (mean 3.6s, sd = 2.3s), and achieved 92.9%
precision and 90.5% recall.

In-Progress Markers Prevented Production Blocking
We found that workers were very willing to use in-progress
markers when they were available: 72.2% of all workers used

markers during the live session, and they were used in all ses-
sions in which they were available. An average of 7 markers
were placed per trial (median 7.5s, sd = 6.67s), making the
average per-worker usage 2.7 times per session.

Markers helped workers avoid redundant or conflicting work,
which appeared to result in fewer scenarios where no worker
completed a task because they were unsure of if others were
already doing it. This resulted in a significant improvement
from 82.3% recall in the trials without markers, to 97.0%
(p < .05) in the trials with them. While marker use also re-
sulted in higher precision (94.8% with markers versus 90.4%
without them), this difference was not significant (p > .5).
Latency was also not detectably impacted (p > .8).

Markers were almost exclusively used for creation tasks,
specifically when the creation task was grounded by a sketch.
This means that it overlaps significantly with the use case of
the to-do list. However, as expected, we observed that the us-
age of the to-do list was almost entirely replaced by markers
in three of our five trials with markers. In only one case was
a marker used to denote ownership over a behavior.

DISCUSSION
Our evaluation suggests that Apparition can keep pace with
designers, transforming each sketch element within eight sec-
onds into a higher-fidelity representation. Once created, the
prototype quickly reacts to user input. The result: a user could
step up to a tablet, sketch a game of Super Mario Brothers,
and start playing it within seconds.

We envision designers receiving feedback far more quickly
than they can using methods like paper prototypes. Appari-
tion allows iteration within a brainstorming session or meet-
ing and allows users to immediately see how their changes
would affect the interface, reducing the need to speculate.
This may result in more helpful feedback from early users.
The crowd itself can also provide feedback. Prior work has
explored how individuals can get feedback from crowd work-
ers during the design process [22].

Apparition can be used with non-microtask crowds as well.
For example, in a design meeting, designers themselves may
act as crowd workers to help flesh out their own or others’
ideas and view the resulting interactions. More reliable ex-
pert workers can also be recruited from contract-work sites,
such as oDesk or Elance. These workers can be especially
helpful when producing higher-fidelity versions of the desired
interface. These workers can include graphic artists and de-
signers, as well as programmers who implement functionality
that the end user did not, but that still requires only an amount
of effort reasonable for the intended fidelity.

Deleting Content
One of our concerns when designing Apparition was that ma-
licious or confused workers might delete parts of the inter-
face while the user was designing. To prevent this, we de-
signed a tool to detect unilateral actions such as deletes and
catch potentially-malicious workers. However, our trials en-
countered no examples of malicious workers deleting valid
content. Instead, there were two instances where a worker

Figure 5. In some of our trials, workers hesitated to delete content.
This resulted in valid elements being drawn on top of, but not replac-
ing, user sketches (possibly because workers were not comfortable delet-
ing what the user created). Future versions of the system will automate
approaches to replacement.

mistakenly added content. From the usage, both cases ap-
peared to be caused by accidentally selecting a tool, and then
trying to select content (resulting in an element created along
the intended drag path).

Interestingly, we found that workers’ hesitation to delete con-
tent caused many more issues. In extreme cases (Figure 5),
these remaining sketches detract from the visual aesthetic of
the prototype and create problems with motion-based behav-
iors by leaving a sketched copy of the element in its original
location, adding to clutter.

Our element replacement tool was meant to overcome some
of this. While it helped in several settings, it was calibrated
to work only when the system was extremely confident in the
placemen. Even then, it prompted for confirmation. In fu-
ture versions, we will slightly loosen these restrictions and
explore methods for intelligently determining appropriate re-
placement situations based on the locations and sizes of the
elements, input from the gesture recognizer.

Remembering Interface Behaviors
As part of our UI behavior and animation experiments, we
asked workers to perform simple actions based on user in-
put. Because these actions are defined in natural language
and not repeatable, workers are required to remember what
behavior was requested. For instance, if told that a certain ac-
tion should be performed in response to a certain button being
clicked, the crowd is expected to remember the association.
To test how well the crowd can collectively remember behav-
iors, we conducted a small set of tests that asked the crowd to
perform a behavior that was requested K interactions ago.

In our sample of 16 one-, two-, and “many”-ago interactions
(with 3, 8, and 5 examples respectively), we found that the
crowd was able to recall the correct behaviors and apply it in
81% of cases. Interestingly, the “many” cases were all per-
formed correctly. This suggests that the crowd can reason-
ably recall behaviors that users describe, though longer-term
memory will require methods for letting the crowd store in-
formation for future use either by themselves or others.

Communication
One common piece of feedback that we got from workers was
that they wanted to chat with the requester and other workers.

Providing this feedback and between-worker communication
channel will likely help workers better understand the task
early on but runs the risk of distracting workers and slowing
down response times [18]. Some workers were initially con-
fused by the task, but others found the task to be easy to un-
derstand given prior experience with graphical editing tools.
Over time, workers without this experience may learn how to
complete our tasks. Nevertheless, this experience is common
enough to be useful among workers on Mechanical Turk.

