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Summary 

Unmanned vehicle navigation is a challenging problem that demands extensive 

investigations. The localization and environment modeling is one of the most fun-

damental components in an unmanned vehicle system. Currently, compared with 

the progresses in vehicle control and vehicle electronics, the insufficient localization 

and mapping capabilities have become a bottle-neck for unmanned vehicles. 

This thesis is dedicated to the sensor data reasoning and environment model-

ing for unmanned ground vehicles (UGV). More specifically, the objective of this 

thesis is to derive a probabilistic framework to localize the vehicle and model its 

surrounding environment. By exploiting appearance information, the proposed 

techniques are invariant to sensors and target environments. Meanwhile, the pre-

sented algorithms can achieve considerable efficiency and accuracy, even for large-

scale localization and mapping tasks. 

The contribution of this thesis can be summarized as follows. 

First, the target environment is modeled as a hierarchy. In this hierarchy, the 

metric information is encapsulated by a local representation called a 'submap'. 

The submaps are modeled at the topological level. A known problem is that, this 

symbolic topological model is not compatible with any numerical inference pro-

vii 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



cess. The solution in this work is to construct a map space that is manifolded in 

the raw data space. This map space is highly compact, but contains rich infor-

mation about the appearance of the local environments. By modeling submaps 

as Gaussian distributions in this manifold, a probabilistic Bayesian inference can 

be conveniently performed at the topological level. In this thesis, such topological 

inference is employed to solve the loop-closure detection problem, in which the 

vehicle is expected to identify the place where it has already been to. 

To obtain a consistent map, after a loop-closure is correctly detected, at the 

point of loop-closure, the localization and mapping algorithm should propagate 

the estimation error backward to the whole submap topology, so as to correct its 

previously accumulated errors. Such a bundle adjustment is often referred to as 

'loop-closing optimization' in the robotics community. 

The second contribution of this work is to employ a 'global appearance prior' to 

facilitate this adjustment process. The adjustment is modeled as an optimization 

process. The optimal submap deployment is obtained by solving a maximum a 

posteriori (MAP) estimation problem. The a priori information is obtained from 

both robot mapping and the environment's appearance. Such appearance infor-

mation can be easily obtained from roadmaps, or if possible, satellite images and 

aerial photos. 

In this work, a two-stage, coarse-to-fine process is introduced to optimize the 

a posteriori map. The first stage is a powerful yet expensive global searching 

procedure based on a genetic algorithm. It converges when a rough estimate for 

the submap configuration is achieved. To ensure the efficiency, this estimate is not 
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necessarily accurate. Subsequently, the second stage is a gradient search algorithm, 

which is inspired by the active contour algorithm in computer vision domain. The 

submap configuration from the genetic algorithm is further tuned by an iterative 

greedy optimization process. By employing this two-stage optimization process, 

the proposed algorithm offers both efficiency and robustness. 
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Chapter 1 

Introduction 

1.1 Motivation 

With fast developing control and artificial intelligence technologies, the research 

on unmanned vehicles has made tremendous progress. While unmanned aerial 

vehicles (UAV) have already been commercialized and applied to modern warfare, 

unmanned ground vehicles (UGV) and unmanned underwater vehicles are still 

facing several unsolved problems. 

One of the major challenges of UGV is the hostile environment. Different from 

aerial space, which is open and free, the terrain is often occupied by different static 

or dynamic obstacles. To avoid these unaccessible regions, a highly intelligent per-

ceptional module must be developed. This module should be capable of processing 

input sensor observations and estimating the interactions between the vehicle and 

the environment. 

The problem of localization and mapping has received considerable attentions 

in the mobile robot community. The goal of a mobile robot performing localization 

and mapping is to start from a location in an unknown environment, build a map 
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CHAPTER 1. INTRODUCTION 

of its surroundings incrementally by using the uncertain information received from 

sensors, whilst simultaneously using the acquired map to localize itself respect to 

this map. This sensor fusion mechanism is illustrated in Figure 1.1. 

Observation 1 

Figure 1.1: Localization and mapping is basically a sensor fusion problem. 

It is widely expected that localization and mapping will lead to a self-contained, 

bootstrap vehicle perception module. This module may estimate both the states of 

the vehicle and the environment, and therefore support the higher level navigation 

tasks such as path planning. After years of investigation, tremendous successes 

have been achieved in various applications, however, the author believes that the 

mainstream metric localization and mapping can still be improved in three aspects: 

higher level reasoning, scalability, and environment invariance. 

1.1.1 Higher level reasoning 

The original strategy of using metric SLAM for autonomous navigation can be 

briefly explained as follows. When the vehicle obtains a map of its surrounding 

2 
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CHAPTER 1. INTRODUCTION 

environment, together with its location, it can project the map into its own coor-

dinate system. Then the robot can generate a path to avoid potential obstacles. 

However, in real world applications, it is often desirable that the control commands 

could be generated from local observations, rather than a priori maps. The reason 

lies in the fact that, no matter how accurate the a priori global map could be, 

it will never be exactly the same as the environment where the vehicle actually 

moves. There always exist moving obstacles or other kinds of disturbances, which 

cannot be modeled in advance. Consequently, the mainstream reactive path plan-

ning strategy has made the robot less dependent on the metric-level positioning. 

While the metric localization and mapping have been widely discussed, their 

topological counterparts have not yet received adequate attentions. In this work, 

the author argues that the higher level localization and mapping is of great im-

portance with respect to both theory and practice. Although the reactive path 

planners based on local observations work satisfactorily in both indoor and out-

door environments, the control commands sent to such path planners should be 

nevertheless based on certain higher-level guidance. For example, a reactive plan-

ning algorithm may lead the vehicle from one room to another. However, some 

intelligence is still necessary to decide whether the vehicle should travel from Room 

A to Room B, or from Room A to Room C. Such guidance can only be generated 

when the robot has a higher-level self-conscious. 

3 
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CHAPTER 1. INTRODUCTION 

1.1.2 Scalable to large mapping tasks 

Another desirable application of simultaneous localization and mapping is un-

manned reconnaissance and surveillance, where accurate and comprehensive map-

ping results are expected. Such large scale high resolution mapping tasks generally 

require the SLAM algorithms to scale well to the size of the map. Although dur-

ing the past few years, the metric SLAMs based on graphical model have achieved 

tremendous success, they still suffer considerably from the unified map model that 

explicitly describes all the map items in one single coordinate system. If the map 

is organized in a hierarchy, the localization and mapping algorithm may only need 

to process information on the higher level representations, rather than handling a 

large quantity of low-level detailed information. By doing so, the efficiency of the 

algorithm could be significantly improved. 

1.1.3 Environment invariance 

The performance of metric SLAM algorithms relies critically on the correct associa-

tions between two successive frames of data. The robustness of such associations is 

largely determined by the quality of raw measurements. For example, in a struc-

tured environment, there exist rich geometrical patterns, such as lines, corners 

and compact clusters of points. Therefore, the useful information is dominant. In 

structured environments, both feature-based and matching-based techniques can 

work properly. However, in unstructured environments, the reflected laser beams 

that construct a feature have trivial percentage in the whole scan. The algo-

rithms have to find these trivial landmarks within a huge amount of input data, 
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CHAPTER 1. INTRODUCTION 

which is a challenging task even for humans. Consequently, in these environments, 

landmark-based algorithms do not work and even matching-based algorithm are 

prone to fail. 

It should be noted that, the robustness problem of metric localization and 

mapping essentially comes from the complexity of environments, or equivalently, 

the insufficient perceptual power of 2D laser scanners. In this thesis, the author 

argues that the information contained within a single laser scan is not adequate 

for SLAM analysis in a highly unstructured environment, such as cross-country 

jungles. A possible improvement here is to organize the measurements into small 

groups, so that a group of measurement frames can be analyzed together and the 

rich information contained in them can be exploited. 

The above limitations of metric SLAM and the advantages of employing a 

higher level map modeling scheme have motivated the author to conduct this 

research, in effort to develop an innovative and practical localization and mapping 

framework. 

1.2 Objective 

Given above limitations of metric SLAM, it is argued in this thesis that a multi-level 

data modeling and the corresponding data processing strategy must be developed. 

Accordingly, the objective of this research is to build an innovative localization and 

mapping framework based on a hierarchical map representation. This framework 

must be general, efficient, and extensible. 

:> 
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CHAPTER 1. INTRODUCTION 

• General 

The localization and mapping algorithm should be invariant under different 

sensor techniques. For different types of input data, the algorithm should 

work properly without major modifications. In other words, the algorithm 

should not exploit heuristics that is only applicable to specific sensors. Equiv-

alently, the algorithm must be environment invariant: it should not be de-

veloped for only one specific kind of environment. 

• Efficient 

Timing is always an important issue in unmanned vehicle applications. The 

time requirement for a localization and mapping algorithm should be accept-

able and controllable for different applications. 

• Extens ib le 

The localization and mapping is essentially a sensor fusion problem. While 

most current techniques are based on data from laser range scanners and 

dead-reckoning, the algorithm is also expected to be capable of incorporating 

other sources of information. 

1.3 Contributions 

1.3.1 A generalized localization and mapping framework 

The conventional feature extraction algorithms, together with the scan matching 

algorithms, can be generally regarded as metric level data representation meth-

ods. In addition to these metric level methods, there also exist various statistical 
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CHAPTER 1. INTRODUCTION 

techniques that directly build representations in the raw data space. For exam-

ple, principal component analysis (PCA), locally linear embedding (LLE), and 

ISOMAP [91]. Since they are not based on any predefined geometric patterns, 

these techniques are often referred to as appearance-based model. 

The conventional data association techniques, such as multiple hypothesis tracker 

(MHT), joint capability test, and scan matching, can be generally regarded as 

recognition processes. These algorithms try to 'recognize' the new observed items 

from the previously observed measurements. However, correspondences can also 

be found without decomposing the observations into a set of low dimensional struc-

tures (raw scan points or landmarks). In the pattern recognition community, var-

ious techniques have been established to perform frame-to-frame recognition, e.g., 

support vector machine [85], hidden markov model, AdaBoost [97]. 

Filters are the most popular methods to fuse landmark measurements collected 

at different time instances. Basically, the objective of a filter (e.g., Kalman filter) 

is to find an appropriate trade-off between the new observed information and the 

previously observed information. This can be generally regarded as an optimization 

process, in which the algorithm tries to obtain an optimal estimate based on the 

available data. For instance, the Kalman filter is optimal in the sense that it yields 

minimum mean-square error (MMSE) estimates. In addition to filters, there are 

various techniques that can also be used for optimization, e.g., graph cut [51], 

genetic algorithm (GA), and those gradient techniques. 

Based on above generalizations, the author argues that the localization and 

mapping is essentially a combination of three sub-problems, i.e., representation, 
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CHAPTER 1. INTRODUCTION 

finding correspondences, optimization. In this thesis, a general, efficient and exten-

sible mobile robot localization and mapping framework is proposed. This frame-

work is illustrated in Figure 1.2. 

( A general Localization 
and mapping framework 

c Representation 

* f Finding correspondences s> C Optimization D 
1 • 

i 

Appearance 
model 

Ji 
H PCA | 

H LLE | 

L-1 ISOMAP | 

Metric model 

? 

i 

t 

| feature map 

1 gridmap 

scan map 

Recognition 

\ 

1 " 
t 

-| hidden Markov 

1 1 SVM | 

1 1 Adaboost 

Data association 

1 
[ scan-matching 

1 nearest neighbor | 

1 joint compat ibility | 

Energy 
minimization 

_ | 

k 

; r L 

i r 

Graph cut 

genetic algo. 

gradient-like [ 

Filtering 

EKF 

particle filter 

SEIF | 

Proposed framework | • Conventional 
i ' SLAM framework 

Figure 1.2: The general localization and mapping framework. In this figure, arrows 

stand for generalization and diamonds represent combinations. 

The major innovation in this thesis is to model mobile robot localization and 

mapping as a general sensor fusion problem based on a hierarchical map model, 

and to employ appearance information in both localization and mapping processes. 

Conventional SLAM algorithms try to answer the question 'what is the environ-

ment', while the concern of the proposed framework is 'how does the environment 

look?'. 
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CHAPTER 1. INTRODUCTION 

1.3.2 List of contributions 

This thesis presents innovative techniques that cover all the three major compo-

nents of localization and mapping. The detailed contributions are listed as follows. 

• Hierarchical map representation 

To compensate the deficiencies of metric localization and mapping, higher 

level abstraction for the map is developed. The map is organized as a hi-

erarchy. At the first level, it is represented as a collection of local regions 

called submaps. These submaps encode the appearance characteristics of 

the local environment. Therefore, the appearances within a submap are ho-

mogeneous, while the appearances in different submaps are distinct. Lower 

than the submap level, the topological node level is constructed by dividing 

submaps according to a fixed resolution. The purpose of this level is to en-

code the vehicle's motion at the topological level. The lowest level in this 

hierarchy is the local metric map, which has been widely investigated. In this 

map hierarchy, the metric level is employed to store the detailed environment 

information. By introducing this multi-layer hierarchical map model, the al-

gorithm can handle appearance information, motion information, and metric 

level detailed information respectively. It can therefore significantly improve 

the efficiency and flexibility of localization and mapping. 

• Appearance-based data modeling 

The feature extraction algorithm is designed to model only a pre-defined 

portion of the input data, however, the goal of the proposed data modeling 
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algorithm is to capture and model the dominant information about an en-

vironment. For example, it tries to capture what makes a corridor different 

from a room, without necessarily detecting doors or walls. Compared with 

the conventional feature extraction or scan matching algorithms that try to 

model, say, 10% of the information contained in the unstructured data, the 

proposed technique can robustly capture more than 90% information, and 

then model them efficiently. 

• Bayesian inference for map hierarchy 

Based on the above appearance model, the probabilistic Bayesian inference 

is integrated with a symbolic topological map to re-localize a mobile robot. 

The appearances of different submaps are approximated to be Gaussian. 

Such Gaussian models serve as the 'glue' between the topological map struc-

ture and the Bayesian inference. By employing such probabilistic 'glue', 

the Bayesian inference at the metric level can be conveniently implemented 

on topological level. One prominent advantage offered by this algorithm is 

that, it can be applied to a cross-country environment where no features or 

landmarks are available. Further more, the re-localization can be performed 

without information from the central SLAM estimation loop. 

• Map optimization with appearance information 

In this thesis, a hierarchical mapping method is also developed. This algo-

rithm can accurately map a large environment with one robot by visiting 

the environment for only once. The basic idea is to represent the map by 

10 
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a collection of submaps arranged in a deformable configuration. A general 

framework is proposed to compute the a posteriori distribution over the 

space of submap configurations. Such posterior is obtained based on robot 

mapping and an appearance prior, e.g., a roadmap. By introducing appear-

ance prior as a new source of information, the Maximize a posteriori (MAP) 

estimate can be formulated as an energy minimization problem. The above 

general energy minimization model essentially encapsulates the localization 

and mapping into a fixed close-form target energy function. Thereafter, var-

ious optimization tools can be applied to minimize the energy according to 

the specific requirements from different mapping tasks. Both global and lo-

cal optimization tools are employed in this work. For greedy optimization, 

a gradient technique is developed. It gradually leads the energy function to 

a (local) minimum. This algorithm is demonstrated to be highly efficient, 

though it may be trapped by local minimums. So a global optimization 

based on genetic algorithms (GA) is applied first to achieve a rough estimate 

of the submap configuration. Subsequently, this configuration is used as the 

initial state for the gradient local search. With this two-stage optimization 

strategy, the proposed algorithm offers both efficiency and robustness. 

1.4 Organization of the thesis 

This thesis is organized as follows. 

Chapter 2 gives a brief introduction to the problem of localization and environ-

ment modeling. The localization and mapping is first analyzed as a general estima-

11 
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tion problem. Those unique characteristics belonging to SLAM its own are further 

discussed. Thereafter, the localization and mapping problem is decomposed into 

three sub-problems: data representation, data association, and data filtering (op-

timization). A comprehensive literature review is conducted by classifying SLAM 

literatures into these three classes according to their major contributions. 

In Chapter 3, an appearance based mobile robot localization approach is ap-

plied to the problem of loop-closure detection. The first section in this chapter 

explains how to divide the whole map into a hierarchy. After that, the second 

section formulates how those high dimensional raw measurements are projected 

into a low dimensional space (map space), which describes the appearance of the 

environment. Since laser scans from the same region share similar appearance, 

they are expected to form a distinct cluster in the low dimensional space. This 

cluster essentially encodes the appearance information of this region. In this work, 

it is approximated by a Gaussian distribution. In the next section, such Gaus-

sian distributions are employed as the observation model by a Bayesian network. 

Accordingly, how the robot can localize itself using the Bayesian inference is also 

presented. 

Chapter 4 presents an efficient appearance based loop-closing optimization tech-

nique, which can perform large scale loop-closing with one single revisiting. In the 

first section, the generic probabilistic loop-closing is extended by integrating ap-

pearance information as a new prior. The loop-closing problem is then formulated 

as a Maximum a posteriori (MAP) estimation problem. Thereafter, it is demon-

strated that this MAP estimation is essentially an energy minimization problem, 

12 
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which is similar to the active contour problem in computer vision. In the following 

sections, this energy minimization problem is solved in a coarse-to-fine manner. A 

two-stage optimization process is developed. The first stage is a global searching 

process based on Genetic Algorithm (GA), whose objective is to find a rough esti-

mate for the submap configuration. Thereafter, a gradient-based local optimization 

algorithm is developed to refine the result of global searching. 

