
  

 
Abstract—Digital signage often uses a large display with the 

camera placed on the outer frame and set with a wide angle to 

capture the face of the viewer. In some cases the viewer’s iris is 

obstructed due to the gaze position of the viewer. In this study, 

we present an appearance-based gaze estimation method that 

can be used for digital signage even when the iris is not fully 

visible. The proposed approach uses the angle of the head and 

the image of the eye area as features for a neural network 

machine learning algorithm. Our subject experiments confirm 

that we achieve accurate focus-point gaze estimation. 

 
Index Terms—Gaze estimation, digital signage, head pose, 

neural network.  

 

I. INTRODUCTION 

Posters attached to physical structures (e.g., walls) have 

thus far been the main medium for indoor and outdoor 

advertising and information displays. These paper posters are 

costly to update and are not conducive to presenting 

information tailored to the location or time. The electronic 

billboard, referred to as digital signage (Fig. 1), is emerging 

to solve these problems. Digital signage is capable of 

real-time operation by using communication networks. 

Content changes are easily accomplished, and these updates 

can be delivered at any time. As a result, digital signage has 

been spreading rapidly. 

 

 
Fig. 1. An example of digital signage. 

 

Our objective is to provide a system that activates ad 

distribution in digital signage. Our design requirements 

include: tailoring content to the interests of the viewers, 

determining the optimal signage positioning, and using the 
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viewer’s gaze for reactive avatars and effects. These features 

lead to increased consumer attention and are thus highly 

beneficial for advertisers. In order to provide such a system, 

information about the gaze direction, head position, and 

behavior of the audience is vital. Our work focuses on gaze 

estimation, which is the fundamental element of these 

systems. 

Existing gaze-estimation methods can be grouped into 

three categories. The first type is an infrared irradiation 

method [1]-[3]. The gaze direction is estimated by detecting 

the position of the pupil from the light reflected by the 

corneal surface in the eye (Purkinje image).This method 

boasts highly accurate results to approximately one degree. 

However, the placement of the infrared camera and light 

source is problematic since the eye must be illuminated by 

the infrared light. Moreover, this method requires 

high-resolution images of the eye region to detect the 

Purkinje image. Finally, device configuration is complicated 

as it entails multiple components interacting. The second 

gaze-estimation method type is the model-based approach 

[4]-[7]. This category can be further subdivided into two 

types. One approach estimates the gaze direction from the 

ellipse fitting parameters for the observed elliptical iris area. 

The other estimates gaze direction as a three-dimensional 

vector connecting the center of the iris and the eyeball center.  

of these approaches perform gaze estimation using a 

three-dimensional model of the eyeball. They require very 

accurate measurements taken from high-resolution images of 

the eye area. Therefore, the viewer placement is constrained 

to the vicinity of the camera. Furthermore, the computation of 

the eyeball rotation angle in the head entails an increased 

processing time. The third main gaze estimation type is the 

appearance-based approach. These gaze direction estimation 

techniques use machine learning algorithms such as nearest 

neighbors and neural networks to perform pattern recognition 

on images of the eye area [8]-[11]. With appearance-based 

methods, it is possible to estimate the gaze direction with a 

sufficient degree of accuracy even when using a 

low-resolution image since a three-dimensional model of the 

eyeball is not required. The viewer is not as constrained with 

respect to position in relation camera. However, 

appearance-based methods are affected by changes in the 

relative position of the face and the attitude of the head. 

As described, existing methods have significant drawbacks 

for practical applications. Infrared irradiation methods are 

difficult to adapt f or digital signage gaze estimation since an 

infrared emitter is required. Both the model-based approach 

and infrared irradiation approach suffer from a reduction in 

estimation accuracy if the iris or reflected infrared light are 

not fully visible in the image. Since digital signage typically 

uses a large display, the camera must be installed outside the 
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display area. As a result of the often acute angle between the 

camera and the viewer, the iris can be occluded according to 

the gaze direction. 

In this paper, we propose a gaze estimation method for 

digital signage that overcomes many of the problems with 

existing systems. Since it is appearance-based, our system 

does not require any infrared equipment and is less perturbed 

by the relative positions of the viewer and camera. We 

estimate the head pose to address the effect of head-attitude 

changes on existing appearance-based methods. A feature of 

the proposed method consists in using the angle information 

of the face. We use a neural network machine learning 

algorithm with the image of the eye region and the angle of 

the face as input features. The angle of the face is obtained 

from the head pose estimation. We thus achieve a robust gaze 

estimation for digital signage. 