Limitations
Our study focused on demonstrating that the collaboration en-
vironment that Apparition provides allows crowd workers to
create prototypes within seconds. Our study did not use exter-
nal design participants as end-users so that we could control
the settings and designs more carefully. In the future, our
goal is to release Apparition, allowing us to explore how real-
world use of intelligent prototyping systems can impact the
design process.

FUTURE WORK
Our results with Apparition demonstrate that it is possible to
supply synchronous crowds with relatively light-weight coor-
dination tools and enable them to create interfaces and behav-
iors within seconds of their original description. Future im-
provements will aim to make the process appear more seam-
less to end-users by letting crowd workers prepare changes
before making them visible, while preventing redundant work
by leveraging the fact that workers actively use markers.

Programming Crowd Functions
Complex behaviors can also rely on a series of descriptions
given by a user. However, we assume that the crowd is dy-
namic and that workers come and go — no one worker can
be relied upon to be available for a fixed span of time. To
ensure that behaviors are retained even as the crowd changes,
we need workers to be able to record the instructions for how
to respond to input. Capturing this knowledge can be thought
of as ‘programming’ a crowd function – it defines an atomic
task that can be completed by any worker who arrives in the
future. Currently, the to-do task description serves this role,
but ongoing work will allow workers richer ways to pass on
knowledge. For instance, they may annotate the canvas with
animation paths or even point to recordings of past responses.

Automatically Capturing Behaviors
Many behaviors are associated with actions that are repeated
over time. We want to be able to not only allow the crowd to
simulate these behaviors, but also to learn when these behav-
iors should occur. The simplest way to do this is to identify
how a crowd worker responded to a user’s input (such as se-
lection), and ask them if this should always be the response. If
so, then we can record the set of actions they take in response
by bounding the sequence by the user input in the beginning
and the worker marking the to-do item complete at the end.

Ongoing work will allow Apparition to replay action se-
quences automatically when the appropriate input is received.
Workers and designers can mark this automatic action as in-
correct if a situation arises where it is not appropriate. We

will explore automatically finding the differences in the state
of the interface so that we can intelligently decide when to
execute recorded sequences.

Transitioning to Code
We are also exploring ways to add code directly. Since we
know the element type, we can begin to automatically add
Javascript event listeners, allowing designers to add real code
with low overhead. For example, if a designer edits a but-
ton element, we will show a pop-up window that lets them
enter code for a ‘click’ event handler. Elements can also be
easily referenced from code. This allows basic functions to
be implemented on-the-fly as desired, while more complex
functions are handled by the crowd.

Application developers can then use the partially crowd-
powered version of the system as a “living specification”
when creating production code. The existing code can be
used as a reference, and the notes that crowd workers have
made about behaviors can help clarify issues that might be
otherwise missed from a traditional paper writeup. Finally,
developers can use the crowd-powered version of the inter-
face to answer questions about use cases that might have been
otherwise missed or unclear from the documentation.

CONCLUSION
We have presented Apparition, a system that allows designers
to create working interface prototypes in real-time by sketch-
ing and describing its functionality in natural language. The
prototypes created by Apparition are over 90% accurate to the
user’s intent, and the system can respond to create elements
within 8 seconds and prototype behaviors within 3 seconds
of the user describing it. Apparition will allow designers to
create prototypes fast enough to iterate within single design
sessions, improving the feedback they receive.

ACKNOWLEDGEMENTS
The authors would like to thank Geza Kovacs and Patrick
Baudisch for inspiring this idea. This work was funded by
National Science Foundation Awards #IIS-1149709, #IIS-
1218209, #IIS-1351131, Google, an Alfred P. Sloan Founda-
tion Fellowship, and a Microsoft Research Ph.D. Fellowship.

REFERENCES
1. Bernstein, M. S., Brandt, J. R., Miller, R. C., and Karger,

D. R. Crowds in two seconds: Enabling realtime
crowd-powered interfaces. UIST 2011.

2. Bigham, J. P., Jayant, C., Ji, H., Little, G., Miller, A.,
Miller, R. C., Miller, R., Tatarowicz, A., White, B., White,
S., and Yeh, T. Vizwiz: nearly real-time answers to visual
questions. UIST 2010.

3. Cohen, P. R. The role of natural language in a multimodal
interface. UIST 1992.

4. Darley, J. and Latane, B. Bystander intervention in
emergencies: diffusion of responsibility. J. Pers. Soc.
Psych. 8(4) (1968): 377.

5. Davis, R. C., Saponas, T. S., Shilman, M., and Landay, J. A.
Sketchwizard: Wizard of oz prototyping of pen-based user
interfaces. UIST 2007.

6. Dow, S. P., Glassco, A., Kass, J., Schwarz, M., Schwartz,
D. L., and Klemmer, S. R. Parallel prototyping leads to
better design results, more divergence, and increased
self-efficacy. ACM Trans. Comput.-Hum. Interact. 17, 4
(2010), 18:1–18:24.

7. Dow, S. P., Mehta, M., MacIntyre, B., and Mateas, M. Eliza
meets the wizard-of-oz: Blending machine and human
control of embodied characters. CHI 2010.