Chapter 5 provides a summary of the main issues addressed in this thesis and 

comments on future work. 

13 
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Chapter 2 

Literature review 

2.1 Introduction to localization and mapping 

The problem of localization and mapping is an active research area [11] [62] [94] 

in the robotics community. With advanced sensory and computing technologies, 

today's localization and mapping algorithms have achieved impressive accuracy, 

robustness and efficiency. 

The ultimate goal of localization and mapping is to estimate the state of a 

vehicle and its environment. This is essentially a stochastic estimation problem 

[93]. Every estimation algorithm has at least two major components: the observa-

tion model and the process model. In a real world application, both of these two 

models are imperfect and suffer from modeling errors. An estimation algorithm's 

objective is to manage these errors and to ensure that the output is optimal based 

on a certain pre-defined criterion. 

For the observation model, every sensor measurement comes with error. The 

amount of error is determined by the characteristics of the sensor involved. Errors 

are also introduced when raw measurements are further fitted by certain represen-

14 
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tation models. 

Errors also exist in the process model that describes how a localization and 

mapping system evolves over time. In the real world, the localization and map-

ping is essentially a high dimensional and highly non-linear stochastic process that 

is difficult to formulate. Consequently, in practice, this process can only be ap-

proximated with compromises of accuracy, robustness, or generality. The most 

common error in process modeling is the linearization error, which is introduced 

when the system's nonlinear state model is linearized for a recursive filter. 

If the robot is deployed in an unknown environment, it is desirable that the 

robot can localize itself when it explores this environment. This is essentially 

a bootstrap learning process in which the robot 'learns' its own pose and sur-

rounding environment by accumulating information when it travels. Therefore, in 

a SLAM algorithm, the obtained measurements should not be discarded. These 

measurements must be formatted and stored for further analysis. This is a unique 

characteristic that distinguishes SLAM from other localization and mapping prob-

lems. 

The mechanism of SLAM introduces two further challenges. The first chal-

lenge is to handle the redundancy of information. The sensors are working at high 

speed and the information is collected incrementally. Consequently, the observa-

tions at different time and places may overlap. As a result, the measurements 

corresponding to the same entity in the real world could be received more than 

once. This phenomenon leads to two additional problems. The first is the associa-

tion problem, which is the problem of finding the correct correspondences between 
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measurements collected at different times. The second one is the fusion problem: 

if a certain entity is observed at different times or places, and we could find correct 

associations between them, then how can these observations be fused together into 

one single estimate? 

The second challenge is about the efficiency of SLAM. If all the previously 

acquired information must be maintained, the memory consumption of a SLAM 

algorithm should grow linearly or even faster. Meanwhile, the complexity of fusing 

new observations may also grow rapidly. If this problem is not solved, a SLAM 

algorithm would become prohibitively slow after even a short while. 

A SLAM algorithm must include techniques to solve above problems. A work-

able SLAM algorithm must have at least three basic components: 

• Representation 

The responsibility of this module is to format the input data for further 

analysis. Data modeling can be regarded as the bridge between sensor ob-

servation and map representation. It plays the most important role in a 

SLAM algorithm. On one hand, data modeling completely determines how 

the output map is represented. On the other hand, it also imposes strong 

constraints on how the sensor inputs are further processed. 

• Finding correspondences 

As discussed above, SLAM algorithms must find correspondences among 

sensor observations. These observations could be successive (as in a filtering 

process), or far away from each other. In general, these two kinds of data 

16 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



CHAPTER 2. LITERATURE REVIEW 

association problems propose different challenges and should be handled in-

dividually (although a unified solution is also available). 

• Opt imiza t ion 

If the association between observations can be obtained, SLAM algorithms 

are expected to fuse the measurements corresponding to the same object, 

in effort to achieve an optimal estimate of this object. This can be gener-

ally regarded as an optimization process that optimizes a predefined energy 

function. 

These three major components of SLAM are actually highly correlated. In 

the following sections, a comprehensive review for the related SLAM papers is 

conducted. According to their major contributions, these papers are classified into 

above three catalogs. Additionally, some extensions of SLAM in the mobile robot 

domain are also reviewed. 

2.2 Representation 

Techniques for data modeling essentially share the same goal: mapping raw mea-

surements into another space. In this new space, it will be easier to process these 

observations. Usually, this space has a dimensionality much lower than the original 

measurement space. This is not difficult to understand if we regard such projec-

tion as a feature extraction process. However, this may not be always true, for 

example, raw-scan-based approaches do not modify the raw measurements before 

further processing. 

17 
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2.2.1 Metric map models 

Given a sequence of sensor measurements, a metric map based algorithm builds 

a representation for the geometrical structure of the mapped environment. The 

advantage of constructing this structural model is that, given the sensor's motion, 

the algorithm can predict, by itself, what the new observations should be. With 

such a geometrical model, the states of the vehicle, as well as the map, can be 

recursively estimated by filtering measurements from motion sensors and percep-

tual sensors. Such a map modeling scheme essentially underlies all current metric 

SLAM algorithms [20, 36]. 

2.2.1.1 Feature-based modeling 

Using a feature representation, the environment is modeled as a combination of 

geometrical patterns such as points [61], circles [36], corners [1], openings [100], 

lines [45, 42], and more recently, polylines [104]. For visual sensors, Zhou [113] de-

veloped the multi-dimensional histogram to represent the rich information found 

within an observed image, such as colors, edges and textures. Lamon [59] intro-

duced a low dimensional representation, called image fingerprint sequences, for 

measuring the similarity between image frames. Similar comparisons can also be 

applied to image histogram, as proposed by Ulrich [103]. 

To extract specific geometric features, a priori knowledge of the pattern of 

features must be available. However, when the environment is unknown, it is often 

impossible to define the features in advance. 

One solutions here is to employ feature definition using less heuristics. The 
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scale-invariant criterion [63] is widely used to select features. Basically, it assumes 

that features are prominent enough to be observable at different scales. This can be 

implemented by conducting convolutions in the input data domain using kennels 

at different scales. Good features are expected to be prominent in all scales. 

Scale-invariant techniques [65] can detect the most plausible features based on 

one single frame of measurement. However, such features are not necessarily the 

most plausible in terms of tracking. There could exist prominent features in one 

frame that vanish after only one or two steps. Consequently, these features may 

not contribute to the localization process. 

The alternative strategy is to locate features from a sequence of measurement 

frames. Kumar [56] developed the automatic feature detection algorithm based 

on locally linear embedding [57]. This algorithm uses previously collected image 

frames to conduct off-line training. When the vehicle is deployed in a similar 

environment, those regions that are prominent in all observed image frames can 

be recognized and used as landmarks. 

2.2.1.2 Raw-scan-based model ing 

The occupancy gridmap (OG) was introduced by Elfes [27]. The basic idea of 

an occupancy gridmap is to finely divide the map into grids at a fixed resolu-

tion. Each grid has a value to represent the likelihood that it is occupied by an 

object or obstacle. This likelihood can be updated when new sensor data are re-

ceived. Compared with feature maps, the gridmaps provide more comprehensive 

2D descriptions. Furthermore, it can be directly used for navigation: the control 
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command can be computed solely based on the gridmap. Occupancy gridmaps 

have gained tremendous popularity during the past few years. Gutmann [37] used 

correlation to detect possible matches between current observation and the map. 

Such correlation-based technique is also used by Duckett [25], in whose research 

the correlation is applied to the histogram of gridmap. 

Similar to the gridmap, recently, points or scan matching have also been used 

in SLAM to serve as the observation model [64, 92]. Since raw range scans are in 

a high dimensional space, it is impossible to construct one unified state vector for 

both scans and vehicle poses. Consequently, these two states can only be estimated 

sequentially, rather than simultaneously. 

Nieto [73] recently developed Scan-SLAM that uses a scan-matching technique 

to solve the data association problem. This algorithm first segments the raw 

scan frame, thereafter, low-dimensional landmarks can be constructed with Sum 

of Gaussian (SOG) uncertainties. 

As mentioned before, the real-world exists in an extremely high dimensional 

space (north east coordinates, color, shape, etc). It is very difficult to obtain 

a compact continuous model for such high dimensionality. Occupancy gridmap 

solves this problem by assuming that the map components are all independent, so 

the algorithm only incrementally processes the local environment surrounding the 

robot. This over-restricted assumption essentially cuts out the correlations among 

map items. Consequently, when the vehicle comes back to a place it has already 

been to, the new observations cannot be fused with the old ones. 

Another problem is that, the above two techniques are not suitable for long-
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distance data association, or so-called loop-closure detection. For loop-closure 

detection, they often need to work together with a gating strategy. Based on the 

vehicle's pose prediction, an uncertainty gate is set up first. If landmarks (or other 

kinds of map items) fall into this gate, the scan-matching routine is triggered to 

examine potential loop-closure. Apparently, such a scheme could suffer from erro-

neous vehicle pose estimates from the central SLAM loop. Without the uncertainty 

gate, the matching algorithm must go through all of the mapped environment to 

find a possible match, and this 'browsing' process needs to be performed every 

time new scan arrives. Such a mechanism is prohibitively expensive when the map 

grows large enough. Additionally, scan-matching itself is not a trivial problem. As 

to be reviewed in Section 2.3.2, matching two sets of points with distortions and 

outliers is at least as challenging as feature extraction itself. 

Taken the discussion above, it can be observed that, directly using the raw 

measurements in SLAM is actually a double-bladed sword. On one hand, it keeps 

input measurements intact for the data association and filtering, so that valuable 

information will not be prejudicedly abandoned by feature extraction. On the 

other hand, it also keeps all the noise, distracters, or other kinds of disturbances 

without filtering them away. This poses tremendous challenges to the following 

data association and filtering process. 

2.2.2 Appearance-based map model 

Principal component analysis (PCA) is a widely used tool to handle high dimen-

sional measurements spaces. A PCA-based recognition and localization algorithm 
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was originally introduced in the computer vision community by Turk [102], and 

then introduced to the mobile robot community by Ishiguro[43]. Also using PCA, 

Vlassis [107] proposed a robot localization algorithm that used appearance infor-

mation to localize a mobile robot in the indoor environment. A similar imple-

mentation for 2D range data was developed by Crowley [17], in which synthetic 

range scans were calculated and used to train the appearance model. To the au-

thor's knowledge, this work in [17] is the first time that 2D range data are used for 

appearance-based mobile robot localization. Although innovative, this approach 

is essentially not completely appearance-based because it still relies on a compos-

ite range map to generate synthetic scans, and building such a map can be quite 

challenging in outdoor environments. A known problem of the original PCA ap-

proach is that it could be time-consuming to build the eigenspace as the robot 

travels. Artac [2] employed an incremental approach to conduct PCA for image 

data, and demonstrated a significant reduction in complexity. Similar to PCA, 

linear discriminant analysis (LDA) [26] is also a popular techniques for conducting 

dimensionality reduction and appearance-based feature extraction. Different from 

PCA, which deals with the data in its entirety without paying any particular at-

tention to the underlying class structure, LDA deals directly with discrimination 

between different classes. A more comprehensive comparison between LDA and 

PCA can be found in [66]. 

The appearance-based solution that is the most similar to ours is the one pro-

posed by Krose [54], in which a sophisticated algorithm is presented to calculate 

the probability of observing a certain scene given a robot pose. For this approach, 
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using a panorama camera, Krose demonstrated attractive localization results in 

an office environment. However, the performance of this method could be further 

improved if the topological structure of the environment was incorporated in the 

localization process. 

2.3 Finding correspondences 

2.3.1 Tracking based techniques 

Since the very beginning of SLAM research, data association techniques based on 

tracking theories have been employed in SLAM by Simth [87]. The basic idea is to 

project the stored map items (e.g., landmarks) into the robot's current local coor-

dinate system. A 'gate' surrounding each predicted landmark in local coordinates 

is further computed. When a new observation falls into this 'gate', a correspon-

dence can be identified. Such a strategy is often referred to as nearest neighbor 

(NN), which is quite efficient and easy to implement. Unfortunately, it will not be 

surprising to see that NN is not robust in cluttered environments where distracters 

or closely placed landmarks can easily confuse the association algorithm. This is 

because NN is essentially a greedy decision maker that only maintains the best 

association hypothesis individually for each map item, and for current observation 

only. 

The joint compatibility [72] test was developed to exploit the fact that the 

landmarks' relative positions to each other are fixed. This is a unique property of 

SLAM, which does not exist in other data association application such as radar 

target tracking. Based on this insight, the association for one single landmark 
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should also be affected by the associations for other landmarks. 

Joint Probabilistic Data Association (JPDA) is a similar data association ap-

proach that jointly evaluates all the potential association hypotheses. Carine [41] 

implemented JPDAF using a particle filter (PF), and Hahnel [39] used PF based 

JPDAF on a mobile robot for tracking multiple people. However, the JPDAF as-

sumes that the number of targets to be tracked is known, and this can become a 

problem when applied to an unpredictable populated environment. This situation 

can be handled by including an individual target number estimator in JPDAF, as 

in Schulz [86]. 

The limitation of the above techniques is that the association decision is based 

on the map estimates and vehicle pose estimates. These estimates are computed 

from the central SLAM loop. Consequently, wrong associations can easily be made 

when even a small estimation error exists. 

This drawback is partly caused by insufficient perceptual information. For 

conventional 2D range scanners, landmarks are mostly modeled as 2D or 3D vectors 

that contain no additional information for association. For instance, given a corner 

in the 2D range scan, it is difficult to tell whether the landmark is a corner of a 

wall, or a corner of an automobile. Due to such insufficiency, tracking becomes the 

only criterion available to evaluate possible association candidates. It can thus be 

observed that, fundamentally, the difficulty with a tracking-based data association 

strategy comes from the poor sensor input, as discussed in Section 2.2.2. 
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2.3.2 Matching based techniques 

Matching based approaches have become popular in recent years because they do 

not rely on features and thus can be applied in more unrestricted environment. In 

other words, they try to bypass the data regression process and pursue directly a 

high dimensional map model. Therefore, the association problem can be solved 

in a more informative manner by exploiting the attributes contained in the high 

dimensional map data. 

Hahnel [38] and Wang [109] individually implemented iterative dual correspon-

dence (IDC) [64] for their SLAM algorithms. IDC can be regarded as a modified 

version of the well-known iterative closest point (ICP) algorithm which was pro-

posed by Besl [6]. It tries to determine the point correspondence and underlying 

transformation jointly. This leads to a difficult, highly non-convex optimization 

problem. 

A lot of literature has been published in the image processing community on 

the problem of matching two frames of points. A review of early work can be found 

in [9]. More recently, Gold [34, 33] and Chui [13] began to solve this joint linear as-

signment and least squares optimization procedure with a detailed energy function 

for the matching. The correspondences are not allowed to approach binary values 

until the transformation begins to converge to a reasonable solution. Similarly, 

Cross [16] implemented this using expectation/maximization (EM) approach. 

Veenman [105, 106] tried to solve the correspondence between dense points in 

a tracking manner. In this work, several kinds of motion models are generated and 
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these models are used to build a bipartite graph. The matching is then achieved by 

finding the minimum cost of the graph using the classic Hungarian algorithm. This 

work demonstrates a capability to track a sequence of dense moving points, and 

claims a capability for automatic track initialization and termination. A different 

probabilistic strategy was proposed by Belongie [4]. A new shape descriptor called 

shape context was defined for correspondence recovery and shape-based object 

recognition. Similar to Veenman's work, the correspondence problem is also turned 

into a bipartite matching problem rather than the more intractable joint linear 

assignment and least square optimization problem. This problem is solved using 

the more efficient JVC algorithm [47]. 

The motion between two frames can also be retrieved without exact point-to-

point correspondence. Govindu [35] noticed that certain geometric properties of 

image contours are invariant under transformation. By comparing these properties 

(e.g. using cross-correlation), the parameters of the transformation can be retrieved 

one by one. A similar technique was also used by Roefer [83]. Duckett [24] applied 

this kind of matching technique to gridmaps, and showed good performance in 

an indoor environment. However, a compass is required to resolve the rotation. 

Additionally, the experiments in this work show that although these algorithms 

can satisfyingly retrieve large motions, they give poor estimats when the motions 

are small. The smaller the difference between two frames of measurements, the 

more likely that it is overwhelmed by the noise or other kinds of disturbances. 
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2.3.3 Non-deterministic techniques 

If one frame of measurement is not sufficient to make a reasonable judgment, a 

straight forward alternative is to accumulate information obtained from a sequence 

of observations, so that they can be analyzed in a 'batched' manner. Multiple Hy-

potheses Tracker (MHT) was developed by Reid [81]. It represents the PDF of 

target positions using multi-Gaussian. Hypotheses are generated according to dif-

ferent possible associations, and then evolve in parallel where only the true one 

will survive. Cox [15] proposed a track-oriented implementation of MHT, it shows 

good performance for tracking multiple objects in several image sequences. MHT 

can also be used to estimate a robot's poses. Jensfelt [45] and Arras [1] imple-

mented MHT-based localization on different robotic systems. Similar localization 

and re-localization techniques have also been published by Tomatis [99] and Porta 

[77]. Wang [109] combined the multiple target tracking with SLAM; in this work, 

the PDF of a robot's pose is regarded to be a uni-model, and the localization and 

tracking are calculated separately. 

