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Abstract

We present a comprehensive performance analysis of multiple appearance-based face recognition method-
ologies, on visible and thermal infrared imagery. We compare algorithms within and between modalities
in terms of recognition performance, false alarm rates and requirements to achieve specified performance
levels. The effect of illumination conditions on recognition performance is emphasized, as it underlines
the relative advantage of radiometrically calibrated thermal imagery for face recognition.

1 Introduction

Face recognition in the thermal infrared domain has received relatively little attention in the literature
in comparison with recognition in visible-spectrum imagery. Original tentative analyses have focused
mostly on validating thermal imagery of faces as a valid biometric [1, 2]. The lower interest level in
infrared imagery has been based in part on the following factors: much higher cost of thermal sensors
versus visible video equipment, lower image resolution, higher image noise, and lack of widely avail-
able data sets. These historical objections are becoming less relevant as infrared imaging technology
advances, making it attractive to consider thermal sensors in the context of face recognition. In the
current study, we focus our attention on longwave infrared (LWIR) imagery, in the spectral range of
8µ–12µ. Other regions of the infrared spectrum also hold promise, and will be considered in upcoming
work.

The influence of varying ambient illumination on systems using visible imagery is well-known to be
one of the major limiting factors for recognition performance [2, 3]. A variety of methods for compensat-

∗This research was supported by the DARPA Human Identification at a Distance (HID) program, contract #
DARPA/AFOSR F49620-01-C-0008.

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2006 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2006 to 00-00-2006  

4. TITLE AND SUBTITLE 
Appearance-Based Facial Recognition Using Visible and Thermal
Imagery: A Comparative Study 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Equinox Corporation,9 West 57th Street,New York,NY,10019 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

28 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



ing for variation in illumination have been studied in order to boost recognition performance, including
histogram equalization, laplacian transforms, gabor transforms, logarithmic transforms, and3-D shape-
based methods. These techniques aim at reducing the within-class variability introduced by changes in
illumination, which has been shown to be often larger than the between-class variability in the data, thus
severely affecting classification performance. Detailed surveys of face recognition algorithms can be
found in [4] and [5].

Thermal infrared imagery of faces is nearly invariant to changes in ambient illumination [6]. Con-
sequently, no compensation is necessary, and within-class variability is significantly lower than that
observed in visible imagery. As a matter of fact, it is well-known that under the assumption of Lam-
bertian reflection, the set images of a given face acquired under all possible illumination conditions is
a subspace of the vector space of images of fixed dimensions [7]. In sharp contrast to this, the set of
LWIR images of a face under all possible imaging conditions is contained in a bounded set. It follows
that under general conditions we can expect lower within-class variation for LWIR images of faces than
their visible counterpart. It remains to demonstrate that there is sufficient between-class variability to
ensure high discrimination.

Previous work by the authors provides a starting point for the current analysis. In [8], the authors
perform a comparison of recognition performance between visible and longwave infrared imagery, based
on two standard appearance-based algorithms: Eigenfaces and ARENA. The preliminary nature of that
study limited the performance analysis to top-match recognition rates on various scenarios obtained by
varying the training and testing sets, in a fashion reminiscent ofn-fold cross-validation. No mention
is made of false-alarm rates, receiver-operating-characteristic (ROC) curves or peformance-versus-rank
curves.

The current work builds on our previous research and expands to cover those areas not touched-upon
therein. In addition, we provide a much broader comparison including several other appearance-based
face recognition algorithms based on more sophisticated representations, better approximating the state-
of-the-art in the field. While still within the limitations imposed by existing data sets, we feel that the
analysis below provides a firm basis for evaluation of thermal imagery as a valid biometric identification
tool.

2 Data Collection and Calibration

All data used to obtain the results below was acquired with a newly developed sensor capable of cap-
turing simultaneous coregistered video sequences with a visible CCD array and LWIR microbolometer.
This is of particular significance for our tests, since it allows performance comparison on precisely the
same imagery, much like using the red and blue channels of a color image.

We collected the data during a two-day period at the National Institute of Standards and Technology
(NIST). The format consists of240x320 pixel image pairs, co-registered to within1/3 pixel, where the
visible image has8 bits of grayscale resolution and the LWIR has12 bits.

2.1 Calibration Procedure

In order to perform proper invariance analysis, it is necessary that thermal IR imagery be radiometrically
calibrated. Radiometric calibration achieves a direct relationship between the grayvalue response at a



pixel and the absolute amount of thermal emission from the corresponding scene element. This rela-
tionship is called responsivity. Thermal emission is measured as flux in units of power such asW/cm2.
The grayvalue response of thermal IR pixels for LWIR cameras is linear with respect to the amount of
incident thermal radiation. The slope of this responsivity line is called thegain and they-intercept is
theoffset. The gain and offset for each pixel on a thermal IR focal plane array is significantly variable
across the array. That is, the linear relationship can be, and usually is, significantly different from pixel
to pixel. This is illustrated in Figure 1 where both calibrated and uncalibrated images are shown of the
same subject.

Figure 1: Calibrated (right) and uncalibrated LWIR images. There is significant pixel-wise difference in
responsivity which is removed by the calibration process.

While radiometric calibration provides non-uniformity correction, the relationship back to a physical
property of the imaged object (its emmisivity) provides the further advantage of data where environmen-
tal factors contribute to a much lesser degree to within-class variability.

An added bonus of radiometric calibration for thermal IR is that it simplifies the problem of skin
detection in cluttered scenes. The range of human body temperature is quite small, varying from96◦F
to 100◦F. We have found that skin temperature at70◦F ambient room temperature to also have a small
variable range from about79◦F to 83◦F. Radiometric calibration makes it possible to perform an initial
segmentation of skin pixels in the correct temperature range.