 

II. PROPOSED METHOD 

A. Overview of Proposed Method 

The main objective of our work (see Fig. 2 for an overview) 

is to determine which of 12 subdivided areas of the digital 

signage the viewer is watching (see Fig. 1 for an example of 

digital signage, see Fig. 3 for the area divisions used). In this 

study, the granularity of the divided areas was considered 

sufficient for digital signage applications. We determine head 

pose, as well as the feature points and angle of the face from 

the camera image. The area of interest (the eye area) is 

cropped based on the feature points corresponding to the eyes. 

The angle of the face and the pixel intensities of the eye area 

are the input features to the neural networks.  

 

 
Fig. 2. Overview of proposed method. 

 

B. Head Pose Estimation Using Faceapi 

In this work, we use Seeing Machines’ (an Australian 
company) face API face tracking tool for head pose 

estimation. The face API performs face tracking, feature 

point selection, and face angle detection. The face angle is 

obtained from the head pose estimation. 

The face angle is given by pitch, yaw, and roll as shown in 

Fig. 4(a). Pitch is the angle of the x-axis, yaw is the angle of 

the y-axis, and roll is the angle of the z-axis (see Fig. 

4(b)).The angle ranges from face API are−30 to 60 degrees 

for pitch, −90 to 90 degrees for yaw, and−90 to90 degrees for 

roll. 

C. Extraction of the Eye Area 

We determine the area of interest from the eye feature 

points obtained from face API. Fig. 5(a) shows the face 

feature points which are be obtained from face API. The eight 

feature points of the eye contour are then extracted (Fig. 

5(b)). 

 

 
Fig. 3. Digital signage area divisions used. 

 

Fig. 6 shows the normalization process to prepare the input 

for the neural networks. Straight lines connect the eye feature 

points of each eye, forming the approximation of the eye 

contour. Next, we determine the pixel intensities within the 

resulting rhombus-shaped contour of the eye. We then 

surround each eye by a70 × 22 pixel rectangle (including the 

feature points labeled in green in Fig. 6). These dimensions 

were determined based on the maximum face image width 

and height. The lower edge of the rectangle passing through 

the feature point on the lower eyelid is parallel to the line 

connecting the points on the outer and inner corners of each 

eye. The area outside of the eye within the rectangles (colored 

blue in Fig. 6) is assigned a zero intensity value. 
 

 
(a) Pitch, yaw, and roll axes 

  
(b) Face motion corresponding to pitch, yaw, and roll 
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Fig. 4. Depiction of pitch, yaw, and roll. 

 
(a) The feature points of the face 

 
(b) The eight feature points 

corresponding to the eyes 

Fig. 5. Feature points obtained from face API. 

 

 
Fig. 6. Eye-area normalization steps. 

 

D. Proportional Conversion to Prepare Inputs for Neural 

Networks 

The input features to the neural networks are the contour of 

the eye (Fig. 6) and the face angle (pitch, yaw, and roll). The 

angle range differs between pitch (60 to −30 degrees) and 

yaw and roll (−90 to 90 degrees). Furthermore, the pixel 

intensity values in the eye contour range between 0and 255. 

The difference in ranges affects the influence of each feature 

on the neural network. Therefore, we perform a proportional 

conversion to equalize the influence between features. We set 

the maximum value to 0.9 and the minimum value to 0.1 for 

pitch, yaw, and roll in the training data. The maximum and 

minimum values are not 1 and 0 respectively since there is a 

possibility that the values of the minimum and maximum in 

the training data are not equivalent to those in the test data. In 

this case, the test-set face angle could exceed 1 or be below 

0.Proportional conversion of pixel intensities within the eye 

contour is performed separately for each eye in each frame. 

The minimum pixel intensity is set to 0 and the maximum is 

1.The values of the pixels outside of the eye contour are 

always 0, and these pixels are disregarded for proportional 

conversion. 

 

III. EXPERIMENTS 

A. Experimental Method 

This section describes how we obtain the face images we 

use throughout our experiments. We prepare digital signage 

images divided into 12 areas (three vertical ×four horizontal, 

see Fig. 3) with a red dot in the center of one area. The subject 

focuses on the red dot for a set period of time and the system 

captures an image of his/her face. We collect two categories 

of subject data: 

1) The subject looks at the red dot without moving the face 

(Fig. 7 (a)). 

2) The subject looks at the red dot with natural unrestricted 

face movement (Fig. 7 (b)). 

 

 
(a) No face movement 

 
(b) Unrestricted natural face movement 

 
(c) Eyes regions for (a)  

 
(d) Eyes regions for (b)  

Fig. 7. Examples of the face images. 