MHT is known to be time-consuming because maintaining a huge population of 

hypotheses uses tremendous computational resources. The Multiple Frame Tracker 

(MFT) method was developed to make the association algorithm tractable in terms 

of complexity. It combines probabilistic association with binary programming and 

has demonstrated impressive efficiency even in large-scale data association appli-

cations. 

Markov localization proposed by Fox [31] is another implementation of the 

27 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



CHAPTER 2. LITERATURE REVIEW 

above idea to localize a mobile robot. Different from Fox who used only a single 

beam of laser range data, Gutmann [37, 52] used the correlation between the map 

and a whole frame of measurement for the observation model. 

The dilemma of the original Markov localization method is that, since the 

robot's a posteriori probability distribution is highly non-Gaussian, it is difficult 

to be continuously modeled. But modeling such a distribution in a discrete manner 

(at the metric level) is computationally intensive. Currently, there are two classic 

ways to efficiently model above distribution: the first is to use a discrete model at 

topological level; the second is metric level modeling using Monte Carlo sampling. 

Topological Bayesian inference compress the high dimensional robot pose space 

into topological node space [70], whose dimensionality is much lower. The com-

bination of map topology and Bayesian inference can be found in [55], in which 

Kuipers used unsupervised learning to teach the algorithm how to map observa-

tions into different topological nodes. Unfortunately, in such a scheme, how serious 

the perceptual aliasing problem could be is not known yet. Recently, Modayil [67] 

combined the dynamic Bayesian network with a map topology to build a large 

scale map. 

In the Monte Carlo sampling scheme, the distribution of vehicle's pose within 

the map is represented as a set of weighted particles [21]. Thrun [95] first intro-

duced the Monte Carlo approach for robot localization, and demonstrated attrac-

tive robustness and efficiency. Ranganathan [80] further combined Monte Carlo 

sampling with a map topology under a Markov localization framework. By do-

ing so, the correct map topology can be learned from the space of all possible 
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topologies. 

Stewart [88] recently developed a hierarchical Bayesian approach for the revis-

iting problem. This approach divides the environment into a connected set of local 

map patches. A hidden Markov process is modeled to represents the transitions 

between these patches. 

2.4 Optimization 

The goal of SLAM is to estimate the states of both the environment and the robot 

pose, by fusing information that the robot obtains at different times. For this type 

sensor filtering, Dissanayake [20] proved three very important theorems based on 

Gaussian error assumption, i.e., 

(i) The determinant of any sub matrix of the map covariance matrix decreases 

monotonically as observations are successively made. 

(ii) In the limit, as the number of observations increases, the landmark estimates 

become fully correlated. 

(iii) In the limit, the covariance associated with any single landmark location 

estimate is determined only by the initial covariance in the vehicle location 

estimate. 

Although these theorems provide solid theocratic foundation for SLAM re-

search, they may not all be pertinent in real world applications, as discussed in 

[32]. The convergence of the map covariance matrix may be too slow for most 

mapping applications. A lot of algorithms have been developed during the past 
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few years to improve the accuracy and efficiency of the filters in SLAM. They can 

be generally classified into three categories. First, there are filters that describe the 

absolute map states explicitly in a fixed global coordinate system; second, there 

are filters which analyze the relative relations between map items ( these filters 

resemble graphical models); third, there are filters which represent the map as a 

hierarchy and try to estimate the deployments of submaps. These three kinds of 

approaches are reviewed in the following sections. 

2.4.1 Filters using absolute pose information 

When perceptual information and prediction from interior motion readings conflict 

with each other, they are fused together under a certain weighting strategy. Fil-

tering techniques are widely used to implement the weighting. Extended Kalman 

filter (EKF) [3] [71] is one of the most popular types of filter in SLAM research: 

given a nonlinear dynamic system whose state is written as Xk, with observations 

Zk, where, k = 1, 2,... EKF can recursively calculate 

xk = (prediction of Xk) + fCk • [zk — (prediction of zfc)] (2.1) 

Here, K-k is called the Kalman gain. It determines how much prediction and 

observation can contribute to the estimation of Xk- This recursion provides the 

optimal minimum mean-squared error (MMSE) estimate for Xk, assuming the prior 

estimate Xk-i and current observation Zk are Gaussian Random Variables (GRV). 

In the EKF, the state distribution is approximated by a Gaussian Random Variable 

(GRV) that is then propagated analytically through the 'first-order' linearization of 

the nonlinear system. These approximations, however, can introduce large errors 
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in the true posterior mean and covariance of the transformed (Gaussian) random 

variable, which may lead to sub-optimal performance and sometimes divergence of 

the filter. This is partly caused by the fact that we try to use one unified processing 

scheme (e.g. the Extended Kalman Filter) to perform all the data fusion tasks in 

SLAM. 

Guivant [36] proposed a 'batch' variant of EKF called Compressed EKF (CEKF). 

This approach restricts the online-updating to the local region around the robot. 

Only when the robot leaves this region is a global updating performed and the 

accumulated information propagated to the full EKF. Similar to this local re-

gion concept, Bosse [8, 7] segmented the map into a graph of interconnected local 

submaps. Another similar technique called 'map joining' was independently devel-

oped by Newman [90]. 

The Unscented Kalman Filter (UKF) [48] addresses the approximation issues 

of the EKF. The state distribution is again represented by a GRV, but is now 

specified using a minimal set of carefully chosen sample points. These sample 

points completely capture the true mean and covariance of the GRV, and when 

propagated through the true nonlinear system, then capture the posterior mean 

and covariance accurately to the third order for any nonlinearity. 

However, when there are discrete state and measurement models, without ad-

ditional restrictions, the performance of KF degrades drastically as the predicted 

estimate tends to be updated by wrong measurements. Oussalah [75] uses more 

than one single model to increase the robustness of tracking. 

In contrast to the EKF and UKF, particle filters completely abandon the Gaus-
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sian uncertainty model and rely completely on samples to represent the PDF of 

target probability distribution [19, 46]. 

The complexity and robustness of a particle filter heavily depends on the num-

ber of independent particles involved. Although a large number of particles can 

provide a comprehensive description for the target PDF, they require huge compu-

tational resources. Fox [30] developed the KDL sampling algorithm to adaptively 

select the number of particles, which efficiently removes 'redundant' samples, and 

thus reduces the complexity of the particle filter. 

From the implementation perspective, there may exist situations where the rate 

of incoming measurements is higher than the update rate of particle filter. Kwok 

[58] distributes the samples among the different observations that arrive during a 

filter update. Hence, the target distribution can be approximated using a mix-

tures of sample sets, which avoids potential filter divergence due to an insufficient 

quantity independent samples. 

Montemerlo [69] developed the FastSLAM technique, which tries to approx-

imate the probability distribution of map in an n dimensional map space using 

Monte Carlo sampling. This technique is also capable of solving the data associa-

tion problem simultaneously. However, this algorithm's efficiency largely depends 

on the number of particles involved, and the number of particles necessary for 

closing a large loop is not yet clear. 

During the past few years, other than the conventional sensors such as range 

scanner and odometry [36], people have tried to exploit information from different 

sources. What interests the author most is the fusion of global priors [110, 74]. 
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These techniques incorporate a strong constraint on the local optimization process. 

This constraint can be regarded as an onboard sensor, whose error is bounded over 

time and distance, as shown in Figure 2.1. 

I Loop-closing « , 

Global 

constrain 

Observation 

Motion 

— 

Global 

constrain 

Observation 

Motion 

— 

global optimization local optimization 

Figure 2.1: Diagram for SLAM with global constraint. 

2.4.2 Filters using relative pose information 

Processing the uncertainties of SLAM using information form rather than covari-

ance form leads to the development of Sparse Extended Information Filter (SEIF) 

[96]. SEIF is efficient to incorporate a new landmark in the information matrix, 

however, it could be time consuming to acquire a useful map representation be-

cause a system with n linear equations must be solved. Relaxation is used here to 

solve the linear system. Also using relaxation, Duckett [23] and Frese [32] devel-

oped iterative algorithms for the linear equation system that exists in a maximum 

likelihood estimation. 

Duckett used a genetic algorithm (GA) to solve the large scale optimization 

problem in SLAM. The basic idea of GA is to represent the a hypothesis of map 

by a piece of chronometer with a binary item. A population of such genes can be 

constructed and evolves overtime. A criterion referred to as fitness is used to select 
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excellent genes and filter out the poor genes. 

2.4.3 Filters using submap model 

Based on the work in [90], Estrada [28] further introduced the hierarchical SLAM, 

which only guarantees the consistency at the submap level. This is achieved by ig-

noring the correlations between map items (local features) from different submaps. 

Similar to the relaxation-based techniques mentioned previously, the hierarchical 

method will also result in a linear system which is time-consuming to solve. Estrada 

employed the iterative extended Kalman filter (IEKF) to calculate the maximum 

likelihood and demonstrate very efficient loop-closing capability. 

2.5 Extensions of localization and mapping 

The combination of data modeling, data association, and data filtering constructs 

the core of SLAM, and is indispensable in every SLAM algorithm. The success 

of SLAM actually facilitates almost every aspect of unmanned vehicle, from path 

planning to system design, because it addresses the fundamental problem of 'where 

am i?'. Since it is based on a solid probabilistic architecture, SLAM can be con-

veniently integrated with other methodologies through a probabilistic 'interface', 

such as Bayesian inference. Here, two of the most widely discussed extensions of 

SLAMs are reviewed: active exploration and object tracking on a moving platform. 

2.5.1 Active exploration 

The original SLAM framework does not include any navigation strategy. An as-

sumption is widely made in the SLAM community that navigation and control of a 
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vehicle should be handled by a separate module, based on additional information, 

e.g., from human instructions. Unfortunately, detaching localization and map-

ping from navigation essentially turns localization and mapping into an open-loop 

system. 

Recently, active SLAM has gained significant attention. Rather than passively 

processing the sensor measurements collected by the robot on a given trajectory, 

active SLAM methods try to actively control the robot to explore the environment 

in a manner that can facilitate its localization and mapping. Entropy [78, 79] 

is widely employed as a guidance for selecting actions from all candidates. It 

provides a quantitative representation for the obtained information known to a 

SLAM algorithm. Accordingly, the objective of active SLAMs is to increase this 

information in a more efficient manner. 

2.5.2 SLAM with tracking 

The original SLAM framework also assumes that the environment where SLAM is 

conducted is static, which precludes the potential ambiguities in data modeling and 

association caused by moving objects. Such an assumption is commonly violated 

in most unmanned vehicle applications in urban or cross-country environments. 

Wang [108, 109] established a mathematical framework to integrate SLAM and 

moving object tracking, which provides a solid basis for understanding and solving 

the whole problem. This framework is called SLAM with DATMO, in which the 

estimation problem is decomposed into two separate estimators. By maintaining 

separate posteriors for the stationary objects and the moving objects, the resulting 
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estimation problems become computational tractable. 

2.6 Conclusion 

This chapter first gives a brief discussion on the essences of the mobile robot 

localization and mapping problem. The simultaneous localization and mapping 

is analyzed as a special case of the general localization and mapping problem, 

with its own special characteristics. Based on the generalized localization and 

mapping framework as presented in Chapter 1, the author classifies the SLAM 

papers into three categories according to their contributions to map representation, 

data corresponding, and optimization. A comprehensive review is presented while 

two extensions of SLAM, i.e., active exploration and SLAM with tracking, are also 

discussed. 
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Chapter 3 

Appearance based Bayesian 
inference for map hierarchy 

3.1 The definition of loop-closing in this work 

Loop-closing is an open problem in the SLAM community. However, there does 

not exist a formal definition of loop-closing today. For instance, for an indoor 

homogeneous mobile robot, it may take a range scan at one position, then take a 

right turn at the same position (without any locomotion) and take the second scan, 

finally it may turn back to the original pose and take the third scan. These three 

steps actually constitute a loop-closing. Essentially, every time a robot moves, it 

may match things that it has observed before, and this can, to some extent, be 

regarded as a loop-closing. 

It can thus be noticed that, a loop-closing process comprises two parts: first, 

detection; second, fusion or optimization. To prevent any confusion, in this thesis, 

'loop-closure' refers to the location where the vehicle re-visits a place; 'loop-closure 

detection' is the process to search for a loop-closure; while 'loop-closing' and 'loop-

closing optimization' refer to the optimization process that happens after a loop-

37 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



CHAPTER 3. APPEARANCE BASED BAYESIAN INFERENCE FOR MAP HIERARCHY 

closure is detected. 

loop-closure detection is a special case of finding correspondences. As explained 

in Chapter 2, the objective of finding correct correspondences (associations) is to 

perform optimization (e.g., filtering). Then it is reasonable to classify correspon-

dences according to the optimization process which it supports. 

We may start from the simplest case: given 2 observations Zl, Z2 at time 

instances T l and T2 respectively. Normally there will be an overlapped portion 

in these two observations. Data association (e.g., JPDA) could be employed to 

find correct correspondences. Thereafter, a Kalman filter may yield an updated 

estimate X2. If a new Z3 is observed at time T3, we may obtain a new estimate X3 

with this new observation. However, It should be noted that, if we assume this is a 

Markovian process, XI and Zl will not be used in the new estimation process. On 

the other hand, we may find that Zl and Z3 also share an overlapped portion, and 

we may use a non-Markovian optimization algorithm to estimate X3. Different 

from the previous one, this estimation is based on all the states and measurements 

at time T l , T2 and T3. 

Here, the author tries to derive a formal definition for loop-closing in this work. 

If the data association's objective is to support a Non-Markovian, bundle-adjustment-

like process[101j, it should be regarded as a loop-closing. If the data association's 

objective is to support a Markovian process, e.g., a Markovian filter, then such data 

association should be regarded as normal maneuver. 

In this work, after the vehicle travels a circular trajectory and returns to a 

point in this circle, it associates its current observation with some observation 
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it collected long ago. Thereafter, all the observations and states between these 

two visits are processed concurrently to yield an optimal estimate of the vehicle's 

trajectory Since this estimation is a non-Markovian process, according to the 

previous definition, we regarded as a 'loop-closing'. 

However, the author also emphasizes that, for different applications, the loop-

closing may have different meanings. The above definition should not be regarded 

as a general definition for SLAM problem. The definition of loop-closing is still 

open to further discussions. 

In a mathematical manner, the objective of this work is to localize the vehicle 

when it re-visits a place where it has already been to. Given consecutive measure-

ments Z(, and the previous readings Ut from inertial sensors, a map representation 

P is first constructed for the environment. The mapping is performed in a very un-

structured cross-country environment, for which a parametric model is unavailable. 

For this reason, here P is represented in a discrete manner: 

P = g 1 U g 2 U - - - U g N 9 (3.1) 

where each g denotes a fragment in the space defined by P. Accordingly, at any 

given moment, the vehicle's pose v could be either 1) within a certain gx, x e 

[1, Ng], or 2) in an unmapped terrain. This alternative situation can be formulated 

as: 

v G g1 U g2 U • • • U g ^ U g° (3.2) 

where g° is a 'dummy' fragment denoting that the vehicle is not within the current 

map P. At time t, the goal of loop-closure detection is therefore to identify the g*, 
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where 

g* = a r gmaxp(g*|Z t , [ / t) x = 0,1,2,..., Ng (3.3) 
X 

3.2 Introduction to the proposed algorithm 

As elaborated in [55], the difficulties of loop-closure detection lie in two-fold: per-

ceptual aliasing, in which different places appear the same; and measurement vari-

ability, where the same place appears differently. When the algorithm cannot 

handle perceptual aliasing, it may take an unexplored place as somewhere already 

mapped and then generate a false positive report. On the other hand, if the algo-

rithm is too conservative, measurement variability would be difficult to deal with. 

The algorithm may then report false negative, i.e., the vehicle cannot detect the 

loop closing although it has already been to the mapped place. 

The challenges here also come from the fact that no features or landmarks are 

available in this cross-country environment. In such environment, it very difficult 

to model the sensor observations and the environment itself. The testing field 

is compared with two other types of popular outdoor environments in SLAM, as 

shown in Figure 3.1. Sub-figure(a), (b), (c) are respectively the photos taken at 

Victoria Park, Sydney; car park E, NTU; and a cross-country environment. Sub-

figure (e),(f),(g) are the raw 2D range scans taken in these environments. It can be 

observed that, in both Victoria Park, trees cause compact laser reflections that can 

be accurately and robustly detected; in the car park, there exist rich observable 

landmarks such as walls and corners. However, in the open jungle environment, 

no apparent geometrical patterns are available. 
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(a) Victoria Park (b) Car park E, NTU (c) Open jungle 

•- •*.. *" 
' . \ " ' "y / 
I j . j. j. j. 'jr̂  i—i—i—s—-i & s s — j ^ '• : i j. i a—^j^^^ i i i 

(d) Vctoria Park (e) Car park E, NTU (f) Open jungle 

Figure 3.1: A comparison of environments where SLAMs are performed. 

The challenges also come from the scale of the mapping task, as will be detailed 

in Section 3.6, the total trajectory of the vehicle is as long as 4000 meters. For 

such large scale mapping, the map representation must be highly compact while 

the processing routing should also be efficient, otherwise the algorithm will become 

time-consuming after a short trajectory. 

The localization strategy in this work comprises three components. The first 

one is a hierarchical map representation. In a large scale localization and mapping 

task, the size of IP can become very large, which makes it impossible to exhaustively 

examine all the map items. In this work, the map representation P is organized by 

a hierarchy. The local regions with homogeneous appearance are grouped together. 