Since the responsivity of LWIR sensors is very linear, the pixelwise relation between grayvalues and
radiant power can be computed by a process of two-point calibration. Images of a black-body radiator
covering the entire field of view are taken at two known temperatures, and thus the gains and offsets are
computed using the radiant power for a black-body at a given temperature.

Note that this is only possible if the emissivity curve of a black-body as a function of temperature
is known. This is given by Planck’s Law, which states that the flux emmited at the wavelengthλ by a
blackbody at a given temperatureT in W/(cm2µm) is given by

W (λ, T ) =
2πhc2

λ5
(
e

hc
λkT − 1

) (1)

whereh is Planck’s constant,k is Boltzman’s constant, andc is the speed of light in a vacuum. To
relate this to the flux observed by the sensor, the responsivity,R(λ) of the sensor must be taken into
account. This allows the flux observed by a specific sensor from a black-body at a given temperature to
be determined:



W (T ) =

∫
W (λ, T )R(λ)dλ . (2)

For our sensor, the responsivity is very flat between8 and12 microns, so we can simply integrate
Equation (1) forλ between8 and12. The Planck curve and the integration process are illustrated in
Figure 2.
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Figure 2: The Planck curve for a black-body at 303K (roughly skin temperature), with the area to be
integrated for an 8-12µm sensor shaded.

One can achieve marginally higher precision by taking measurements at multiple temperatures and
obtaining the gains and offsets by least squares regression. For the case of thermal images of human
faces, we take each of the two fixed temperatures to be below and above skin temperature, to obtain the
highest quality calibration for skin levels of IR emmision.

It should be noted that a calibration has a limited life span. If a LWIR camera is radiometrically
calibrated indoors, taking it outdoors where there is a significant ambient temperature difference will
cause the gain and offset of linear responsivity of the focal plane array pixels to change. Therefore,
radiometric calibration must be performed again. This effect is mostly due to the optics and FPA heating
up, and causing the sensor to “see” more energy as a result. Also, suppose two separate data collections
are taken with two separate LWIR cameras but with the exact same model number, identical camera
settings and under the exact same environmental conditions. Nonetheless, no two thermal IR focal plane
arrays are ever identical and the gain and offset of corresponding pixels between these separate cameras
will be different. Yet another example; suppose two data collections are taken one year apart, with the
same thermal IR camera. It is very likely that gain and offset characteristics will have changed. Radio-
metric calibration standardizes all thermal IR data collections, whether they are taken under different
environmental conditions or with different cameras or at different times.



The grayvalue for any thermal IR image is directly physically related to thermal emission flux which
is a universal standard. This provides a standardized thermal IR biometric signature for humans. The
images that face recognition algorithms can most benefit from in the thermal IR are not arrays of gray
values, but rather arrays of corresponding thermal emission values. If there is no way to relate grayvalues
to thermal emission values then it is not possible to do this.

2.2 The Collection Setup

Figure 3: Camera and lighting setup for data collection.

For the collection of our images, we used the FBI mugshot standard light arrangement [9], shown in
Figure 3. Image sequences were acquired with three illumination conditions: frontal, left lateral and
right lateral. For each subject and illumination condition, a40 frame, four second, image sequence
was recorded while the subject pronounced the vowels looking towards the camera. After the initial
40 frames, three static shots were taken while the subject was asked to act out the expressions ‘smile’,
‘frown’, and ‘surprise’. In addition, for those subjects who wore glasses, the entire process was done
with and without glasses. Figure 4 shows a sampling of the data in both modalities.

A total of 115 subjects were imaged during a two-day period. After removing corrupted imagery from
24 subjects, our test database consists of over25, 000 frames from91 distinct subjects. Much of the
data is highly correlated, so only specific portions of the database can be used for training and testing
purposes without creating unrealistically simple recognition scenarios. This is explained in Section 3.
The entire image collection used for the experiments below is available at the authors’ website1.

3 Testing Methodology

Following the approach in [8], we selected subsets of our face database to be used as testing and training
sets. Inn-fold cross-validation experiments, one repeatedly selects a random subset of the available data

1http://www.equinoxsensors.com/hid



Figure 4: Sample imagery from our data collection.

as a training set, and testing is performed on the remaining data. Repeating this process multiple times
and reporting mean performance yields statistically significant results. We are particularly interested
in exposing the relation between illumination, as well as facial expression variation and recognition
peformance. Therefore, we chose our training/testing pairs in a biased fashion rather than randomly, in
order to elicit the desired information. Note that based on the choices below, our testing methodology
is stricter, and should produce lower average results than random cross-validation. Additionally, since
much of our data is highly correlated due to the acquisition procedure, the biased choices below help
decorrelate testing and training sets.

We construct multiple query sets for testing and training. Frames0, 3 and9 from a given image
sequence are referred to as vowel frames. Frames corresponding to ‘smile’, ‘frown’ and ‘surprise’ are
referred to as expression frames. Our query criteria are as follows:

VA: Vowel frames, all subjects, all illuminations.
EA: Expression frames, all subjects, all illuminations.
VF: Vowel frames, all subjects, frontal illumination.
EF: Expression frames, all subjects, frontal illumination.
VL: Vowel frames, all subjects, lateral illumination.
EL: Expression frames, all subjects, lateral illumination.
VG: Vowel frames, subjects wearing glasses, all illuminations.
EG: Expression frames, subjects wearing glasses, all illuminations.
RR: 500 random frames, arbitrary illumination.