8. Hartmann, B., Follmer, S., Ricciardi, A., Cardenas, T., and
Klemmer, S. R. D.note: Revising user interfaces through
change tracking, annotations, and alternatives. CHI 2010.

9. Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla, L.,
Burr, B., Robinson-Mosher, A., and Gee, J. Reflective
physical prototyping through integrated design, test, and
analysis. UIST 2006.

10. Hayes, P. J. Using a knowledge base to drive an expert
system interface with a natural language component. Expert
systems: the user interface (1988), 153–182.

11. Kelley, J. F. An iterative design methodology for
user-friendly natural language office information
applications. ACM Trans. Inf. Syst. 2, 1 (1984), 26–41.

12. Klein, K., Ziegart, J., Knight, A., Xiao, Y. Dynamic
Delegation: Shared, Hierarchical, and Deindividualized
Leadership in Extreme Action Teams. Admin. Sci. 2006.

13. Kulkarni, A., Can, M., Hartmann, B. Collaboratively
Crowdsourcing Workflows with Turkomatic. CSCW 2012,

14. Landay, J. A., and Myers, B. A. Interactive sketching for
the early stages of user interface design. CHI 1995.

15. Lasecki, W. S., Gordon, M., Koutra, D., Jung, M. F., Dow,
S. P., and Bigham, J. P. Glance: Rapidly coding behavioral
video with the crowd. UIST 2014.

16. Lasecki, W. S., Miller, C. D., Sadilek, A., Abumoussa, A.,
Kushalnagar, R. and Bigham, J. P. Real-time Captioning by
Groups of Non-Experts. UIST 2012.

17. Lasecki, W. S., Murray, K., White, S., Miller, R. C., and
Bigham, J. P. Real-time crowd control of existing
interfaces. UIST 2011.

18. Lasecki, W. S., Wesley, R., Nichols, J., Kulkarni, A., Allen,
J. F., and Bigham, J. P. Chorus: A crowd-powered
conversational assistant. UIST 2013.

19. Limpaecher, A., Feltman, N., Treuille, A., and Cohen, M.
Real-time drawing assistance through crowdsourcing. ACM
Trans. Graph. 32, 4 (2013), 54:1–54:8.

20. Lin, J., Newman, M. W., Hong, J. I., and Landay, J. A.
Denim: Finding a tighter fit between tools and practice for
web site design. CHI 2000.

21. Little, G., Chilton, L. B., Goldman, M., Miller, R.C. TurKit:
human computation algorithms on mechanical turk. UIST
2010.

22. Luther, K., Tolentino, J., Wu, W., Pavel, A., Bailey, B.,
Agrawala, M., Hartmann, B., and Dow, S. P. Structuring,
Aggregating, and Evaluating Crowdsourced Design
Critique. CSCW 2015.

23. Retelny, D., Robaszkiewicz, S., To, A., Lasecki, W. S.,
Patel, J., Rahmati, N., Doshi, T., Valentine, M., and
Bernstein, M. S. Expert Crowdsourcing with Flash Teams.
UIST 2014.

24. Maulsby, D., Greenberg, S., and Mander, R. Prototyping an
intelligent agent through wizard of oz. CHI 1993.

25. Murray, K. I. Multiverse: Crowd algorithms on existing
interfaces. CHI EA 2013.

26. Myers, B., Park, S., Nakano, Y., Mueller, G., and Ko, A.
How designers design and program interactive behaviors.
VLHCC 2008.

27. Rossen, B., and Lok, B. A crowdsourcing method to
develop virtual human conversational agents. Int. J.
Hum.-Comput. Stud. 70, 4 (2012), 301–319.

28. Schon, D. The reflective practitioner. 1984. Basic Books.
29. Wobbrock, J. O., Wilson, A. D., and Li, Y. Gestures without

libraries, toolkits or training: A $1 recognizer for user
interface prototypes. UIST 2007.

	Introduction
	Envisioned Interaction
	Outline and Contributions

	Background
	Easier Prototyping with Sketching and Wizard-of-Oz
	Crowdsourcing and Real-Time Human Computation
	Real-Time Crowdsourcing
	Crowdsourcing for Drawing and Rapid Evaluation

	Apparition
	System Architecture Design
	Canvas
	Roles

	Enabling Real-time Worker Coordination
	Naive coordination fails
	Write locks enable effective distributed coordination
	Supporting Concurrent Editing: Replace-at-Layer
	Protecting Against Malicious Workers

	Increasing Fidelity and Adding Behaviors
	From Mock-Up to Polished Prototype
	Prototyping Interactive Behaviors
	Showing User Interactions

	Adding Constraints

	Experiments
	8 Seconds from Sketches to Interfaces
	Workers React with Behaviors in 3 Seconds
	In-Progress Markers Prevented Production Blocking

	Discussion
	Deleting Content
	Remembering Interface Behaviors
	Communication

	Limitations

	Future Work
	Programming Crowd Functions
	Automatically Capturing Behaviors
	Transitioning to Code

	Conclusion
	Acknowledgements
	REFERENCES