Such a group is referred to as submap in this context. As the vehicle travels, the 

sequence of submaps extends, and the topological structure of the environment 
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is also gradually formed. To model the vehicle's motion at the topological level, 

a lower level representation called topological node level is introduced. This level 

is constructed by segmenting the submaps into smaller fragments at a fixed reso-

lution. By employing topological nodes, the vehicle's metric-level motion can be 

conveniently transformed to the motion at topological level. 

The second component is an appearance model based on raw range scans. All 

measurements are projected to a low dimensional space using principal component 

analysis (PCA). For instance, if there exist measurement frames from two submaps 

A and B, as in Figure 3.2(B). A 3-D coordinate system illustrates this high dimen-

sional measurement space, which is denoted as x — y — z. By conducting PCA, 

these measurement frames are projected to a low dimensional (2-D) space where it 

is more convenient to segment them. This space is called map space and denoted 

as x' — y', see Figure 3.2(C). In this map space, projected measurements from the 

same submap are expected to gather within a compact cluster. This cluster can be 

approximated by a Gaussian distribution, as in Figure 3.2(D). Compared with the 

raw range data, the mean/variance representation of Gaussian can significantly 

reduce the computational complexity, and nevertheless capture the information 

contained in the raw data. 

The third component is to utilize this appearance model to bridge the gap 

between topological map representation and probabilistic Bayesian inference. It 

is known that the map topology is inherently symbolic, which is difficult to be 

processed in a numerical way. The Gaussian distributions discussed in the previous 

paragraph facilitate the construction of probabilistic observation models for the 
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map topology. 

p(zi\Tx) = p(zi\Sx) = exp ( - -
i ii nfo) - n(sx) ||

2 

2 ~ (a5J2 (3.4) 

where Sx is the submap that comprises Tx, and Q resembles the projection from 

high dimensional space to the low dimensional space. With this probabilistic ap-

pearance model, the popular metric level probabilistic Bayesian inference process 

can be conveniently transplanted to the higher level in the map hierarchy, see 

Figure 3.2(E). Using Bayesian network, the algorithm can process a series of mea-

surements sequentially. The estimate based on one frame of measurement will 

be further examined by its following measurement frames, hence the loop-closure 

detection will be more informed. By combining these two techniques, the advan-
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Figure 3.2: Combining symbolic map topology with probabilistic Bayesian infer-

ence. 
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tages of both can be exploited: the presented algorithm is capable of performing 

Bayesian inference at topological level, while no metric-level features are required. 

This enables the algorithm to detect loop-closure in a cross-country environment, 

where feature extraction algorithms may fail. 

Another important characteristic of the presented algorithm is that, it only 

uses the sensor information outside the central SLAM estimation loop. Therefore, 

it does not rely on a potentially erroneous state (vehicle pose) to make a decision 

regarding the fusion of measurements. So even the location estimated from SLAM 

is wrong, the loop-closure detection algorithm can still work properly. 

This chapter is organized as follows. The next section lays out the strategy 

of building a map hierarchy; thereafter, Section 3.4 elaborates appearance-based 

environment modeling based on 2D laser scans; then Section 3.5 explains how to 

use the appearance-based techniques to perform Bayesian inference; finally, the 

results and performance analysis are shown in Section 3.6. 

3.3 Building the map hierarchy 

As explained previously, it is impractical to exhaustively search the whole map P 

for a loop-closure. However, it should be bared in mind that, P is not randomly 

generated. Instead, the map is highly structured. For instance, P often embodies 

a topological structure. This structure provides valuable information for loop-

closure detection. To exploit the structural information of the environment, and 

to process such information by Bayesian inference, the map P is organized as a 

4-level hierarchy. This hierarchy is illustrated in Figure 3.3. 
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Environment map 

(metric level) 

Figure 3.3: The map hierarchy used in this work. 

3.3.1 Submap layer 

The first layer is called submap layer, which is constructed by dividing the map P 

into connected local regions according to the similarities between sensor measure-

ments. At this level, the map is modeled as a collection of submaps 5 ' : 

P = S1 U S2 U • • • U SN' U 5° (3.5) 

where 5° is the dummy submap similar to g° and Ns is the total number of 

submaps, or equivalently, the volume of the submap space. 

To build the submap space S = [S1, S2, • • • , SN'], the observed measurements 

(2D range frames) are segmented to different places according to the similarities 

between them. From the topological perspective, this segmentation process turns 

continuous sensory experience into a graph of atomic structures, and these struc-

tures function as the basic components of a topological map. From the perspective 

of learning, the loop-closure detection technique in this work is similar to a su-

pervised learning process. It must learn by itself how to distinguish measurement 
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frames from different regions. 

One important characteristic of this supervised learning procedure is that it is 

performed online, there is no off-line training data available. For this reason, the 

detection algorithm must be self-contained. The sequence of measurement frames 

is automatically labeled to construct a 'training sample set', from which further 

classification rules can be learned. 

Another important characteristic of this labeling process is that, it is performed 

online and incrementally, so the map structure is actually encoded in the vehicle's 

trajectory. If the incoming observations are only labeled according to the similar-

ities between them [55], e.g., using a clustering technique such as K-means [26], 

the vehicle motion information would not be incorporated in this training process. 

For example, given two measurement frames similar but far from each other, a 

completely appearance-based classifier will label them as from the same place. On 

the other hand, if the map is only segmented according to the vehicle's trajectory, 

e.g., the volume of the submap [36], observations within the same submap could be 

distinct. Consequently, it could be difficult to conduct the topological inference. 

In this work, the above two kinds of labeling strategies are integrated, as il-

lustrated in Figure 3.4. Either the change of the environment's structure, or the 

change of the exterior sensor observations, will divide the vehicle's experience into 

disjoint segments, i.e., initialize a new submap. 

Intersections of the road are used to detect the shift between the environment's 

structures. Since the vehicle is supposed to always navigate itself following the 

road, such intersections can be indicated by the changes of the heading direction 
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of the vehicle Xe, which can be easily obtained from onboard sensors such as IMU: 

4W = ||x?-x?_1| (3.6) 

When its heading changes significantly, a reasonable assertion is that the vehicle 

has moved from one place to another. 

Raw scan sequence 
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Figure 3.4: The illustrative flow-chat of submap segmentation strategy. 

Appearance-based segmentation is not trivial due to the measurement vari-

ability. The algorithm needs to capture the major structure of the input range 

scan, which is often encoded in the low frequency domain. It should also be non-

sensitive to the local distracters that exist in the high frequency domain. In this 

work, wavelet is employed to remove those high frequency details and preserve the 

structural information contained by the observations. Wavelet is a well-established 

technique for information compression and noise removal, for instance, here the 3 

level dbl wavelet is applied to each frame of 2D range scan, and then a vector 

whose length is only 1/8 of the original measurement can be acquired, as in Figure 

3.5. It can be noticed that the high frequency details is mostly removed in the 

compressed result. 
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Figure 3.5: The dbl wavelet used in this work. 

Mathematically, if the wavelet processing is denoted as 6(-), the difference 

between two consecutive frames zt and zt+\ is calculated as: 

saPP(t) = ||0(2t) - e(2 t_x ; (3.7) 

A submap's shift can therefore be detected at time t if either 5app(t) or 8s(t) is 

beyond a preset threshold. Readers may be confused to see that two dimensionality 

reduction techniques, PCA and wavelet, are both employed here. However, please 

note that the above wavelet segmentation does not have any recognition capability. 

It is only employed to detect 'new' regions, or equivalently, the shift between 

submaps. Whether the detected new region has already been mapped or not can 

only be answered by going through all the previously acquired information, which 

is performed by PCA. 
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3.3.2 Topological node layer 

Basically, a topological structure comprises a graph of topological nodes, which 

are connected by edges. In the mapping context, these topological nodes stand for 

different regions in the environment, while the edges represent how the vehicle can 

transit from one node to the other. The previous section has elaborated how to 

'wrap' the vehicle's metric-level sensor observations to the higher level, similarly, 

to conduct the Bayesian inference, a topological-level model for vehicle's motion is 

also necessary. 

The transition between submaps alone cannot fully model the motion of the ve-

hicle, for example, a submap can be long enough that given a reading from inertial 

sensors, it is impossible to predict whether the vehicle is still inside this submap 

or has left it. Consequently, a lot of valuable motion information is essentially 

ignored in the inference process at the submap level. 

For this reason, in the presented map hierarchy. A lower level representation is 

further constructed below the submap level to incorporate motion measurements. 

It is referred to as topological node level, at this level, the map is modeled as a 

collection of topological nodes that have the same size, let n(i) denote the number 

of topological nodes contained by the i'th submap, there is 

P = T1 U T2 U • • • U TNt U T° Nt = Y^ n(S) (3-8) 
i = l 

Correspondingly, since a topological node is built from a submap, for each node 

T, i E [1, Nt], there should always exist a &' so that: T E S1'. 

Topological nodes make it very convenient to model vehicle's inertial sensor 
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measurements in the Bayesian framework. For example, the topological node's 

length is set to be 10 meters here, so if the vehicle is reported to have moved 12.7 

meters, it can be predicted that the vehicle has probably moved to a certain nearby 

node. 

3.3.3 Metric layer 

The lowest level in this hierarchy is the metric level where the raw range scans are 

stored. At the metric level, the map is represented as the collection of raw scans 

rendered to their corresponding vehicle poses, which is similar to the map used in 

scan-matching [64]. Given the topological node level representation T1 , T 2 , . . . , TNl, 

and m(i) that denote the number of scans contained by the i'th topological node, 

the whole map can be formulated at the metric level as: 

Nt 

P = s1 U s2 U • • • U sNn U s° Nn = ] T m(i) (3.9) 

3.4 Appearance model for map hierarchy-

Different from metric map models that try to register the sensor measurements to a 

model of the environment, appearance-based models [79, 17, 54] are not designed 

to capture the relations between observations and the map geometry. Instead, 

they directly build the environment's representation in the sensor space, i.e., the 

space spanned by the sensor values themselves. For example, an appearance-

based approach can tell what makes the observations in a corridor different from 

those ones in a square room, but it does not necessarily distinguish the doors 

or walls. From the perspective of dimensionality reduction, the low dimensional 
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space built by metric-map-model approaches has definite geometrical meanings, 

but this may not be true for appearance-based approaches. The 'features' ex-

tracted by appearance-based techniques could be uninformative to human eyes. 

The advantage of appearance-based techniques is that, the a priori knowledge re-

quired to model the map, such as the definition of lines and corner, is no longer 

necessary. In other words, appearance-based techniques can work without the 

conventional 'feature extraction' routing, this is highly desirable when vehicle nav-

igates in cross-country environments where features are difficult to extract. As 

in Figure 3.6. When it is difficult to extract the feature information which has a 

tiny percentage in the raw measurements, the appearance model can nevertheless 

robustly represent the data. 

Feature 
Extraction 

Structured 

£ 
Feature 

Extraction 

Distracters Unstructured 

Appearance-based 
modeling 

Unstructured 

Figure 3.6: Limitation of feature extraction algorithms and the advantage of usin£ 

appearance model. 
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•10 - * - « - 4 - 2 0 2 4 6 8 10 

(a) Structured environment (b) Unstructured environment 

Figure 3.7: Comparison between geometric features in structured and unstuctured 
environments. 

3.4.1 Eigen-representation 

Suppose that at time t, the labeling approach discussed in previous subsection has 

segmented Ns sequentially connected submaps S1, S2,..., SN". For the simplicity 

of notification, here the number of measurement frames contained by the i'th 

submap is denoted as f,, so there is 

S l=(s i '1 ,s i '2 , . . . ,s i ' f ' ) (3.10) 

where i = 1 , . . . , Ns. To provide a concrete instance for this algorithm, here each 

frame is assumed to be a typical laser scan including 361 range data. So each frame 

becomes a vector of dimension 361, or, equivalently, a point in a 361-dimensional 

space. However, please note that this appearance model is never restricted to laser 

sensors, all other kinds of input data formats are acceptable for the modeling in 

(3.10). 

Frames of each submap will not be randomly distributed in this huge mea-
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surement space and thus can be described by a relative low dimensional manifold. 

Principal component analysis (PCA) can find the vectors that best account for the 

distribution of frames within the entire measurement space. These vectors define 

a subspace of measurement space. For the case of laser range scanner, each vector 

is of length 361, describes 361 range measurements, and is a linear combination of 

the original measurements. At time t, the average frame of the whole measurement 

set is computed by: 

* = (^(i) (̂2) ... ^(36i)) = E E s " j / E f i 

As the vehicle moves and new range scans are observed, this average frame evolves 

over time, as in Figure 3.8. 

(a) No. 1 - No. 
1001 

(b) No. 1 - No. 
1301 

(c) No. 1 - No. 
1601 

(d) No. 1 - No. 
2001 

Figure 3.8: The average of all the collected measurements. 

Each frame s l J differs from this average by a vector: 

0«J = S<J _ y = ( 0<-J(l) 0<J(2) . . . <^(361) ) 

Then all these <ftj are subject to PCA, which seeks a set of normal vectors that 

can best describe the distribution of the data. In most of the cases, only the 

dominant part of the distribution is necessary, other details can be ignored [102]. 

53 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



CHAPTER 3. APPEARANCE BASED BAYESIAN INFERENCE FOR MAP HIERARCHY 

So the normal vector that describes the distribution of the data has a dimen-

sionality much lower. In this implementation, the first A eigenvectors that corre-

spond to the biggest A eigenvalues are chosen. These eigenvectors are symbolled 

as •u1,u2,'u3, ...,ux, where 

uk= ( uk{l) uk{2) ...ufc(361) ) T lb = 1,2,. . . ,A (3.11) 

These eigenvectors represent the most predominant information about the mea-

surements, and they also define a space with dimensionality A. Since all the map 

modeling is conducted in this space, it is referred to here as map space. Here the 

first four of them are shown Figure 3.9. A problem of displaying these eigenvec-

tors is that, they are not supposed to be at the scale of the original measurement 

frames, so the displayed is the result after normalization. Please note that these 

figures are expressive: they capture the statistic feature of the measurements, for 

example, in the first sub-figure, the points in lower part are much denser than the 

ones in upper part, because this is a common characteristic shared by all frames 

of laser scans (due to the fixed angular resolution of 2D laser scanner); and all of 

these 4 sub-figures have the basic shape of a road, because in most of the time, 

the vehicle travels in a road-like environment. 

When a new measurement sx is available, it is projected into the map-space by 

a simple operation: 

w*>k = (u
k)T(sx - * ) (3.12) 

where k = 1, 2 , . . . , A. This describes a set of point-by-point multiplications and 

summations. These weights (scalar) form a low dimensional vector which can be 
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(a) Photo 1 (b) Photo 2 
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(c) Photo 3 (d) Photo 4 

Figure 3.9: The eigenvectors corresponding to the biggest 4 eigenvalues. 
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used to represent a measurement frame: 

Wx = ( wx'x wx>2 ... wx'x ) (3.13) 

The vector Wx describes the contribution of each eigenvector in representing the 

input measurement frame sx, by treating these eigenvectors as a basis set for 

measured frames. This low dimensional vector is the core of the appearance-

model. It provides a convenient tool to represent measurement frames, as well 

as local environment (by modeling the distribution of all the measurement frames 

inside). For convenience, in this context, such projection of a measurement frame 

in the eigenspace is called eigenframe. 

Eigenspace provide a promising way to process the range data. For a typical 

laser scan at the dimensionality of 361, we can efficiently calculate its representa-

tion at dimensionality of less than 20. As can be observed, this appearance-based 

modeling process is completely independent of any metric-level features or land-

marks. 

3.4.2 The probabilistic observational models 

3.4.2.1 The applicability of Gaussian uncertainty model in eigenspace 

The loop-closure detection algorithm proposed in this chapter is based on the 

assumption that, the whole target environment is constructed by a series of local 

neighborhoods. Each local neighborhood has a dissimilar appearance, while within 

one specific local neighborhood, the sensor always observes similar measurements 

sn, while n is the number of observations. Based on this assumption, it is reasonable 

to make a further assumption that sn can be represented by a Gaussian distribution. 
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Then the question will be, can we also demonstrate that the projection of d-

dimension s„ in the eigenspace also fits a Gaussian distribution. 