The same queries were used to construct sets for visible and LWIR imagery, and all LWIR images were
radiometrically calibrated. Locations of the eyes and the frenulum were semi-automatically located in
all visible images, which also provided the corresponding locations in the co-registered LWIR frames.
Using these feature locations, all images were geometrically transformed to a common standard, and



cropped to eliminate all but the inner face.
When evaluating algorithms, three subsets of images are of interest [10]:

• The training setT

• The gallery setG

• The probe setP

The usage ofT andP is essentially identical to that of training and test data in machine learning.
However, the gallery contains exemplars for the people to be recognized. It has no direct correlate in
the common machine learning nomenclature. In some casesT andG may be the same set. In other
words, an algorithm may be trained on a set of images and then subsequently the trained algorithm may
use the same set as exemplars against which to match probe images. However, this need not be the
case. Query set RR is used as a training set in computing all relevant subspaces and basis sets for the
algorithms below, unless otherwise noted. Additionally, some probe/gallery combinations are omitted
from the tables due to inclusion relations.

The relation between vowel frames and expression frames is comparable to that betweenfa andfb sets
in the FERET database, although our expression frames are often more different from vowel frames than
in the FERET case. Frontal and lateral illumination frames are comparable tofa versusfc sets in FERET.
We should also note that queriesV G, EG andRR were only used as testing sets and not as training sets.
The maximum possible correct classification performance achievable for those combinations is lower
than100%, and therefore those combinations were ignored to simplify the analysis.

Tabular performance results reported below are for the top match. We also report, in graphical form,
recognition performance as a function of rank. In this case, for a fixed rankk ≥ 1, a probe is considered
correctly classified if any of the topk matches are correct. Note that this is not the same as ak-nearest-
neighbor classifier.

When reviewing rank-ordered match results, in addition to the rate of correct recognition, we must
also consider the false-alarm rate incurred by relaxing our correctness criterion. LetT be a training set
andP a set of probes. Forp ∈ P, let Mk

p be the distance fromp to thekth closest training observation,
andHk

p = {t ∈ T | dist(p, t) ≤ Mk
p }. Defineαp to be1 if any member ofHk

p belongs to the same class
asp, and zero otherwise. Further define‖Hk

p‖ to be the number of distinct class labels among elements
of Hk

p and‖P‖ the number of probes inP. With this notation, the correct classification rate and false
alarm rate are respectively given by

ξ =
1

‖P‖
∑
p∈P

αp , φ =
1

‖P‖
∑
p∈P

‖Hk
p‖ − αp

‖Hk
p‖

.

4 Algorithms Tested

The testing methodology outlined above was applied to several appearance-based algorithms. We should
point out that the restriction to appearance-based techniques was motivated by the fact that geometry-
based methods depend only on the ability to accurately locate facial landmarks in the image. While such
landmarks may be more easily located in one modality over the other, the effect of the imaging modality



on the final recognition outcome is indirect, and thus an analysis of that effect would be less revealing.
In addition, appearance-based methods have generally shown higher performance than those based on
facial geometry alone.

All algorithms tested consist of a projection to a subspace of the image space followed by1-nearest
neighbor classification. We also experimented withk-nearest neighbor algorithms for different values of
k > 1, and found thatk = 1 achieves the best results. The different subspace constructions are outlined
below. Digital images are converted into vectors by scanning in raster order.

4.1 Eigenfaces (PCA)

This is perhaps the most popular algorithm in the field [11], [12], [13] and it is a technique commonly
used in dimensionality reduction in computer vision and particularly in face recognition. PCA tech-
niques, also known as Karhunen-Loeve methods, choose a linear projection that reduces the dimension-
ality while maximizing the scatter of all projected samples.

Using the notation in [14], PCA can be described formally as follows. Given a set ofN sample images
{x1, x2, ..., xN} taking values in ann-dimensional image space, PCA finds a linear transformationW T

mapping the originaln-dimensional image space into anm-dimensional feature space, wherem < n.
The new feature vectorsyk ∈ Rm are defined by the following linear transformation:

yk = W T xk, k = 1, 2, . . . , N (3)

whereW ∈ R is a matrix with orthonormal columns.
We define the total scatter matrixST as:

ST =
N∑

k=1

(xk − µ)(xk − µ)T (4)

where n is the number of sample images, andµ ∈ Rn is the mean image of all samples. After applying
the linear transformationW T , the scatter of the transformed feature vectors{y1, y2, . . . , yN} isW T ST W .
In PCA the projectionWopt is chosen to maximize the determinant of the total scatter matrix of the
projected samples, i.e.,

Wopt = arg max
W

|W T ST W | = [w1w2 . . . wm] (5)

where{wi|i = 1, 2, . . . ,m} is the set ofn-dimensional eigenvectors ofST corresponding to them
largest eigenvalues. Since these eigenvectors have the same dimension as the original images, they are
referred to as eigenfaces. They are also referred to as principal components.

Theface spaceis computed by taking a (usually separate) set of training observations, and finding the
eigenfaces of this set. While each face from the training set can be represented as a linear combination
of the eigenfaces, they can also be approximated by a linear combination of the “best” eigenfaces, those
that have the largest eigenvalues. In fact, it is well-known that, for a fixed choice ofn, the subspace
spanned by the firstn eigenvectors is the one with lowestL2 reconstruction error for any vector in the
training set used to create the face space. Under the assumption that the training set is representative
of all face images, the face space is taken to be a good low-dimensional approximation to the set of all
possible face images under varying conditions.



4.2 Linear Discriminant Analysis (LDA)

It is a classical result that while the feature subspace used by Eigenfaces, obtained through principal
component analysis, is optimal in terms ofL2 reconstruction error, it has no optimality properties in
terms of class discriminability. In fact, class membership is not taken into account in the construction of
the face space.