 

B. Experimental Setup 

We use the following equipment for our experiments: 

 Digital signage: 

We use a 60-inch horizontally oriented information display 

from Sharp Corporation (PN-A601). The dimensions of the 

display are 133.4 × 75.3cm. The digital signage is mounted 

such that the lower edge is 65cm above the floor. 
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 RGB Camera: 

We use a Logicool HD Pro Webcam C920 from Logitech 

International S.A. with are solution of 1920 × 1080 pixels. 

This camera is placed at the center of the top of the digital 

signage with a 25 degree angle looking downward. 
 

 
Fig. 8. Experimental setup. 

 

The viewer is 60 cm from the digital signage. This is a 

reasonable generalization for the typical distance in 

real-world scenarios. The height of the eye is 20cm below the 

top of the digital signage. The subject is not physically 

restrained but is instructed to consciously limit face 

movement as much possible for the constrained experiment 

(Fig. 7(a)). The viewing angle in the vertical direction 

between the area of the display and the subject is shown in 

Fig. 9(a), the average is 18.8°. The viewing angle in the 

horizontal direction between the area of the display and the 

subject is shown in Fig. 9(b), the average is 25.1°. 

 

  
(a) Vertical direction 

 

(b) Horizontal direction 

Fig. 9. The viewing angles for the display areas. 

C. Gaze Direction Estimation Method 

We use 12 neural networks, one corresponding to each 

area of the digital signage. Each frame of the data is one input 

to the neural network. The area corresponding to the neural 

network with the highest output is chosen as the gaze focus 

area. We use 10 cross-validations to evaluate our results. In 

total, our data set consists of 1440 frames (120 frames for 

each of the 12 areas).We use1296 frames for training (108 

frames for each area) and 144 frames for testing (12 frames 

for each area). 

D. Estimation Results 

We use neural networks with three layers. The input layer 

consists of 3083 units (the number of pixels in the eye area, 

22 × 70 pixels for each eye: 3080; pitch, yaw, and roll: 3; 

total: 3083).The output layer consists of one unit that is used 

to determine whether or not this neural network corresponds 

to the gazing area. The hidden layer consists of five units. A 

squared error of E ≤ 0.001 is used to signal learning 

completion. We use a learning coefficient of η = 0.1. The 

learning coefficient η and the number of units in the hidden 

layer are determined empirically. 

Table I(A) shows the success rate for the scenarios where 

the viewer moves only the eyes and constrains the rest of the 

face and head. The average accuracy rate for this case is 

93.8%. Table I(B) shows the success rate for the scenarios 

where the viewer is allowed natural face and head movement 

in addition to the eye movements. The average accuracy rate 

for this case is 96.8%.We obtain a 3% higher accuracy rate 

for the unconstrained case than the constrained experiment. 

 
TABLE I: EXPERIMENTAL ACCURACY RATES 

(A) CONSTRAINED SCENARIO: EYE MOVEMENT ONLY 

 
 

(B) UNCONSTRAINED SCENARIO: EYE AND NATURAL FACE MOVEMENT 

 
 

IV. DISCUSSION 

Overall, our experimental results show a high success rate 

for gaze direction estimation. To understand where the 
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failures occurred, we analyzed the results frame by frame. 

The main reason for failure is attributed to blinking of the 

eyes (blinking caused 49.2% of the failures in the constrained 

case and 93.3% of the failures in the unconstrained 

case).When the gazing area was determined incorrectly, it 

was often the area below the correct one that was chosen (see 

Table I(A) and Table I(B)). This is because the contour of the 

eye shrinks during a blink and the image of the eye areas 

becomes extremely similar for two vertically adjacent areas. 

We verified the effect of blinking by conducting an 

experiment after thinning the frames where the blinks occur 

and we saw increased estimation accuracy. However, in 

real-world applications, viewers are expected to blink 

naturally. Still, even with the presence of blinking, our 

proposed method provides sufficiently accurate results. 

In failures not attributed to blinking, the neighboring areas 

were often chosen instead of the correct ones. This occurred 

more frequently in the constrained case. In the unconstrained 

case, it appears that the additional input of the face angle 

aided in gaze estimation. This is promising since viewers will 

inevitably use natural face movement in practical 

applications. 

 

V. CONCLUSION 

We present a system which successfully performs gaze 

estimation for digital signage divided into 12 areas. We 

obtain a high accuracy rate in both constrained and 

unconstrained cases and most of the failures were attributed 

to the viewer blinking. In future work, we aim to improve the 

accuracy rate by using a neural network to detect blinking. In 

this paper, we did not consider camera calibration and we 

plan to apply the proposed method without doing so to 

simplify real-world set-up. 
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