Since the PCA projection is linear, it can be written as: 

w = Us + /i + e (3.14) 

while wra is sn 's projection in the g-dimension eigenspace, and e is the Gaussian 

noise model of the distribution of sn, so that e ~ N(0, a2\) . Based on the Gaussian 

assumption about sn, we should have: 

p(w|s) = (2iro2)-q/2 exp ( - - ^ | | w - Us - /x||2 J (3.15) 

With the Gaussian prior: 

p(s) = ( 2 7 r ) - d / 2 e x p ^ - l s r s ) (3.16) 

the marginal distribution of p(w) can thus be calculated as: 

p(w) = / p(w|s)p(s)ds 

= ( 2 7 r r / 2 | C | - 1 / 2 e x p ( - l ( w - A i f C - 1 ( w - / , ) ) (3.17) 

the model covariance can also be calculated as: 

C = o-2I + UUT (3.18) 

It can thus be observed that, after PCA projection, the distribution of sn in 

the eigenspace is still Gaussian. So we can easily retrieve the parameters of this 

Gaussian distribution. Interested readers are referred to [98] for further discussions. 
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3.4.2.2 The Gaussian representation in eigenspace 

Given a certain submap S\ where i G [1,JV,], all measurement frames within this 

submap can be projected into the map space using (3.12). This operation yields 

U vectors at the length of A, which are denoted as: 

( w * \ W*-2,..., W**) (3.19) 

The center of this cluster corresponds to the mean of this submap in the map 

space: 

wl = 
i 

1 fi 

' = rjrj (3.20) 

This center's estimate comes with a variance, which is computed by: 

1 U 

the Oi can also be regarded as the trace of a diagonal covariance matrix, which 

shows how these n(i) points are distributed in the map space. Here this distribution 

is approximated as Gaussian: 

Wi ~ M[W\ (a*)2] (3.22) 

Given an incoming measurement zt at time t, the corresponding eigenframe Wt 

can be obtained by projecting it into the map space using (3.12). The probability 

of observing zt conditioned on submap i can be calculated as: 

r 1II W* - W, II21 
P ( * | y ) = e x p { - - " {ai)2

tl1} (3.23) 

This formulation is of great importance in vehicle localization. It provides a prob-

abilistic way to model the connection between 2D scanner's observations and the 
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symbolic topological places in the map, without any knowledge about features or 

landmarks. By employing this model, Bayesian inference on the map hierarchy 

can be performed given a sequence of measurements. 

3.5 Bayesian inference for map hierarchy 

Due to the existence of perceptual aliasing and measurement variability, a de-

terministic loop-closure detection based on the probability in (3.23) is possibly 

over-confident. A more reasonable way, therefore, is to fuse the data collected at 

different time instances to make a 'batch' decision. 

In most cases, matching a sequence of measurements with the previously built 

map is an exhausting task, because the solution space could be exponentially 

large due to permutation. Markov model offers an efficient way to bypass the 

permutation. It assumes that only the one step previous action/state can affect 

the vehicle's current state. This essentially divides the whole expensive matching 

into a chain of smaller and more tractable testings. Bayes Law then acts as a 'link' 

to connect these individual testings in a probabilistic manner, so that the local 

matching results can be propagated through the whole Markov chain to the end. 

In this work, to improve the robustness of the loop-closure detection, a Bayesian 

inference process is conducted for the map hierarchy. 

3.5.1 Topological Bayesian inference 

From the perspective of loop-closure detection, the task of Bayesian inference is 

to localize the vehicle's current position within its previously built map (the topo-
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logical network). A probability will be assigned to each topological node Tx, the 

goal of the loop-closure detection is then to find which topological node T has the 

highest probability that the vehicle is currently in: 

T = aigmaxp{Tf\Zt,Ut-1,SHt-1) x = l,2,...,Nt (3.24) 
X 

where Nt is the total number of the topological nodes, Zt is the whole set of 

observations until time t, and SHt-i and Ut-\ are respectively the set of detected 

shifts between submaps and transitions between topological nodes till time 4 — 1. 

At each time instance t, Bayesian inference calculates the vehicle position's 

distribution over the topological node space, p(Tt\Zt, Ut-i,SHt-i). As defined in 

Section 3.3.1, Ns is used to denote the total number of submaps, so this probability 

can be further marginalized over submaps S: 

N. 

p(Tt\Zt, Ut-uSHt-x) = X > ( r < l 5 t ' . zu Ut^,SHt^)p(Si\Zt, Ut-i, SHt.{) (3.25) 

Since each topological node is inside a definite submap, the conditional proba-

bility of p(Tt\S
3

t) can be calculated as: 

This probability can be expressed by a function v(Tt, Sj) that takes value 1 when 

Tt € Sf and 0 otherwise. Accordingly, the equation (3.25) can be re-written as: 

N, 

p(Tt\Zt, Ut-uSHt-i) = J2"C^, Si)p(Tt\Zt, C/t_i, SHt^)p(Si\Zt, Ut-i,SHt-i) 

(3.27) 

The second item on the right side of (3.27) is the estimate for the vehicle's 

state in the topological node space. By applying Bayes Rule and assuming that 
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the estimation problem is Markovian, it can be calculated as: 

p(Tt\ZuUt-i,SHt^) = p{Tt\zt,Zt.uUt.uSHt^) 

= p(zt |T t ,Zt- i ,Ut-i ,sAt-i)p(Tf |^_i ,Ut-i ,a^-i l3.28) 

Since the observation will not be affected by the vehicle motion and previous 

observations, theZj_!, ut_x and sht-\ in the first item on the right side should 

be omitted. It can be also noticed that, the topological nodes do not have any 

appearance characteristics, so the observation zt is actually independent of the 

topological node and p(zt\Tt) can be regarded as a constant: 

p(zt\Tt, Zt_uut_u sht^) =p(zt\Tt) = c (3.29) 

The second item on the right hand in (3.28) is for calculating the prior on the 

likelihood of topological nodes. As explained in Section 3.3, the topological nodes 

only model the vehicle's motions and do not encode any appearance information. 

For this reason, they are labeled continuously and the transitions at topological 

level is completely independent of the shifts at the submap level. Then the item 

sht-i can be dropped, and there will be: 

p(Tt\Zt-i,ut-i,sht-i) = p(Tt\Zt-i,ut-i) 

Nt 

= J^P^lV-i^t-MV-tlZt-i) (3.30) 
t = l 

where p(7t|7£_j,iit_i) is the transitional model in the topological node space, and 

p(Tl_]\Zt-\) is the state of the topological node in previous step. 

The second item on the right side of (3.25) is the estimate for the vehicle's state 

in the submap space. Similar to the estimate for the topological node in (3.28), 
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this likelihood can be computed using Bayesian inference based on a Markovian 

assumption: 

p{S3
t\Zu Ut-i, SHt-i) = p(zt\Sl,Zt-i,Ut-u sht-i)p{SJ

t\Zt-i,ut-i, sht-i) (3.31) 

where the first item can be simplified into p(zt\Sj) because the observations are 

apparently independent of the vehicle's movement and previous observations. This 

probability represents exactly the observational model constructed in Section 3.4. 

The second item p(SJ\Zt_i,ut-i, sht_i) is the prior probability of the vehicle's 

state in the submap space. Since the motion between submaps are independent 

of the motion between topological nodes, the item u t_i can be dropped and then 

this probability is calculated as: 

piSJ
t\Zt.uut.U8ht.1) = ^ P ^ t l ^ - i . ^ - O P ^ - i l ^ - i ) (3.32) 

fe=i 

All above inference can be illustrated by the Bayesian inference network in 

Figure 3.10: 

p{Tx\ua,Ta) p(Tt\u„T,) p{TN\uN„TNi) 

Topological/^ T 

node states 

Submap 
states 

PCA observation 

P(ZN\YS) 

Figure 3.10: The Bayesian inference network in the topological Bayesian inference. 
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3.5.2 Motion models on submap layer and topological node 
layer 

It can be noticed that, different from conventional Markov localization [31], here 

two kinds of transitional models (also known as motion model) exist: the transition 

among submaps, and transition among topological nodes. The transition between 

topological nodes is formulated as: 

p(T i |T*>« t_1) (3.33) 

where i and j are the IDs of certain two topological nodes. This probability is 

used to model the motion predicted from the inertial sensor readings. Given an 

odometry input vt-i, the number of topological nodes that the vehicle has traveled 

since last time instance can be computed as: 

vt-i 
Ut-l = (3.34) 

_ (Pnode _ 

where 4>node is the fixed size of the topological node. This equation reveals the 

advantage of introducing the topological node level in the map representation 

hierarchy: by doing so, the continuous dead-reckoning process becomes discrete 

and can thus be integrated with other discrete variables in the Bayesian inference 

process. 

The transitional probability is finally formulated as: 

P ( r | r J , , , , . , H e x p f ( ' ' ' - 1 - | l r j l l ) 2 l (3.35) 

Obviously, ut-\ is not so accurate an estimate because of the round operator [], here 

a manually set parameter at is introduced to model the confidence of calculating 
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the number of topological nodes from odometry. For instance, if the vehicle has 

traveled 50 meters, and the topological node's size (j)node is 10 meters. The equation 

(3.34) will tell that the vehicle has traveled 5 nodes, while actually it could be only 

4 nodes. at is therefore introduced here to represent such uncertainty. 

Basically, the above equation gives bias toward non-loop-closure. It assumes 

that if one loop-closure has happened, in the following a few steps, the vehicle's 

trajectory should be consecutive in terms of both time and geography, or in other 

words, another loop-closure is not so likely to happen again. As observed in the 

experiment (see Figure 3.16 ), in the outdoor jungle where the proposed algorithm 

is designed for, the environment is quite sparse and loop-closing does not happen 

so frequently. So this assumption will not be over-restricted. 

The transitional probability from submap i to submap j is denoted as: 

pi&lS^sht-i) (3.36) 

where sht-i represents the report from submap segmentation routing. Apparently, 

if a submap shift is detected, there could be two possible explanations: first, the 

detection is correct, the vehicle has moved to the next submap, this situation is 

given a probability 7; or the detection is a false alarm, the vehicle is still in the 

current submap, with a probability 1 — 7. The transitional probability can be 

calculated as follows. 

f 7 i = j + l 
p(Si\&,sht-1)=\ 1-7 i=j 

[ 0 else 

Please note that in above equation, there could exist the situation in which Sl is 

the first submap and Sj is the last one, here i = j + 1 still stands. 
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3.6 Experimental Results 

3.6.1 Platform 

Two experiments were carried out to test the performances of the appearance-

based topological Bayesian inference. The platform for the experiment is a tracked 

vehicle. For testing purpose, the sensors are also mounted on a pickup in the same 

layout as they are mounted on that vehicle, see Figure 3.11. More details about 

the experiments can be found in [12]. 

Figure 3.11: The pickup used to simulate the layout of the sensors. 

Since the test platform is a tracked vehicle, its motion cannot be read through 

dead-reckoning. As elaborated in previous sections, the proposed technique utilizes 

only the local vehicle transformations, i.e., translation and steering. These data can 

be conveniently calculated from the measurements of speedometer and compass. 

Although these two sensors' error will accumulate over time, they are already 

enough for the segmentation purpose. 

It must be noted that, the GPS data are used here only for reference and result 

analysis. During the experiments, no GPS or IMU information is involved. 
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3.6.2 Testing environment 

The experiments were carried out in a tropical jungle environment, some photos 

are shown in Figure 3.12. It can be observed that, this environment is highly 

unstructured and no geometric patterns can be identified. 

(a) 1st (b) 2nd 

(c) 3rd (d) 4th 

Figure 3.12: The jungle environment where the experiments were carried out. 

The map hierarchy building algorithm is first tested. During the trial, 19,053 

frames of 2D scans are collected, the total length of the trajectory is over 3,500 

meters. A reference map is built to illustrate the shape the environment, as shown 

in Figure 3.13. This map is built by rendering the 2D laser scans to the vehicle 
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poses. These vehicle poses are obtained from a sophisticated GPS/INS module 

[84], which is very accurate (less than 1 meters). Since the objective here is to 

examining the loop-closure at topological level, the data with such accuracy can 

be generally regarded as ground truth. Please note that this map is only used for 

reference and illustration purpose. It dose not provide any information to the loop 

closing detection algorithm. 

- so ' ' ! ! ' ' ' ' • 
0 100 200 300 400 500 6O0 700 800 

East, unit: m 

Figure 3.13: The environment where the trial was conducted. 

Another experiment is also conducted in which the vehicle traveled a relatively 

shorter trajectory. It is a square circular environment. During this trial, the vehicle 

travels around 700 meters, and more than 4000 frames of range measurements are 

collected. 

Photos of the testing field for above two experiments are shown in Figure 3.1. 

It can be observed that the testing road is not even, the pitch and yaw sometimes 

cause errors in the mapping result. The the laser beams reflected by the ground 

can be taken as road boundary, as indicated in Figure 3.14. 
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W ^ 
:~'rWp 

: ^ / : 

I 1 1 1 -J 1 L_i 1 1 1 
-20 0 20 *0 80 80 10O 120 140 180 160 

East, unit: m 

Figure 3.14: The environment with a loop-closure. Just like the map in Figure 

3.13, this map is also built from IMU data and for reference use only. 

3.6.3 The map hierarchy 

For the first environment, the whole map is finally segmented into 35 submaps, 

based on both the heading direction of the vehicle, and the similarities between 

continuous measurements, as depicted in Figure 3.15 . The solid dots represent 

the changes of the vehicle's heading, range from — n to n. The thin curve is for 

the change of the sensor measurements, the peaks of this curve represent the big 

dissimilarities between successive observations, which indicate the possible transi-

tions from one submap to another. In fact, the dissimilarities computed based on 

wavelet are much larger. To display them in a single figure with heading's changes, 

the dissimilarities are all scaled smaller. To keep the figure neat, for every three 

submaps, only one of them is marked. How the submaps are segmented can be 

observed from this figure: submap No. 25 is initialized when both the vehicle's 

heading and the range observations change vastly; for submap No. 19, the heading 

direction of the vehicle does not change much, but the wavelet checking reports a 
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high dissimilarity. 

change of heading 
change of appearance 

0 2000 4000 6000 8000 10000 12000 14000 16000 

measurement ID 

Figure 3.15: The similarities between sequential measurement frames and the 
changes of vehicle's heading directions. 

This online segmentation's results are plotted in Figure 3.16. The submaps are 

represented as rectangles, the size of rectangle is determined by the length and 

max width of the road boundary. 
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Figure 3.16: The submap segmentation result of the first environment. 

For the second environment, the map is segmented into 12 submaps. The first 
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8 of them are plotted, which correspond to the first loop, as in Figure 3.17. Each 

submap has its own coordinate system, which is indicated by two arrows. The size 

of the submap is represented by a dashed rectangle. 

200 

50 100 

East, unit:m 

200 

Figure 3.17: The submap segmentation result of the second environment 

Topological nodes are obtained by further segmenting the submaps in a fixed 

resolution, the result is shown in Figure 3.18. Due to the limited space, only 

one index is plotted for each three topological nodes. As can be observed, the 

topological nodes are indexed sequentially throughout the map, rather than within 

each individual submap. This is consistent with the Bayesian inference network 

in Figure 3.10, which shows that the transitions in topological nodes' space is 

independent of the submap space. 
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-50 50 100 150 200 

East, unit: m 

Figure 3.18: Topological node representation of the second environment. 

3.6.4 The dimensionality of the map space 

To explore the eigenvalue spectrum, Figure 3.19 shows the percentages which repre-

sent how much variance the first n eigenvectors account for. The X-axis represents 

the sorted ID of eigenvectors, the Y-axis represents the normalized accumulated 

eigenvalues till the corresponding ID. As can be observed, although the data are 

large in size, the first few of eigenvectors are already sufficient to describe them 

in the eigenspace. In this thesis, the first 40 of them are used to represent the 

environment information, or mathematically, A = 40. As demonstrated, these 40 

eigenvectors can provide about 90 percents of the total observed information. 

To examine how A in (3.13) can affect the performance of the Bayesian inference, 

the estimation results under different A are plotted in Figure 3.20. The ground 

truth is represented by X-axis, coordinates in Y-axis indicate the distances from the 

estimates to the vehicle's real positions, the unit is topological node. For example, 

the coordinate [x = 5, y = 2) means at the fifth time instances, the estimate is 2 

topological nodes away from the ground truth. 
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Figure 3.19: The eigenvalue spectrum. 
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Figure 3.20: The error between the estimates and GPS ground truth. 
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This figure shows that, the estimation error is big when the A is either too 

small(e.g., 3,5) or too big(e.g., 150, 300). This agrees with appearance model's 

theory: a too small A means that only very little of the observed information is 

used in the calculation, in other words, a lot of valuable knowledge is ignored in 

the PCA process. Bayesian inference then gives poor estimates with insufficient 

information. To the contrary, a large A equals to incorporating a lot of redundant 

information, such as the noises and small distracters. The redundant information 

can easily confuse the Bayesian inference and then lead to a wrong loop-closure 

report. 

Shortly speaking, the appearance modeling can be regarded as a process to 

select only the information useful to distinguish different places, and remove those 

useless. Too small a A equals to remove too much of the unimportant information, 

while too large a A removes not enough unimportant information, and consequently 

deludes those 'features'. Although such over-remove and under-remove exist, how 

to choose the A is actually not a problem. According to the experiments, for A 

ranging from 20 to 80, the inference can all give satisfactory results. 

3.6.5 From Euclidean space to mapspace 

Being highly compact, the map space modeling can nevertheless catch most of the 

properties of the environment in the Euclidean space. In Figure 3.21, the submap 

No. 1 and No. 2 are depicted in the global coordinate, it can be observed that 

these two submaps are highly different, as a result, their representations in the 

eigen-space also demonstrate great dissimilarity, as in Figure 3.22. 
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(a) submap No. 1 (b) submap No. 2 

Figure 3.21: The two different submaps in the global coordinate 

(a) For submap No. 1 (b) For submap No. 2 

Figure 3.22: The averaged Eigenframes used to represent the two submaps in 

Figure 3.21. 
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Two measurement frames from submap No. 1 and No. 2 are depicted in 

Figure 3.23. Their corresponding Eigenframes are shown in Figure 3.24. These 

two frames are distinct, which agrees with the fact that they are from different 

submaps. By comparing them with Figure 3.22(a) and (b), the highly similarities 

between the eigen-representation of submap No. 1 and the Eigenframe No. 3161 

can be observed. Such similarity is also found between submap No.2 and No.3351. 