Class specific methods, such as the one based on Fisher’s Linear Discriminant (FLD) [15], [16] may
get better recognition rates than the Eigenface method. This method selects the subspaceW in such
a way that the ratio of the between-class scatter and the within-class scatter is maximized [14]. The
between-class scatter matrix is defined as

SB =
c∑

i=1

Ni(µi − µ)(µi − µ)T (6)

and the within-class scatter matrix is

SW =
c∑

i=1

∑
xk∈Xl

(xk − µi)(xk − µi)
T (7)

whereµi is the mean image of classXi, andNi is the number of sample in classXi. If SW is nonsingular,
the optimal projectionWopt is chosen as the matrix with orthonormal columns that maximizes the ratio
of the determinant of the between-class scatter matrix of the projected samples to the determinant of the
within-class scatter matrix of the projected samples:

Wopt = argmax
|W T SBW |
|W T SW W |

= [w1w2 . . . wm] (8)

where{wi|i = 1, 2, . . . , wm} is the set of generalized eigenvectors ofSB andSW corresponding to the
m largest generalized eigenvalues{λi|i = 1, 2, . . . ,m}, i.e.

SBwi = λiSW wi, i = 1, 2, . . . ,m (9)

There are at mostc− 1 nonzero generalized eigenvalues, wherec is the number of classes.
Since the rank of the within-class scatter matrixSW is at mostN − c, and often the number of images

in the learning setN is much smaller than the number of pixels in each imagen, SW is often singular.
To avoid this problem, the method known asFisherfaceswas proposed in [14]. Before computing the
Fisher linear discriminant, the image set is projected to a lower dimensional space obtained using the
PCA algorithm.

We have found that reducing the dimensionality of the space improves recognition results even ifSW

is not singular.
In our experiments we considered two slight variants of the Fisherfaces algorithm: the classic ap-

proach (referred to as LDAg) where the projection matrix W was computed from the face gallery, and
another approach (referred to as LDAt) that used a separate training set for computing the projection
matrix. This training set contained random images of the people used during testing.



4.3 Local Feature Analysis (LFA)

Another subspace representation for facial data based on second order statistics results by enforcing
topographic indexing of the basis vectors, and minimizing their correlation. Local Feature Analysis [17]
achieves this by constructing a family of feature detectors based on a PCA decomposition, which are
locally correlated. A selection, or sparsification, step is then used to produce a minimally correlated
subset of features, which define the subspace of interest. While the original method is geared at optimal
reconstruction, sparsification techniques consistent with the requirements of a recognition system are
also possible. We use two subselection methods, one following [18] and the other explained in detail
below, referred to as LFAb and LFAe, respectively.

Given the eigenvectorsΨr(x) with eigenvaluesλr, the following two functions are constructed:

K(x, y) =
N∑

r=1

Ψr(x)
1√
λr

Ψr(y) (10)

P (x, y) =
N∑

r=1

Ψr(x)Ψr(y) (11)

K(x, y) is the kernel of the representation, andP (x, y) is the residual correlation of the outputs. The
rows of K contain kernels with spatially local properties. The kernel matrixK transforms the face
set X into the LFA output O: O = KXT . The original images can be reconstructed fromO by
XT = K−1O. LFA produces ann dimensional representation, wheren is the number of pixels in the
images. Since we haven outputs described byp << n linearly independent variables, there are residual
correlations in the output. Penev and Atick [17] proposed an algorithm for reducing the dimensionality
of the representation by choosing a subsetM of outputs that were as decorrelated as possible. Since their
method was designed for image representation, not for recognition, the algorithm selected a different set
of points for each image, which is problematic for recognition.

In order to make the representation suitable for recognition, we used two different sparsification meth-
ods, one described by Bartlett in [18], to which we will refer to as LFAb, and one devised by us, to which
we will refer to as LFAe.

Similarly to Penev and Atick’s method, LFAb is an iterative sparsification algorithm based on multiple
linear regression. At each step, the point with the largest mean reconstruction erroracross all of the
imageswas added toM.

At each step, the point added toM is chosen as the kernel that maximizes the image reconstruction
error:

arg max(||O −Orec||2) (12)

whereOrec is a reconstruction of the complete output,O, using a linear predictor on the subsetM of
the outputsO. The linear predictor is of the form:

Y = βX (13)

whereY = Orec, β is the vector of the regression parameters, andX = O(M, N). O(M, N) denotes
the subset ofO corresponding to the points inM for all N images.β is calculated from



β =
YX

(X TX )
=

(Orec)T O(M, N)

O(M, N)T O(M, N)
(14)

This equation can also be expressed in terms of the correlation matrix of the outputs,C = OT O:

β = C(M, N)C(M,M)−1 (15)

The termination condition can be either|M| = N or (||O −Orec||2) ≤ ε.
The LFAe algorithm sparsifies the LFA representation by choosing kernels that are as uncorrelated

as possible and cover a large area of the image. At each step, the algorithm chooses the kernel that
maximizes the square of the total residual correlation ofM:

arg max(||P 2 − P 2
total||) (16)

wherePtotal is the sum of the residual correlations of the kernels already chosen.

4.4 Independent Component Analysis (ICA)

Principal component analysis seeks an orthonormal basis for the data space with respect to which the
marginal training distributions are uncorrelated. Independent component analysis goes farther by requir-
ing a basis (not orthogonal) such that the corresponding marginals are statistically independent. Note
that these conditions are equivalent if the data is globally Gaussian, but that is hardly ever the case
in practice. Original motivation for this decomposition came from the need to separate audio streams
into independent sources without prior knowledge of the mixing process [19], [20]. Computation of
the independent components cannot be done by solving an algebraic system of equations, and rather
must be done by numerically minimizing a criterion function. Different criterion functions exist, based
on kurtosis or other higher order moments, mutual information between marginals or entropy criteria,
all yielding comparable results for our application. We used the FastICA package available as public-
domain in MATLAB at
http://www.cis.hut.fi/projects/ica/fastica. This package implements the fast fixed-point algorithm for
independent component analysis described in [21]. Similarly to the previously described algorithms,
this algorithm computes a matrixW that is used to project the images onto a subspace where nearest-
neighbor classification is performed.