These facts demonstrate the validity of spotting loop-closure in the map space. 

Frame3161 Frame3351 

x : unit: m x : unit: m 

(a) 2D scan No. 3161 (b) 2D scan No. 3351 

Figure 3.23: These two frames are from different submaps. 

3.6.6 Loop-closure detection results 

The observation probability for each measurement frame conditioned on each 

submap is respectively plotted in Figure 3.25. The flat lines in the center cor-

respond to the time when vehicle stopped (the senor was still working). It can be 

noticed that there are at least 4 submaps which have similar probabilities at the 

point of loop-closure (near measurement No. 3000). In this case, the submap No. 
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EigenFrame No.3161 ElgenFrame 3351 

(a) Eigenframe No. 3161 (b) Eigenframe No. 3351 

Figure 3.24: The Eigenframes computed for the two range scans in Figure 3.23. 

1, which has the highest probability, is the correct result. However, it is still dan-

gerous to simply use a Nearest Neighborhood criterion to detect the loop-closure. 

p(z|submap) 
1 

Vehicle stopped tiere 
for a while ; / 

- i 

each verticle line represents the 
-initialization of a new submap 

1000 1500 2000 2500 , ,„ 3000 
measurement ID 3500 

Figure 3.25: The observational probability for measurement z conditioned on dif-
ferent submaps. For the readers' convenience, only the first 8 submaps' curves 
are plotted. These probabilities are all high because they are not normalized yet. 
Please note that, no GPS or other positioning sensors' measurements are used to 
acquire this result. 
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When above possible loop-closures are detected, the topological Bayesian in-

ference procedure is initialized to confirm it. The results of the Bayesian inference 

are depicted from Figure 3.26 to Figure 3.36. In each figure, the probability dis-

tribution over the topological space is plotted. The corresponding geometric in-

formation about each topological node can be found in Figure 3.18. The vehicle's 

actual position read from GPS is marked by an arrow. The proposed algorithm's 

performance can therefore be observed by comparing the node with the highest 

probability with the indicated one. Taken that all the sequence of measurements 

verify the loop-closure hypothesis, a batch decision can thus be made that the 

vehicle has revisited submap No. 1 at the measurement ID 3000. 

As observed in Figure 3.26, the estimates of the proposed algorithm does not 

match well with the actual position read from GPS, because currently the Markov 

process is in initialization, current information is not sufficient to correctly compute 

where the vehicle is. 

Figure 3.27 depicts he probability distribution over submaps and the topological 

network at the position corresponding to measurements No. 3201 - No. 3251. 

Compared with Figure 3.26, it can be observed that the estimated vehicle position 

has become much more accurate as new sensor data is received. 

A topological shift detected at iteration No. 3301, as in Figure 3.28. The vehicle 

is supposed to move from its previous submap to a new one. All the submap's 

observational probability are re-calculated and plotted as above. 

Figure 3.29 shows the probability distribution over submaps and the topological 

network at the position corresponding to No. 3351. Till now, the estimations from 
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Figure 3.26: The probability distribution over submaps and the topological net-
work at the position corresponding to No. 3001 - No. 3151. 

Bayesian inference are satisfactory. 

Another topological shift is detected at iteration No. 3401, as depicted in 

Figure 3.30. According to the information gathered previously, this shift should 

be detected a short while later. Unfortunately, such a shift is reported due to 

the fact that the vehicle's current trajectory is different from the one in the first 

loop. So there is now actually a conflict between the Bayesian estimation and the 

new observation. If such conflict persists in the following iterations, the Bayesian 

inference will just report the loop-closure hypothesis at iteration 3000 is false. 

Figure 3.31 shows the probability distribution over submaps and the topological 
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Figure 3.27: The probability distribution over submaps and the topological net-

work at the position corresponding to measurements No. 3201 - No. 3251. 
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Figure 3.28: A topological shift is detected at iteration No. 3301. 

network at the position corresponding to measurements No. 3451 - No. 3601. 

The conflict introduced in Figure 3.30 'confused' the Bayesian inference process. 

Consequently, the error of the proposed algorithm grows during these 4 steps. 

The question to be answered here is: how should we judge whether such errors 

are caused by the wrong loop-closure hypothesis, or by the temporary observation 

error? 

Figure 3.32 shows the probability distribution over submaps and the topological 
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Figure 3.29: At the position corresponding to frame No. 3351. 

current position Topological shift happened! 

-20 0 20 40 60 80 100 120 140 

East, unit: m 

(a) GPS position 

-50 0 SO 100 150 200 

(b)P(z,|y,J') 

Figure 3.30: A topological shift is detected at iteration 3401. 

network at the position corresponding to No. 3651. The keep-coming correct 

observations since iteration No. 3351 finally compensate that error. In this figure, 

the estimation is quite close to the vehicle's actual position. 

A topological shift is detected at iteration 3701, as showed in Figure 3.33. The 

vehicle's actual position is depicted in (a), the observational probability of each 

submap is plotted in (b) by gray shading. 

Figure 3.34 shows the probability distribution over submaps and the topologi-

cal network at the position corresponding to No. 3751. The topological Bayesian 
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Figure 3.31: Estimates from iteration 3451 to 3601. 

inference gives the excellent estimation for the vehicle's pose. Put it in this con-

text, the keep-coming information verify the loop-closure hypothesis. Thereafter, 

another topological shift is detected, as in Figure 3.35. 

The probability distribution over submaps and the topological network at the 

position corresponding to measurements No. 3851 - No. 3951. The estimation 

from Bayesian inference matches well with the ground truth, which demonstrates 

the accuracy and robustness of the proposed algorithm. 
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Figure 3.32: Estimate at iteration 3651. 
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Figure 3.33: Topological shift detected at iteration 3701. 

3.6.7 Computational efficiency 

The algorithms are implemented using Matlab, and run on a computer with one 

Pentium IV 2.0 G Hz processor. The time requirements of conducting PCA, or 

equivalently, the parameters of the projection from measurement space to map 

space, are recorded in Figure 3.37. It can be observed that, as the measurement 

frames accumulate, the algorithm requires more and more time to calculate the 

mapping parameters. Within 2,000 frames, the initialization costs less than 10 

sec. The processing of raw range scans is handled by the metric level modeling 
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Figure 3.34: Estimate at iteration 3751 
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Figure 3.35: A topological shift is detected at frame No. 3801, then the likelihood 

of the vehicle's current position is updated. 

algorithm which is generally highly efficient, the proposed algorithm here only 

manages the hierarchical structure of the map, so that it is not required to be 

embedded into the local mapping process. In fact, the whole Bayesian inference 

process can be run on an individual computer without sacrificing any performance. 

Additionally, PCA is conducted only when a submap shift is detected, which does 

not happen frequently. According to trials, as depicted in Figure 3.14 and Figure 

3.13, such shift is detected averagely every 1 minutes. 

83 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



CHAPTER 3. APPEARANCE BASED BAYESIAN INFERENCE FOR MAP HIERARCHY 

0M2 

U 1 1 

1 •" 

u a 

i m 

9 

• 

Y*v 1 9 
GPS 

Estimation ' 

q 

\ b 

0 ° 
a • . 

" ^ n a o c - 0 . / 0 

E 

o s 10 is » m » x 
n o * ID 

o.ow 

• a n 

0 031 

0 03 

0 029 

t a n 

sow 

poff-? 

; ° D ^ • 

, I Esbm^bon 

1 GPS '* 

a 
a 

a . 

0 

D 

s <o is » a as x 

nod* ID 

(a) 3851 (b) 3901 

(c) 3951 

Figure 3.36: Estimates from iteration 3851 to 3961. 

After the projection from measurement space to the map space is computed, the 

Eigenframe can be computed in constant time (less than 20 ms) for each incoming 

measurement. Even the submap number scales with traveled distance, in most 

current SLAM literatures, this number will not surpass 100, and the Bayesian 

inference can still be run in realtime. 

3.6.8 Overlapping at the junction between submaps 

It can be noticed that in both Fig.3.16 and Fig.3.17, there exist overlapping regions 

between submaps. This may lead to the assertion that the summation of the vehicle 

pose's distribution over the submap space will be more than 1, i.e., the robot could 
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Figure 3.37: The time requirement when a submap is initialized. 

be simultaneously within two or more submaps. 

However, it should be noted that, the rectangles in Fig.3.16 and Fig.3.17 

are only used for illustration, they do not represent any geometric shape of the 

submaps. As can be observed in Fig.3.3, the submaps are constructed by seg-

menting the sequentially observed range scans. Therefore, 'submap' is a concept 

existing in the scan space, rather than the Euclidean space. The range scans are 

observed sequentially. This sequence is determinately segmented by the algorithm 

elaborated in Section 3.3. For this reason, there will be no overlapping in the 

submap space. For each new observed scan, either it belongs to one submap, or 

it belongs to another, there should be no such cases as one scan belongs to both 

submaps. For this reason, the Equation 3.2 should be justified. 

However, the motion of the vehicle is modeled in the Euclidean space, we may 
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need to project the observations from scan space to Euclidean space for Bayesian 

inference. Consequently, there could possibly exist overlapping situations, because 

each scan corresponds to a small region rather than a definite point. So in this 

work, it is assumed that any two sequential topological nodes are strictly separated. 

3.6.9 Viewpoint invariance 

As elaborated in previous sections, appearance-based loop-closure detection essen-

tially combines two steps. The first one is a supervised learning process which 

teaches the algorithm how to distinguish different places. In the second step, it 

uses the learned knowledge to classify the new observed data. 

It is then important to understand that, the appearance-based approaches com-

pletely rely on the given samples to understand the environment. If there are no 

samples from a certain pose of the environment, the appearance-based technique 

cannot learn from them. Consequently, it cannot recognize such a place in the 

future, even the vehicle has already been there with a different pose. Shortly 

speaking, such techniques are originally not supposed to be viewpoint-invariant. 

In the pattern recognition community, one way to solve this problem is to build a 

more comprehensive training pool that can teach the algorithm the scenes of the 

same place from different perspectives. This can be implemented by constructing 

3D models of the environment and then generating synthetic range scans based on 

this 3D model. However, a more promising solution is to build not only the 3D 

shape model, but also the appearance model, as the work in [14]. Meanwhile, it is 

also possible to solve this problem by employing viewpoint invariant sensors. 
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3.6.9.1 To calculate rotation by Hough Transform 

In addition to the main appearance-based topological inference loop, the author 

also introduces here a scan alignment technique that can be used to loose the 

viewpoint invariant constraint. The basic idea is to align the input scan and the 

submap, thereafter the input scan can be regarded as captured from the same 

viewpoint as the submap is observed. This alignment method is based on the 

popular Hough Transform (HT) and the first order moment. 

Hough Transform has been widely used in feature detection in images and laser 

scans [44]. The basic idea of HT is to construct a discrete line parameter space, 

and let input data points vote for the most suitable parameter. 

Angle 

a 

Jist 

Figure 3.38: Hough Transform projects the points in 2D Euclidean space to a 
Hough space, which describes the parameters of lines. 

For the alignment task, we regard the whole scan as a line. All the 2D points 

are projected into the Hough space, the heading voted by the most points will be 

regarded as the heading of the scan. 

Since a submap is a collection of scans collected at different time instances, the 

HT can also be applied to submaps. We can easily obtain the heading of a scan 
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(a) Scan in 2D Euclidean space (b) Voting result in Hough space 

Figure 3.39: The projection from 2D Euclidean space to the Hough space. The 
x-axis in the right figure stands for 7, its resolution is 0.4 meter. The y-axis is a, 

its resolution is 5 degrees. 

and a submap, and then align them. In Fig. 3.40, the heading direction of submap 

No. 1 and scan No. 2085 is plotted. Correspondingly, their heading directions are 

also calculated by HT. 

(a) Submap No. 1 and its heading (b) Scan No. 2085 and its heading 

Figure 3.40: Hough transform is used to calculate the heading of submap and laser 
scan. The computed heading is marked by an arrow. 

The alignment result calculated by Hough Transform is plotted in Fig. 3.41. 
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By comparing it with Fig. 3.40, it can be observed that, the HT can accurately 

calculate the rotation between the submap and the scan. 
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Figure 3.41: The alignment result based on the directions calculated from HT. 

However, it should be noted that the Hough Transform in this work is not a 

feature extraction algorithm, its objective is not to detect any lines in the scan or 

submap, but rather, to retrieve the most likely heading direction of the distribution. 

3.6.9.2 To calculate translation by first order moment 

Although HT can handle the rotation of viewpoint, it may not cope well with 

translations in the x-axis. Therefore, a moment based alignment preprocessing 

similar to [89] is further introduced. The n'th raw moment mun (i.e., moment 

about zero) of a distribution P(x) is defined by 

where 

mun = (xn) 

(/(*)> = ]T/(*)P(:r) 

(3.37) 

(3.38) 

A range scan can be regarded as a distribution of 2-D vectors: 

89 
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The first order moment of this 2-D distribution is defined as: 

A*l(Sa) 
i = i b 

361 
(3.40) 

In the same manner, if we regard a submap as a collection of 2D scans, it can also 

be formed as a distribution of 2-D vectors, similar to the one in (3.39). 

By comparing the x value of the first moment of the distribution of a scan and 

a submap, we can align them in the x-axis. Together with the rotation calculated 

from Hough Transform, the scan No. 2085 and submap No.l can be accurately 

aligned, as demonstrated in Fig. 3.42. 
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Figure 3.42: The first order moment is used to further align the result from Hough 
Transform in Fig. 3.41. It can be observed in this figure, at the position of loop-

closure, by using Hough Transform and Moment based technique, a scan from a 

new viewpoint can be accurately aligned with the previously observed submap. 

3.6.9.3 Resu l t s 

The scan No. 2085 is observed at the beginning of submap No.l, as illustrated in 

Fig.3.43. 

This scan is very similar to submap No.l. It is observed when the vehicle is 

turning, i.e., from a different viewpoint. Consequently, its observational probability 

in Submap No. 1 is quite low. With the alignment preprocessing, the observational 
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Figure 3.43: The scan frame taken at the position when the vehicle re-visited 
submap No. 1. This time it entered from a turning road so that the viewpoint is 
considerably different from the first time. 

probability in Submap No.l is increased. This result demonstrates the feasibility 

of using HT/moment alignment to loose the viewpoint invariance constraint. 

3.6.9.4 Discussion on viewpoint invariance 

Fortunately, for a cyclic loop-closure, the viewpoint variances are actually not a 

problem. As observed in Figure 3.17, when the vehicle visits and re-visits submaps 

No. 1,2,...,5, its trajectories are not exactly same. This demonstrates the proposed 

appearance model's capability to handle moderate viewpoint invariance. 

It should be noted that, the existence of cyclic environment is never an over-

restricted assumption. In most large-scale mapping scenarios such as [109, 38], 

the involved testing platforms are vehicles whose motion (especially steering) is 

constrained, then they generally cannot move to off-road terrain. Therefore, for an 
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Figure 3.44: In the situation of viewpoint variance, by aligning the scan according 
to the submap's deployment, the observational probability can be increased. 

application in cyclic environment, the vehicle's trajectories, as well as viewpoints, 

are constrained by nature. 

It should also be noted that, the viewpoint invariance is still an outstanding 

problem either in computer vision domain or in robotics domain, which deserves 

further investigations. 

3.7 Conclusion and Discussion 

This chapter explains an innovative approach to detect the loop-closure for SLAM 

in highly unstructured cross-country environment where no geometrical features 

are available. It presents how to conduct PCA to model the environment's ap-

pearance (not the environment itself) using 2D range scans. After the high dimen-

sional measurements are projected into the low dimensional map, their distribu-
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tions are approximated by a series of Gaussian models. These Gaussian models 

are used to calculate the observation probability for Bayesian inference. By doing 

so, the appearance model of the environment could be integrated into the topo-

logical Bayesian inference process, so that the metrical level feature information is 

no required. The experimental results demonstrate that the proposed Eigenmap 

technique can robustly detect loop-closure in cross country environment where no 

geometrical features are available. 

Different from the conventional loop-closure detection techniques which rely on 

feature tracking, in this inference framework, no vehicle pose prediction is neces-

sary. In other words, it is no longer required that the vehicle's global pose or the 

features' global position is accurately estimated. So even the vehicle's localization 

error is huge, the detection algorithm can work properly. This is a highly de-

sirable characteristic for a tracked vehicle moving the cross-country environment, 

because in this case, the error of the vehicle's self-localization could be quite big 

after a short distance. With such a huge error, it is impossible to use any 'gating' 

mechanism to search whether the vehicle has re-visited a certain place. 
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Chapter 4 

Appearance-based loop-closing 
optimization for map hierarchy 

4.1 Introduction 

After the detection of a loop-closure, the robot associates its current observation 

with the map it obtained sometime ago. Due to all kinds of errors in the SLAM 

process, at the point of loop-closure, there is always an inconsistency between the 

map and the observation. Accordingly, there need to be an optimization process to 

propagate the loop-closing error backward to all the map items to obtain a consis-

tent map. In this context, to distinguish it from loop-closure detection as discussed 

previously, this process is referred to as 'loop-closing optimization'. This chapter 

will present an innovative loop-closing optimization technique. This technique is 

based on the same hierarchical framework as discussed in Chapter 3. 

Dissanayake proved a very important theorem [20] in 2001. Given enough 

observations, if all the sensor errors are white Gaussian, the uncertainty of any 

relation between map items will finally converge to zero. In other words, the map 

will become fully correlated in the limit, therefore, it can be regarded as a rigid 
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body. 

Going through the same environment again and again until the map con-

verges may be very time-consuming for one single robot in the large-scale out-

door navigation tasks. This has motivated the development of collaborative map-

ping using multiple robots, as in [53]. However, in a lot of unmanned surveil-

lance/reconnaissance scenarios, it is often desirable to reduce the operational time 

and number of robots whenever possible. 

On the other hand, even a converged map can be obtained, it only provides the 

relative locations among map items. Such relative map may not be able to sup-

port complex outdoor navigation tasks, such as surface-air collaborations, human-

robot interactions, multi-sensor multi-platform tracking. In these applications, 

exchanges of information are often preferred to be performed in a global coordi-

nate system. It is often desirable to accurately register SLAM's mapping result to 

an existing roadmap. 

In this chapter, the loop-closing is modeled as a problem of registering the 

mapping result to a "priori appearance information (e.g. a roadmap) in a global 

coordinate system. This registration is thereafter solved by an optimization al-

gorithm. With the help from roadmap information, the presented algorithm can 

accurately model large environment with one single robot, by visiting this environ-

ment for only once. In the meanwhile, the resulting map provides comprehensive 

3D description about the environment in a predefined global coordinate. 

The mapping result is modeled as a graph of local submaps arranged in a de-

formable configuration. The initial configuration is incrementally constructed by 
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filtering local perceptual data and motion readings till a loop is closed. This initial-

ization process is very similar to other submap-based SLAM algorithms [90] [28]. 

After initialization, global appearance information is introduced as a constraint 

on the loop-closing optimization process. Appearance information can be obtained 

from a roadmap. It describes how the mapped environment should look like in a 

global coordinate system. In the loop-closing process, the appearance informa-

tion attracts submaps to a configuration that best matches the input image. The 

process of loop-closing with appearance information (shorted as LCAI in this con-

text) is illustrated in Figure 4.1. The initial submap configuration $ is built by 

conventional SLAM techniques. This configuration is deformed according to the 

appearance information / , to obtain a consistent mapping result. 

Mapping ^ Pictorial Loop-closing 
information information * 

result 

Figure 4.1: The loop-closing with appearance information. 

In this work, the LCAI is formulated in a probabilistic form, which is consistent 

with other generic stochastic SLAM algorithms. The objective of LCAI is to obtain 

a maximum a posteriori (MAP) estimate for the submap configuration, based on 

both mapping information and pictorial information: 

X* = argmax(A' |$, /) (4.1) 
PC 

Since the pictorial information / is provided by an image without an analytical 
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formulation, it is difficult to derive a closed-form solution to match the submap 

configuration to the image. Another contribution of this work is to develop a 

two stage optimization algorithm to guide the submap configuration gradually 

to its desired position. The first stage is a global searching process based on 

genetic algorithm (GA). The submap configuration space is explored by a set of 

chromosomes, while each of them encodes a submap configuration. A fitness value 

is calculated for each gene based on (4.1), so that erroneous submap configurations 

can be exterminated during the evolution. The evolution stops when a rough 

configuration is achieved. Using the result of GA as initial configuration, in the 

second stage, the MAP estimation is solved by an iterative energy minimization 

process. This technique is inspired by the active contour (also called SNAKE) [49] 

algorithm in computer vision. The basis idea is that, the two constraints in LCAI 

are represented by two forces in the image domain. These two forces deform the 

submap configuration in every iteration until a balance is reached. 

This chapter is organized as follows. Section 4.2 lays out the probabilistic for-

mulation of loop-closing with appearance information; thereafter, a genetic algo-

rithm based loop-closing optimization strategy is explained in Section 4.3; Section 

4.4 introduces an iterative optimization algorithm that further tunes the result of 

GA; finally, the experimental results and performance analysis are given in Section 

4.5. 
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4.2 Probabilistic loop-closing with appearance in-
formation 

The major contribution of this work is to introduce a global appearance information 

to the loop-closing process, as an additional constraint on the deformable submap 

configuration. The mapping process is organized as a hierarchy, the lower level 

mapping fues local sensor data to build the submaps; the higher level mapping is 

the LCAI which is performed only when the robot re-visits a place and tries to 

close a loop. 

4.2.1 Submap configuration 

As elaborated in [28], when the robot navigates and segments the whole envi-

ronmental map, it can simultaneously estimate the submaps, the transformations 

between submaps and the uncertainties of these transformations. In this context, 

they are referred to as initial submap configuration, or shorted as mapping informa-

tion. Mathematically, at the time of loop-closing /, given the history of perceptual 

data Zi, and interior motion readings Ui, the initial submap configuration $ can 

be constructed from a SLAM routing A: 

$ = {X,V,M} = A(ZhUi) (4.2) 

where <& comprises submap transformations X, transformation covariances V, and 

submaps themselves M.: 

V = 

( 

M 

( '•• 0 0 

0 Ps 0 M 

V 0 0 ••. / X 

!)8 
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here s = 1, 2, • • • , Nm and Nm is the total number of submaps. 

A typical loop-closing situation can be illustrated by Figure 4.2. The deploy-

ment of all the 9 submaps is defined by the sequence of coordinate transforma-

tions between submaps, which is denoted as X. When a loop-closing situation is 

confirmed, the submap Mg should be shifted to the position of submap Mi, as 

indicated. It can be observed that, the deployment of all the 8 submaps can be 

defined by either the sequence of relative transformations X, or equivalently, the 

sequence of absolute global positions C. 

North 

L(7) wyX 

/X<8) 
M8)h 

X(9JT 
riL(1)=L(9) 

/ X ( 2 ) \ 
/X (1 ) 

/ 

L(6) 

^ > MS, 

L4X(5) 

DL(4) 

/x(4) 

i_JX(3) 
L(2) 

East O East 

(a) Initial submap configuration (b) a posteriori submap configuration 

Figure 4.2: (a) The initial submap configuration, (b) The a posteriori submap 
configuration corresponding to (a). 

In this framework, each submap Ms is represented as a 3D point cloud {xsj,ysj, zsj} 

while j = 1,2, • • • , N3, here Ns is the number of points inside submap s. 

M5 = 

/ xs,i 2/5,1 z3,\ \ 
xs,2 Vs,2 Zs,2 

(4.3) 

\ xs,N3 Vs,N3 2s,W, J 

The 3D submaps are built from laser range measurements in this work. However, 

<)!) 
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it should be noted that the proposed algorithm is not restricted to any specific 

sensor. Actually, these point clouds could be obtained through a variety of sensors 

and techniques, e.g., 2D range scanner, 3D radar, stereovision and, structure from 

motion (SFM). 

These submaps and their deployments encode the information collected during 

the mapping process. Based on this information, the a posteriori map configuration 

X can be estimated. In the mapping context, the target variable to be estimated 

is the transformation between adjacent submaps, accordingly, X, and all its inside 

items, are marked with bar. 

As depicted in Figure 4.2, at the time when a loop-closure is detected, this 

configuration resembles a circle, while each arc s — 1 —> s represents a known 

transformation from submap Ms_i to Ms. This arc is denoted as xs, which is a 

3-vector. These three items represent the translation of a submap relative to the 

coordinate of its adjacent submap: 

xs = ( Axs Ays A% ) (4.4) 

The estimated transformations between submaps come with uncertainties. These 

uncertainties are approximated to be Gaussian, and represented by a covariance 

matrix V'. It can be noticed that a submap Ms is independent of any previous 

ones, because it is built relative to the vehicle location at the moment it was built. 

Consequently, any two submaps within M are statistically uncorrelated. Since Ps 

is regarded as a fixed parameter, rather than a variable to be estimated, it is not 

included below the conditioning bar as xs is. 
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Similar to the definition of X, the a posteriori map is denoted as the collection 

of transformations between local submaps: 

* = ( • • • x(s) . . . ) T (4.5) 

Here the symbol (•) rather than lower-type is used to emphasize that, the final 

submap graph is not static, but modeled as a function of submaps. 

Similarly, the pose of submap s is denoted as L(s), which comprises the submap's 

origin {n(s),e(s)} and direction T(S) in the fixed north-east global coordinate 

frame: 

h(s) = ( n(S) e(S) 7-00 ) T (4-6) 

Equivalent to (4.5), the mapping information can also be formulated in an absolute 

form: 

* = £ = ( . . - L(5) • • • ) T (4.7) 

A pair of operators © and 0 are introduced here to represent the coordinate 

transformations in the Euclidean space. Accordingly, by defining L(0) as the ori-

gin of the fixed global coordinate, there exist following relations between submap 

locations L and submap transformations x: 

L(s) = L(0) 0 x(l) © x(2) © x (3 ) . . . © x(s) (4.8) 

and respectively, the pose of submap s with respect to s — 1 is calculated as: 

x(s) = 0 L ( s - l ) © L ( s ) (4.9) 

(e(s) — e(s — 1)) cos r ( s — 1) + (n(s) — n(s — 1)) sin r ( s — 1) 
— (e(s) — e(s — 1)) s inr(s — 1) + (n(s) — n(s — 1)) cos T(S — 1) 

T(S) — T(S — 1) 
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4.2.2 Probabilistic loop-closing with appearance informa-
tion 

Based on above mapping information, the task of LCAI is to calculate the a pos-

teriori probability density function (PDF) of the submap configuration X. Taken 

the mapping process denoted in (4.2), the target probability to be estimated is: 

p(X\X,M,V,I) (4.10) 

According to the Bayes rule, the target probability in (4.10) is marginalized as: 

p(X\X, I,M,V)x p(I\X, X, M, V)p{X\X, M,V) (4.11) 

The image appearance is only determined by the status of the real world, rather 

than how it appears in the robot's sensor observation. For this reason, the X in 

the first component on the right-side of (4.11) can be omitted: 

p(I\X,X,M,P)<* p(I\X, M,V) (4.12) 

By substituting (4.12) back to (4.11), the target probability in (4.10) is re-

formulated as: 

p{X\X, / , M , V ) oc p(I\X,M,V)p(X\X, M,V) (4.13) 

Since observing / is only dependent on the layout of the submaps, the V in 

p(I\X, M,V) on the right side can be removed. Similarly, the prior probability 

of X is independent of the details of submaps, so the M. in the second item 

p(X\X,M,V) is omitted too. The target probability is thus refined as: 

p(X\X, I,M,V)<x P(I\X, M)p(X\X, V) (4.14) 
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The probability p(I\X,A4) captures the imaging process, and measures the 

likelihood of observing appearance information / given the map configuration. It 

is not difficult to understand that, one submap's appearance will not affect the 

appearances of others. So this probability can be decomposed into: 

p(I\X,M)txl[P(I\Ls,Ms) (4.15) 

where each p(I\Ls, Ms) characterizes the match between submap s and the image. 

The distribution p(X\X,V) models the conventional loop-closing optimization 

process. Its constraint on the whole submap graph can be decomposed into con-

straints on each individual transformation: 

p(X\X,V) =l[p(x(s)\xs,Ps) 
s = l 

a I l e x P ( - 2 ( x ( s ) " ^)TP-\x(S) - x s)) (4.16) 

By substituting (4.15) and (4.16) into (4.14), the final formulation of the posterior 

probability distribution of the submap graph X is: 

p(X\I,X,M,V) 

ex Hp(I\L(s), MS) J ] exp ( - -(x(s) - xs)
TP^(x(s) - x,)) (4.17) 

s = l s = l 

Taken the objective of LCAI as formulated in (4.1), the MAP loop-closing estima-

tion is detailed as: 

,Y* = argmax }Tp(/ |L(s),M s) x 
s = l 

Nm 

J J e x p ( - -(x(S) - xs)
TP;\x(s) - x.)) (4.18) 

103 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



CHAPTER 4. APPEARANCE-BASED LOOP-CLOSING OPTIMIZATION FOR MAP HIERARCHY 

4.2.3 An energy-minimization formulation 

Taking the negative logarithm of the right side of (4.18) yields: 

X* = a x g i m n ^ f / ( L ( s ) , M s ) + e x (x(s) - x s) P;1 (x(s) - xMl.19) 

where /(L(.s) ,M sJ = — logp(/ |L(s),M s) is a match cost measuring how well 

submap Ms matches the image / at the pose L(s). The symbol e is a weight deter-

mining how much the mapping information and appearance information contribute 

in the minimization process. Therefore, the objective of LCAI is to minimize the 

target energy function ELC\ 

ELC(C) = EBxt(C)+ex EM(C) (4.20) 

where 

EExt(C)=Y/f{L(s),Ms) (4.21) 

and 

N„ 

EM(£)=J2(® L ( S " 1) © L(s) - * . ) p 7 1 ( e L ( i - l ) e L(a) - x,) (4.22) 
3 = 1 

In this energy model, EM (£) characterizes the cost of deforming from the stochas-

tic submap structure built from (4.2). Minimizing EM(C) is essentially trying to 

reach a Maximum Likelihood estimate for the submap configuration based solely 

on initial mapping information, while EExt (£) gives penalty to C which does not 

match the appearance information. 

The distribution of image pixels' grey values is difficult to be modeled ana-

lytically, which leads to a high dimensional, non-convex energy function. Con-

sequently, it is very difficult, if not impossible, to reach a close-form solution for 
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LCAI in (4.29). A lot of literature has been published addressing such optimization 

problem, they generally fall into two categories. Global optimization algorithms, 

e.g., genetic algorithm [22],-try to find a solution in the solution space for which the 

objective function (4.29) obtains its global minimum. On the other hand, greedy 

algorithms, such as ICM [5], follow the problem solving meta-heuristic of mak-

ing the locally optimum choice at each stage with the hope of finding the global 

optimum. They do not consistently find the globally optimal solution, because 

they usually do not operate exhaustively on all the data. For this reason, greedy 

algorithms can, in principle, achieve higher efficiency than global techniques. 

In this work, the global search and greedy search are integrated into a two-

stage optimization process to minimize the energy in (4.29). The first stage is 

a genetic algorithm process that terminates when a rough estimate is obtained. 

Thereafter, a more efficient gradient search is performed to refine the result of 

GA. By employing this two-stage optimization process, the advantages of both 

methods can be exploited: the presented technique can achieve both robustness 

against local minimum and efficiency. 

4.3 Global energy minimization using genetic al-
gorithm 

4.3.1 Unconstrained loop-closing optimization 

Before loop-closure is detected, say, at time — 1, the last component in the submap 

configuration is: 

L(m, - 1 ) = L(0) 0 xj 0 x 2 . . . © xm. (4.23) 
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When a loop-closure is detected at time 0, the last submap is associated with 

submap 1, so the new pose of the last submap will be: 

L(m,0) = L ( 0 ) e x i . (4.24) 

Apparently, due to the existence of linearization error and Gaussian approximation, 

L(m, —1) will not be equal to L(m, 0). The difference between them is often referred 

to as loop-closing error. This loop-closing error can introduce a big energy to the 

system: 

£ M ( x ( m , 0 ) ) = 

(h(m, 0) e L(m - 1,0) - x m ) P~l (h(m, 0) 0 L(m - 1,0) - x m ) . (4.25) 

The loop-closing optimization's objective is thus to re-distribute above error to 

each component in the map and try to achieve a minimum energy of 4.20 with an 

additional loop-closing constraint: 

L(m) = L(l) (4.26) 

Taken the coordinate transformation defined in 4.8, this constraint is equivalent 

to: 

L(m) = L(l) © x(2) © x(3) © x (4 ) . . . © x(m). (4.27) 

This formulation essentially embodies a more general case of the constrained opti-

mization problem in the work of Estrada [28]. This constrained problem is turned 

to an unconstrained one here by replacing (4.26) with a weighted penalty function: 

C{X) = w||L(0) © x(l) - L(0) © x(l) © x(l) • • • © x(m)||, (4.28) 
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when the weight w approaches infinity, the solution of the unconstrained problem 

converges to the solution to the constrained one. 

So the objective energy function to be minimized is: 

E{X) = EM(X) + ELC{X)+C(X) (4.29) 

which is a complex function with potential local minima over the submap trans-

formation space. 

4.3.2 Introduction to genetic algorithm 

Genetic Algorithm (GA) is an adaptive heuristic search algorithm based on the 

evolutionary ideas of natural selection and genetics. As such they represent an 

intelligent exploitation of a random search used to solve optimization problems. 

Although randomized, GA is by no means random, instead it exploits historical 

information to direct the search into the region of better performance within the 

search space. GA is designed to simulate processes in natural systems necessary 

for evolution, which follow the principles first laid down by Charles Darwin of 

'survival of the fittest'. Since in nature, competition among individuals for scanty 

resources results in the fittest individuals dominating over the weaker ones. 