If we denote byx = (x1, x2, . . . , xm)T a zero-meanm-dimensional random variable that can be ob-
served, and bys = (s1, s2, . . . , sn)T its n-dimensional transform, then the ICA problem is the determine
a constant (weight) matrixW so that the linear transformation of the observed variables

s = Wx (17)

yields componentssi that are statistically as independent from each other as possible. ICA is only
possible if every independent component has non-gaussian distribution.

The one-unit FastICA algorithm finds a direction, i.e. a unit vectorw such that the projectionwT x
maximizes nongaussianity. A fundamental result of information theory is thata gaussian variable has
the largest entropy among all random variables of equal variance. This means that entropy can be used
to measure nongaussianity. To obtain a measure of nongaussianity that is zero for a gaussian variable



and always nonnegative, a slightly modified version of the differential entropy is used, called negentropy.
Negentropy is defined as follows:

J(y) = H(ygauss)−H(y) (18)

whereygauss is a Gaussian random variable of the same covariance matrix asy. J can be obtained using
the following approximation:

J(y) ∝ [E{G(y)} − E{G(ν)}]2 (19)

for practically any non-quadratic function G. Useful choices for G are:

G1(u) =
1

a1

log cosh a1u, G2(u) = − exp(−u2/2) (20)

To estimate several independent components, the one-unit FastICA algorithm needs to be run on
several units with weight vecorsw1, . . . , wn. To prevent different vectors from converging to the same
maxima, the outputswT

1 x, . . . wT
n x have to be decorrelated after every iteration.

In order to control the dimensionality of the target subspace, that is the number of independent com-
ponents, a PCA preprocessing step is applied before computation of the independent basis. Our subspace
dimension is fixed at 100, just like for PCA and LFA. Comparisons of ICA-based face recognition with
other methods can be found in [22], [18] and others.

5 Experimental Results and Discussion

Images were subsampled by a factor of10 in each dimension prior to experimentation. Then they were
masked using the binary mask in Figure 5 to remove any background clutter.

Figure 5: Binary mask used to remove background clutter from face images

After masking, visible images were zero-meaned and normalized to unit norm in order to provide
some measure of illumination compensation. This process is comparable to the histogram equalization
step in [23]. Thermal IR images were processed via two-point radiometric calibration.

With the exception of algorithm LDAg, we used query RR described in section 3 as a training set
for each algorithm and we varied the gallery and probe sets. For each valid pair of training and testing
sets, we computed the top-match recognition performance and receiver-operating-characteristic (ROC)
curves for each algorithm and both modalities.



5.1 PCA

The subspace for PCA was chosen to be100-dimensional and was computed from the RR set. Figure 6
shows the first10 eigenfaces in the visible, as well as in the infrared domain.

Figure 6: First 10 eigenfaces in the visible (top row) and LWIR (bottom row) domains

Table 1 shows the top-match performance of the PCA algorithm in visible and in LWIR. Visible
results are reported above the corresponding LWIR results. While the algorithm performs reasonably
well in the visible domain in some cases, the performance is extremely low if the illumination conditions
change from the gallery set to the probe set, reaching a minimum of 35%. The LWIR domain deals much
better with changes in visible illumination, and the overall performance increases from 72% in visible
to 95% in LWIR (see also Table 7). Regardless of the variation in illumination conditions, the algorithm
performs consistently better in the LWIR domain.

VA EA VF EF VL EL

VA
(
0.857
0.979

) (
0.749
0.973

) (
0.511
0.928

) (
0.887
0.990

) (
0.741
0.965

)
EA

(
0.795
0.949

) (
0.503
0.899

) (
0.699
0.951

) (
0.669
0.934

) (
0.855
0.983

)
VF

(
0.794
0.984

) (
0.792
0.952

) (
0.664
0.970

) (
0.449
0.945

)
EF

(
0.722
0.939

) (
0.719
0.914

) (
0.351
0.909

) (
0.576
0.951

)
VL

(
0.890
0.976

) (
0.622
0.960

) (
0.369
0.916

) (
0.890
0.975

)
EL

(
0.832
0.954

) (
0.391
0.891

) (
0.544
0.925

) (
0.832
0.947

)
VG

(
0.921
0.970

) (
0.841
0.993

) (
0.657
0.947

) (
0.935
1.000

) (
0.811
0.963

)
EG

(
0.867
0.961

) (
0.620
0.932

) (
0.786
0.973

) (
0.754
0.954

) (
0.899
0.990

)
RR

(
0.968
0.994

) (
0.888
0.984

) (
0.706
0.968

) (
0.578
0.948

) (
0.840
0.974

) (
0.772
0.964

)
Table 1: PCA performance in visible (top) and in LWIR (bottom)

Figure 7 shows the ROC curve and the performance versus rank curve for one of the best PCA perfor-
mances, obtained with VA as gallery and RR as the set of probes. Although the performance is already
high in the visible range at 96.8%, performance in LWIR is even better at 99.4% (note the smaller range
on the vertical axis). The improvement in LWIR over the visible range is even more visible in cases
where the algorithm performs poorly in the visible range, as in the case where VF was used as gallery,



and EL was the probe set. In this case both the illumination conditions and the facial expression were
different in the gallery and probe images. Performance in the visible domain was 39.1%. In LWIR it
increased to 89.1%. The ROC and performance versus rank curves can be seen in Figure 8.
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Figure 7: ROC and performance versus rank curves for PCA with gallery VA and probe set RR.

5.2 LDA

For the LDA algorithm we first reduced the dimensionality of the image space to 200 by performing
PCA. We then reduced the dimensionality further by running the linear discriminant algorithm. LDA
subspaces have as many dimensions as classes in the training set, minus one. In our case this amounted
to 90.

The basis vectors of the Fisherface space have high frequency and at a high level do not seem to
resemble the images they were derived from (see Figure 9).

We tested two versions of the Fisherfaces algorithm, one trained on query RR (referred to as LDAt),
and the other trained on the image gallery (LDAg). The performance of the two versions was very
similar. One possible reason is that query RR contains images of all the people that appear in the other
queries, so all the classes are represented.

LDA (both versions that we tested) performs much better than PCA in the visible domain and deals
well even with changes in illumination. The LWIR domain brings further improvements. In fact, LDA is
by far our best performing algorithm in both domains. The top-match performance of LDAt and LDAg
can be seen in tables 5.2 and 3 respectively.

For the LDAt version, the best performance in visible (99.4%) is obtained when VL is used as the
gallery, and RR is used as the probe set. This doesn’t leave much room for improvement, but in LWIR,
the performance reaches 99.8%. The ROC and performance versus rank curves can be seen in Figure
10.

The ROC and performance versus rank curve for the worst performance (83.6% in visible and 93.7%
in LWIR for gallery EL and probe set VF) can be seen in Figure 11. Again, use of the LWIR domain
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Figure 8: ROC and performance versus rank curves for PCA with gallery VF and probe set EL.

Figure 9: 10 fisherfaces in the visible (top row) and LWIR (bottom row) domains

VA EA VF EF VL EL

VA
(
0.936
0.984

) (
0.982
0.985

) (
0.848
0.935

) (
0.987
0.991

) (
0.929
0.973

)
EA

(
0.897
0.961

) (
0.852
0.936

) (
0.952
0.968

) (
0.877
0.940

) (
0.981
0.987

)
VF

(
0.952
0.979

) (
0.910
0.947

) (
0.963
0.974

) (
0.936
0.952

)
EF

(
0.891
0.942

) (
0.884
0.932

) (
0.840
0.914

) (
0.946
0.962

)
VL

(
0.928
0.987

) (
0.973
0.978

) (
0.817
0.929

) (
0.925
0.984

)
EL

(
0.900
0.971

) (
0.836
0.937

) (
0.928
0.952

) (
0.896
0.953

)
VG

(
0.928
0.986

) (
0.986
0.990

) (
0.862
0.967

) (
0.993
0.997

) (
0.928
0.986

)
EG

(
0.913
0.971

) (
0.867
0.959

) (
0.971
0.987

) (
0.891
0.959

) (
0.987
0.992

)
RR

(
0.996
1.000

) (
0.960
0.994

) (
0.978
0.992

) (
0.886
0.964

) (
0.994
0.998

) (
0.952
0.986

)
Table 2: LDAt performance in the visible (top) and LWIR (bottom) domains
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Figure 10: ROC and performance versus rank curves for LDAt with gallery VL and probe set RR.

improved performance significantly.
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Figure 11: ROC and performance versus rank curves for LDAt with gallery EL and probe set VF.

The performance of the LDAg version of the algorithm is very close to that of LDAt. Performance
reaches 100% in one case in the visible domain, and in several cases in LWIR. One of the best perfor-
mances is obtained by gallery VL and probe set RR, while one of the worst is obtained for gallery VF
and probe set EL. Figures 12 and 13 show the ROC and performance versus rank curves for these cases.



VA EA VF EF VL EL

VA
(
0.976
0.997

) (
0.949
0.986

) (
0.832
0.958

) (
0.995
0.996

) (
0.960
0.992

)
EA

(
0.939
0.977

) (
0.800
0.936

) (
0.888
0.979

) (
0.917
0.966

) (
0.985
0.994

)
VF

(
0.986
1.000

) (
0.956
0.963

) (
0.986
0.988

) (
0.942
0.984

)
EF

(
0.928
0.979

) (
0.925
0.944

) (
0.884
0.951

) (
0.956
0.983

)
VL

(
0.971
0.996

) (
0.923
0.979

) (
0.769
0.956

) (
0.969
0.996

)
EL

(
0.945
0.977

) (
0.735
0.931

) (
0.830
0.968

) (
0.934
0.974

)
VG

(
0.965
0.993

) (
0.954
0.993

) (
0.862
0.970

) (
1.000
1.000

) (
0.960
0.990

)
EG

(
0.971
0.985

) (
0.848
0.975

) (
0.918
0.997

) (
0.956
0.985

) (
0.990
1.000

)
RR

(
0.996
1.000

) (
0.970
1.000

) (
0.926
0.984

) (
0.824
0.998

) (
0.992
0.998

) (
0.954
0.998

)
Table 3: LDAg performance in the visible (top) and LWIR (bottom) domains
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Figure 12: ROC and performance versus rank curves for LDAg with gallery VL and probe set RR.
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Figure 13: ROC and performance versus rank curves for LDAg with gallery VF and probe set EL.

5.3 LFA

After we computed the LFA representation of the images in query RR, we used two different methods
for sparsifying the local feature set and thus reducing the dimensionality of the space. The two methods
yielded very different results, as it can be seen from the first 10 features selected by each (Figures 14
and 15 respectively).

Figure 14: First 10 LFA components using Bartlett’s sparsification method in the visible (top row) and
LWIR (bottom row) domains

Although the features selected by our sparsification algorithm (LFAe) span a larger area of the face,
Bartlett’s sparsification method (LFAb) performs much better in the visible domain, obtaining an overall
recognition rate of 83%, as opposed to 74% (see Tables 4, 5, and 7). Similarly to the other algorithms,
performance in LWIR is significantly better than performance in the visible domain. But in this case the
difference between the performances of the two sparsification methods is insignificant.

Figures 16, 17, 18 and 19 show ROC curves and performance versus rank curves for the best and



Figure 15: First 10 LFA components using our sparsification algorithm in the visible (top row) and
LWIR (bottom row) domains

VA EA VF EF VL EL

VA
(
0.880
0.933

) (
0.930
0.956

) (
0.724
0.845

) (
0.973
0.993

) (
0.846
0.911

)
EA

(
0.795
0.897

) (
0.666
0.832

) (
0.903
0.929

) (
0.749
0.861

) (
0.966
0.974

)
VF

(
0.883
0.940

) (
0.833
0.876

) (
0.920
0.979

) (
0.789
0.890

)
EF

(
0.780
0.881

) (
0.747
0.840

) (
0.668
0.835

) (
0.900
0.923

)
VL

(
0.878
0.930

) (
0.894
0.934

) (
0.668
0.829

) (
0.875
0.922

)
EL

(
0.804
0.905

) (
0.624
0.827

) (
0.853
0.892

) (
0.790
0.874

)
VG

(
0.891
0.942

) (
0.912
0.970

) (
0.712
0.889

) (
0.972
0.995

) (
0.839
0.935

)
EG

(
0.822
0.942

) (
0.687
0.872

) (
0.879
0.961

) (
0.774
0.913

) (
0.961
0.985

)
RR

(
0.960
0.986

) (
0.900
0.950

) (
0.888
0.926

) (
0.760
0.874

) (
0.926
0.962

) (
0.888
0.926

)
Table 4: LFAb performance in the visible (top) and the LWIR(bottom) domains



worst performing gallery-probe combinations. As we observed with other algorithms, pairs that perform
poorly in the visible domain improve considerably in LWIR, but even good performances are improved
by switching modalities.

LFA performs better than PCA in the visible domain, worse in LWIR, and worse than LDA in both
modalities. Similarly to PCA, worst performance is achieved when both the illumination and facial
expression are varied between the gallery and probe images.
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Figure 16: ROC and performance versus rank curves for LFAb with gallery VL and probe VA.

VA EA VF EF VL EL

VA
(
0.794
0.936

) (
0.886
0.966

) (
0.567
0.838

) (
0.958
0.988

) (
0.761
0.928

)
EA

(
0.689
0.905

) (
0.531
0.833

) (
0.829
0.934

) (
0.641
0.880

) (
0.935
0.976

)
VF

(
0.762
0.933

) (
0.682
0.856

) (
0.876
0.965

) (
0.680
0.913

)
EF

(
0.638
0.879

) (
0.608
0.835

) (
0.527
0.842

) (
0.810
0.930

)
VL

(
0.811
0.937

) (
0.828
0.949

) (
0.509
0.829

) (
0.803
0.936

)
EL

(
0.715
0.918

) (
0.491
0.832

) (
0.740
0.900

) (
0.700
0.899

)
VG

(
0.816
0.954

) (
0.832
0.977

) (
0.581
0.882

) (
0.926
0.993

) (
0.777
0.949

)
EG

(
0.697
0.925

) (
0.512
0.867

) (
0.795
0.951

) (
0.656
0.906

) (
0.913
0.985

)
RR

(
0.884
0.986

) (
0.782
0.952

) (
0.764
0.944

) (
0.586
0.852

) (
0.844
0.970

) (
0.752
0.934

)
Table 5: LFAe performance in the visible (top) and LWIR (bottom) domains

5.4 ICA

The first 10 independent components in the visible and LWIR domains can be seen in Figure 20.
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Figure 17: ROC and performance versus rank curves for LFAb with gallery VF and probe set EL.
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Figure 18: ROC and performance versus rank curves for LFAe with gallery VL and probe VA.
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Figure 19: ROC and performance versus rank curves for LFAe with gallery VF and probe set EL.

Figure 20: First 10 independent components in the visible (top row) and LWIR (bottom row) domains

VA EA VF EF VL EL

VA
(
0.902
0.949

) (
0.955
0.977

) (
0.769
0.870

) (
0.983
0.992

) (
0.881
0.938

)
EA

(
0.843
0.933

) (
0.734
0.876

) (
0.928
0.948

) (
0.819
0.907

) (
0.977
0.983

)
VF

(
0.906
0.945

) (
0.858
0.888

) (
0.952
0.977

) (
0.853
0.915

)
EF

(
0.817
0.916

) (
0.798
0.868

) (
0.750
0.868

) (
0.935
0.951

)
VL

(
0.900
0.951

) (
0.932
0.966

) (
0.724
0.862

) (
0.895
0.950

)
EL

(
0.857
0.941

) (
0.701
0.880

) (
0.891
0.922

) (
0.855
0.928

)
VG

(
0.919
0.965

) (
0.958
0.993

) (
0.813
0.919

) (
0.990
0.997

) (
0.889
0.958

)
EG

(
0.891
0.951

) (
0.790
0.908

) (
0.937
0.966

) (
0.850
0.930

) (
0.987
0.997

)
RR

(
0.978
0.994

) (
0.918
0.964

) (
0.910
0.962

) (
0.798
0.896

) (
0.956
0.980

) (
0.906
0.952

)
Table 6: ICA performance in the visible (top) and LWIR (bottom) domains



The top-match performance of the ICA algorithm in the visible and LWIR domains can be seen in
Table 6. Again, performance in the LWIR is always better than in the visible.

ICA performs better than LFA with the two sparsification algorithms, but still worse than the Fisher-
faces algorithm. As in the case of PCA and LFA, worst performance is achieved when both the illumina-
tion and facial expression differ in the gallery and the probe set. LWIR brings a significant improvement
in this case, but it improves even the best visible performance. ROC and performance versus rank curves
for the best and worst performing gallery-probe set pairs can be seen in Figures 21 and 22.
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Figure 21: ROC and performance versus rank curves for ICA with gallery EL and probe set EG.

5.5 Discussion

Over all experiments performed, results on visible imagery are always inferior to those on LWIR im-
agery. This is not only the case for testing/training pairs where the illumination conditions are different,
but indeed holds even for those pairs where we have no intuitive reason to expect performance on LWIR
to be superior.

Recognition performance on visible imagery, regardless of algorithm, is worst for pairs where both
illumination and facial expression vary between the training and testing sets, followed by pairs where
either illumination or expression differ. Note that due to the reflective nature of visible light imaging, a
change in facial expression implies a change in shading (even in uniform areas of the face) as a result of
varying surface normals. Worst performance for LWIR recognition occurs for similar condition pairs.
We should briefly mention that the best improvement between algorithms on visible imagery occurs also
for these challenging pairs, indicating that more powerful representational methods are better able to
reject features with poor classification potential.

Table 7 shows mean, minimum and maximum performances for each algorithm over the multiple
experiments described above. Mean results are weighted according to the number of images in each
testing set. The most notable property of these results is that recognition performance is always better
with LWIR over visible imagery. Average error is reduced anywhere from47% to 84%, depending on
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Figure 22: ROC and performance versus rank curves for ICA with gallery VF and probe set EL.

the algorithm. Similar improvement is seen for the worst- and best-case results. An additional measure
of relative accuracy and stability of recognition results in the visible versus LWIR is given by the average
ratio of worst to mean performance. For visible imagery we have a ratio of0.729, while for LWIR we
have0.925, which indicates that LWIR recognition is both more accurate and more stable.

Visible LWIR
Error
Reduction
%

PCA 0.72 / 0.35 / 0.97 0.95 / 0.89 / 1.00 84/83/100

LDAt 0.92 / 0.82 / 0.99 0.97 / 0.91 / 1.00 58/53/100

LDAg 0.92 / 0.73 / 1.00 0.98 / 0.93 / 1.00 74/74/0

LFAb 0.83 / 0.62 / 0.97 0.91 / 0.83 / 0.99 47/54/82

LFAe 0.74 / 0.49 / 0.96 0.92 / 0.83 / 0.99 68/66/83

ICA 0.88 / 0.70 / 0.99 0.94 / 0.86 / 0.99 49/54/75

Table 7: Weighted mean, minimum and maximum performance on each modality, plus percentual re-
duction of error from visible to LWIR.

Representative receiver-operating-characteristic curves for each algorithm and both modalities show
that LWIR imagery is superior not only in terms of correct classification, but also in terms of lower false
alarm rates. In fact, in order to obtain recognition performance with visible imagery comparable to top-
match performance in LWIR, one must be willing to accept untenable false-alarm levels. Meanwhile
representative plots of performance as a function of rank-ordered result show that top-match perfor-
mance in the LWIR is comparable to that obtained with visible imagery when considering the top10-50
matches.



Our experiments allow us not only to compare the performance in the visible domain versus the
performance in the LWIR domain, but also to compare average performances of different algorithms in
the same domain.

In the visible domain, PCA has the lowest performance, followed by LFA with the two sparsification
methods, with Bartlett’s sparsification achieving better results, then ICA, then the two versions of LDA,
with very close performances. This can be expressed as:

PCA < LFAe < LFAb < ICA < (LDAg . LDA) (21)

with the performance increasing from left to right. Interestingly, this order changes in the LWIR domain.
Worst performance is achieved by LFA (the two sparsification methods obtain very similar results),
followed by ICA, then PCA, and finally LDA is still the best performing algorithm. So the previous
formula becomes:

(LFAb . LFAe) < ICA < PCA < (LDA . LDAg) (22)

with the performances increasing from left to right.
The difference in algorithm performance can further be illustrated with ROC and performance versus

rank curves for representative gallery/probe set pairs. We have chosen some of the more difficult cases:
a change in illumination for the visible domain, with VF as gallery and VL as probe set (see Figure 23),
and a change in facial expression regardless of illumination in LWIR, with EA as gallery and VA as
probe set (see Figure 24.
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Figure 23: ROC and performance-vs-rank curves of different algorithms in the visible domain
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Figure 24: ROC and performance-vs-rank curves of different algorithms in the LWIR domain

6 Conclusions

We performed a comprehensive comparison of classical and state-of-the-art appearance-based face recog-
nition algorithms applied to visible and LWIR imagery. Building on previous work, we emphasized the
role of varying the training and testing sets, as a tool to uncover strengths and weaknesses of algorithms
and imaging modalities. Confounding variation in imaging conditions were minimized by collecting
data with an innovative sensor capable of simultaneous coregistered acquisition of both modalities.

It becomes clear from our analysis, that LWIR imagery of human faces is not only a valid biomet-
ric, but almost surely a superior one to comparable visible imagery. This conclusion must be tempered
somewhat by the fact that while our data collection includes many challenging situations for visible
recognition algorithms, it may not contain sufficiently challenging ones for LWIR recognition. Unfortu-
nately, collecting such challenging imagery is costly and complicated, since we must introduce variation
due to ambient temperature, wind, and metabolic processes in the subject. Nonetheless, such data collec-
tion is currently underway, and experimental results will be reported elsewhere. As noted in [8], while
our current working database may not include the most challenging scenarios for LWIR face recogni-
tion, it is representative of uncontrolled indoor imagery, and thus our results are very encouraging in that
context.

Ongoing and future work includes analysis on more challenging LWIR imagery, improved calibration
methods to further reduce environmental distractors, and most importantly fusion of both modalities.
Preliminary results on fusion of modalities are extremely promising, indicating that a further reduction
of error of50% over LWIR performance may be possible.
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