At each generation k, the GA maintains a population of Nc chromosomes: 

FOF(k) = (x\k), X2(k), X3(k), • • • , XN'(k)\ (4.30) 

GA simulates the survival of the fittest among individuals over consecutive genera-

tion for solving a problem. Each generation consists of a population Nc of character 

strings that are analogous to the chromosome that we see in our DNA. Each indi-
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vidual represents a point in the submap configuration space and a possible submap 

deployment: 

# = ( L « ( 0 ) , x * ( l ) , . . . , x * ( r o ) ) T 

The individuals in the population are then made to go through a process of evo-

lution. A fitness measure T can be easily derived from the energy function in 

(4.29): 

T{X{) = exp ( - E{Xi)\ (4.31) 

After evaluating each chromosome, a new generation can be established by selecting 

chromosomes from the old ones in a probabilistic manner. The likelihood that a 

chromosome should be selected is: 

P{Xl) = / ( * * } (4.32) 

The pair of chromosomes (called parents) are selected at random and the single-

point crossover operator is applied according to a fixed crossover rate pc. For 

this operation, a random number in the range of 0 the length Lq of the string is 

generated. This is called the crossover point, the portions of the two strings lying 

to the right of the crossover point are interchanged to yield two new strings (called 

offspring). 

The mutation operation is introduced to prevent premature convergence to lo-

cal optima by randomly sampling new points in the search space. In a mutation 

event, some mutation points are randomly selected based on a mutation likelihood 

pm, as in Figure 4.4. The gene at each mutation point is changed, so that the 
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Figure 4.3: The crossover procedure, 

chromosome can become different. Crossover and mutation are the two methods 

mutation point 
/ 
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{ )( y 
After mutation I 0 1 1 | I f 0 j 1 I 1 I 0 ] I 1 

Figure 4.4: The mutation procedure. 

that the GA explores new submap configurations and evolve the population to-

ward higher fitness. Theoretically, higher mutation rate and higher crossover rate 

can prevent premature convergence, i.e., the situation that the population stops 

evolution before it reaches the desirable configuration. However, GA may take a 

long time to process when pm and pc are set too high. 

Although GA can search the whole configuration space, it cannot guarantee a 

global optimal solution unless the problem itself is convex. In this work, GA is 

employed only to prevent the gradient search algorithm trapped by a local mini-

mum. 

109 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



CHAPTER 4. APPEARANCE-BASED LOOP-CLOSING OPTIMIZATION FOR MAP HIERARCHY 

4.3.3 Encoding submap configuration by chromosome 

As explained in the previous section, genetic algorithm maintains a population 

of chromosomes, while each chromosome encodes a submap configuration X1. As 

explained in Section 4.2.1, each X% represents a possible deployment of all the 

submaps as in Fig.4.2. 

^ = ( L i ( 0 ) , x * ( l ) l . . . > x * ( m ) ) T 

= ( n*0) 4 , TL ft, <f>\, 7J, • • • , V4, tin, lln ) 

The most popular way of chromosome encoding is to use binary code, i.e., each 

item in Eq.4.33 is turn to binary form. However, it is inconvenient to encode float 

number, here all the items in Eq.4.33 are decoded to unsigned decimal integers. 

For position data as n%
0, e

l
0„ the resolution will at the pixel level. For angle, the unit 

will be degree. Since GA's objective in this work is to provide a rough estimate 

for further refined searching performed by SNAKE algorithm, such resolution is 

already sufficient. 

The roadmap image's resolution is 590 x 504 in this work. For this reason, 

"oi V4> V4> —»^m should not be bigger than 590. Since 29 < 590 < 210, a 10 digits 

binary string should be sufficient to encode each item in n ^ , ^ i , ^ ) ••••>'llJln- I n the 

same manner, people can use a 9-digit binary code to encode el
Q,<f>\, (f>l

2, •••,4
,t

m-

For the angular values, since 256 < 360 < 512, a 9-digit binary code should be 

sufficient. 

Therefor, to represent a submap configuration as in Fig.4.2, GA needs a binary 

string at the length of 9 x (10 + 9 + 9) = 252. 
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4.3.4 Appearance matching 

The likelihood f(h(s),Ms) -

— logp(I\L(s),Ms) is the probability of observing 

image / given that the submap s is at the pose L(s) with 3D structure described 

by Ms. Here, the submap graph can be regarded as a generative model from which 

the target environment's appearance in image can be inferred. To calculate this 

likelihood, this generative model must be projected into the image plane of the 

camera, or equivalently, the plane where the appearance information exists. The 

projection of local 3D submaps into the image plane is computationally expen-

sive, taken the huge number of points that exist in the 3D submap model. Since 

this likelihood calculation is performed every time GA evaluates the fitness of a 

chromosome, an efficient approximation for above projection is necessary. 

The proposed algorithm assumes that the appearance prior is often acquired 

by a roadmap, so that the captured image resembles a top-view and the submaps' 

local appearance will not be affected by their relative pose in the terrain plane. 

Therefore, these local appearance can be calculated for only once and then stored 

for all the following processing. 

Here the camera model is denoted as C. With this model, submap {L(s),Ms} 

can be represented in the image domain as its projection corrupted by noise rj: 

I(s) = C(M„ L(a)) + r/ = Y, C(x*j, Vsj, z.j) + rjsj (4.33) 
j € M s 

Due to occlusions, shadowing, and those objects whose heights are below the 

vertical laser scanner, there may exist outliers or matched pixels in the rendered 

image. In the computer vision domain, modeling such outliers has long been an 
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outstanding problem. A few algorithms have been developed for visual surveillance 

research[60] [18]. However, a limitation in this work is that, there is only one image 

for building the reference image model. Consequently, it is impossible to build a 

multiple model as in [60]. In this work, a simpler uni-model representation is 

employed, similar to the work in [29]. The noise 77 is taken to be a mixture of a 

Gaussian and a uniform distribution: 

PiVsj) = (1 - e)Af(0, ap) + e/256 (4.34) 

where 0 < e < 1. The uniform noise is bounded over a finite interval of intensity 

values while -A/"(-) is zero-mean normal distribution whose variance may change 

with spatial position. In general, the variance ap is sufficiently small that the area 

of the Gaussian outlier the bounded interval may be ignored. Similarly, the whole 

submap configuration in the image domain can be calculated as: 

1(C) = £ !(S) (4.35) 

*e[i,/v.] 

Given the generative submap graph, the likelihood of each submap s is de-

fined independently. The algorithm samples, with replacement, i = 1,2, ...Np pixel 

locations {uSti,vSti} uniformly from the projected region of submap s, i.e., I(s). 

The gray value differences between points on the appearance model and the cor-

responding submap projection are independent and are modeled as a mixture of a 

zero mean normal distribution and a uniform outlier distribution. 

The appearance matching likelihood of submap s is then expressed as: 

/(^M-) -55 + £ § - " ( - § (1K""'') $*"***) <436) 
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4.4 SNAKE-based local energy minimization 

In this work, a greedy searching strategy inspired by active contour (SNAKE) [49] 

is developed to refine the result of GA. Active contour is essentially a gradient 

greedy shape fitting algorithm, which tries to minimize an energy function derived 

from the image so that it takes on its smaller values at the features of interest. 

In the scenario of SLAM, edges are natural features to be exploited, because the 

edges often represent structures in the environment, e.g., roads and buildings. 

The basic idea is to sequentially adjust the pose for each single submap based 

on the available local appearance information and mapping information, and it-

erate this procedure until convergence. A potential field is constructed in the 

domain of the input roadmap image. The internal force computed from the initial 

submap configuration tries to keep the submap graph in the configuration as it is 

constructed, i.e., impose consistences between each pair of consecutive submaps. 

Simultaneously, the constraint from appearance information is modeled as forces 

which guide submaps to a globally consistent configuration, where they match the 

input image best. 

With respect to the LCAI in (4.20), the configuration of submaps that mini-

mizes ELC must satisfy the Euler equation: 

VEExt (£) _ e x VEM (C) = 0 (4.37) 

To find a solution for (4.37), submap configuration is made dynamic by treating 

X as a function of iteration t, as well as s. Then the configuration at iteration 

t is denoted as X^\ or equivalently, C^\ and the poses of submaps within it 
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are consistently written as L^(s ) . Here time ' - 1 ' is defined as the moment right 

before loop-closure is detected. Correspondingly, time '0' is the moment when 

loop-closure is confirmed, i.e., submap iVm is replaced with submap 1. Thereafter, 

t = 1, 2, 3, . . . represents the index of iteration. 

Taken the Euler function in (4.37), the submap configuration can be iteratively 

updated as: 

£ ( t+i) = C(t) + VEEXt / £ ( m + / _ e x V J B M ( £ W U 

o v ' > v ' (4.38) 
pBxt pM 

This is essentially a force balance process, in which these two forces push/attract 

the submap configuration C to the desired position. 

4.4.1 Constraint from appearance information 

The image is denoted as I(u, v) here, its edge map can be conveniently calculated 

by well-established techniques such as Canny edge detector [10]: 

rd9e(u,v) = -\VI(u,v)\2 (4.39) 

As can be observed, fedge(u,v) gains high values at position close to edges 

(corresponding to real-world structures), while has low values in the homogenous 

regions. An illustrative edge map computed from the picture is depicted in Figure 

4.5. 

The gradient of edge map, V/edffe, has vectors pointing toward the edges. This 

is a very important characteristic in the context of LCAI, because it gives a clue 

that how the deployment of a submap should be adjusted for a better match to 

the appearance information. However, the 2D vectors in the gradient of edge 
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(a) Appearance information I(u,v) (b) Close-look at fd9e(u,v) 

Figure 4.5: Illustration of edge map. (a) The region to be examined is marked by 
a rectangle, (b) The generated edge map. 

map Vfedae basically have very limited 'capture range', they gain high values only 

within the immediate vicinity of the edges, if the submap configuration is initially 

deployed outside this vicinity, the contribution of appearance information in the 

loop-closing optimization will be trivial. 

The solution proposed by Xu [111] is to replace the vector field of edge image's 

gradient by a dense vector field V. For each pixel (u,v) on the image, a vector 

V(u, v) is generated to measure, if a point is deployed at this pixel, how its position 

should be adjusted. A popular way to denote the vectors in V is to use their 

projection in the x-axis and y-axis: 

V(u, v) = [vx{u, v), vy{u, v)] (4.40) 

So that the 'force' acting on a point can be computed by combining the force acting 

on it in the direction of x-axis and y-axis. An illustrative dense vector field can 

be found in Figure 4.6. As can be observed, the vectors (plot as arrows) provide 
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valuable information on how the submap's position should be adjusted. 

50 
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330 340 350 360 370 

Figure 4.6: The potential field V generated in the region depicted in Figure 4.5. 

This vector field is derived from the image to minimize the following target 

energy function: 

e = J Jtiiy^uY+y^vf+Vyiuf+Vyiv^ + lVf^lV-Vf^dxdy (4.41) 

where {vx(u), vx(v),vy(u), vy(v)} is the partial derivatives of the vector field and 

/i is a constant. This variational formulation has several desirable characteristics. 

First, in the homogeneous regions where there is no particular information about 

the environment, in other words, |V/ e d 9 e | is small, the energy is dominated by the 

sum of squares of the partial derivatives of the vector field, which is denoted by 

the first item on the right side. This yields a smoother vector field compared to 

the one of edge gradient, so that the 'capture range' of the edges can be drasti-

cally increased. Second, when |V/ e d s e | 2 is large, the second term dominates the 

integrand. By minimizing it, the V is kept nearly equal to the gradient of the edge 

map in the vicinity of the edges, so that the edge information is preserved. To 
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derive the gradient field which minimizes the energy in (4.41) is beyond the scope 

of this thesis, the readers are referred to [111] for detailed explanation. 

Since the 3D submap description is very comprehensive, it is reasonable to as-

sume that the map items have correspondences in the roadmap pictures. Compared 

with other techniques which employ global constraints, the proposed algorithm in-

volves no manual pre-processing: no effort is required to extract any form of a 

priori global map structure, such as the 'roadmap network' employed in [110]. 

This job is implicitly performed by the edge detection algorithm in an efficient 

manner. 

As formulated in (4.3), submaps in this work are implemented as point clouds 

containing N3 points. Given the external and internal parameters of the camera 

by which the image is captured, these submaps can be conveniently projected 

into the image domain through coordinate transformation. It is assumed that the 

camera has already been calibrated and its position is also available. Since the 

roadmaps are normally built based on a flat plane this assumption should not be 

over-restricted. To make the formulation concise, this camera model is wrapped 

by a coordinate transformation operator Q , which projects the j t h 3D point in 

submap M< to the image plane: 

{uid, Vij) = {xij,yitj, Zij) 0 L w ( s ) (4.42) 

Since each submap Ms is modeled as a rigid body, when deployed within the 

potential field V, it moves as metal in a magnetic field. The force acting on the 

submap can be calculated by averaging the forces acting on all the Ns 3D points 
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inside it. Following the definition of the dense vector field in (4.40), this external 

force can be decomposed in the direction of x-axis and y-axis: 

/ E ^ i v * ( « i , j , " i , j ) \ 

F"(L'(.),M.)=I E f . „ X , „ u ) I (4-43) 

4.4.2 Constraint from initial submap configuration 

4.4.2.1 The constraint in a general form 

To propagate the loop-closing error, each submap's pose should be adjusted ac-

cordingly. Such adjustment can be imagined as 'force' acting on the submaps, 

which is similar to the force calculated from appearance information. 

For convenience, let us define: 

<p(s, s - 1) = 9L(s - 1) © L(s) - x(s) (4.44) 

which can be linearized at the linearization point L(o),L(fc) using the Jacobian 

term: 

dUp{a,b)j 
J a ~ 

Jb = 

3L(a) 

d(y>(a,b)) 

L(a),L(6) 

cosf(6) sinf(6) 0 

j - s i n f (6 ) cosf(6) 0 \ (4.45) 

0 0 1 

3L(b) 
L(o),L(6) 

— cosf(6) — sinf(6) — f e(a) — e(b) J sin f(b) + (n(a) — n(b)) cos f(b) \ 

= sinf(fr) — cosf(6) — (e(a) — e(b)J cos f(b) — (n(a) — n(b)j sinf(o)'*6) 

V 0 0 - 1 J 

Using above Jacobian terms, the transformation in (4.44) can be linearized as 

follows: 

<p(a, b) = JaL(a) + JbL{b) - ( J«L(a) + Jbl{b) - ^ ( L ( Q ) , L(6)) + xNm) (4.47) 

y 
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According to the elaboration in [32], the energy function in (4.22) can be finally 

formulated as: 

EM(C) = LLAL-2LTB + C (4.48) 

where 

{a,b}cX 

V 

JKP^Ja 

Jb
T(^)Ja 

. . \ 

• • / 

{a,b}cX 

where y, C are constants and each pair of {a, b} represents a transformation be-

tween two submaps. For simplicity of notation, let us define: 

Qb,a Qb,b 

In a similar manner, 

fi{V?)y = Rb
a 

Based on the loop graph introduced in Figure 4.2, there should be: 

(4.49) 

(4.50) 

B=(R\ Rl + Rl KZ-l + Rk-i Rfcf (4-51) 

Accordingly, the force representing the mapping information can be computed 

by (4.38): 

_ V £ » ( £ ) = - a ( ^ - f l f B + 0 ) = ( B - A C ) . (4.52, 

Please note that the iteration index t is abbreviated in this equation. 
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4.4.2.2 Specific form for single loop 

For the mapping process A in this work, the submaps are constructed incrementally, 

and each submap is only connected with its two adjacent submaps. As a result, be-

fore loop-closure is detected, the information matrix A at time —1 is a tri-diagonal 

matrix. Instantaneously, a loop-closing algorithm detects that submap Nm is iden-

tical to submap 1, so that the submap configuration resembles a circularly-linked 

list. Given such submap configuration, the general form of — V£"M(£) in (4.52) 

can be further analyzed as follows. 

At each iteration t, submaps' poses are adjusted sequentially, beginning from 

the last one. The force acted on submap (A^ — 1) is : 

F^(ivm -1) = ( * £ : ! + < : _ x - (QjfciU,, + Q f e - i ^ - i M ^ - 1 ) -

QZZ-l,Nm-2U(Nm - 2) - Q%Z-l,Ml) ) 

large 

(4.53) 

As explained previously, the item marked in the right side of above equation ac-

counts for the major part of loop-closing error, and the energy that error introduces. 

This item 'drives' submap ATm — 1 toward submap 1, in effort to 'close-the-loop'. 

Accordingly, all of the following submaps are shifted to propagate back this loop-

closing error: 

FM,t{s) = fjf. + jjj+1 _ Q^Vis - 1) - {Q°s>s + QZ'Ms) - QZIMS + 1)) 

, until the first submap: 

F ^ ( l ) = (R* - Ql.Vil) - Ql2V(2) - Q^.MNm - 1)) 
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The pose of submap M.s is updated according to its two adjacent submaps 5 — 1 

and s + 1. Such an updating scheme essentially embodies the concept of relaxation, 

which iteratively employs local, greedy and easy-to-implement processing to obtain 

an optimal solution. Every adjustment reduces the energy contained in (4.20), as 

such iteration proceeds, the minimum of (4.22) is expected to be achieved. 

It can be observed that, there is no item corresponding to x(l) in above for-

mulations. In other words, the energy in (4.22) will not be affected by how the 

submaps are deployed in a global coordinate, because this energy only represents 

the inner connections between different submaps. Consequently, the configuration 

which minimizes (4.22) can only guarantee the consistency among submaps, rather 

than the consistency between this configuration and the real-world. 

Appearance information is introduced as an additional constraint to compen-

sate the insufficiency of loop-closing with mapping information alone. Therefore, 

minimizing the energy in EExt (£) essentially establishes a correspondence between 

the submap configuration and the world coordinate system. 

4.5 Experimental results 

4.5.1 Platform and environment 

Several experiments were conducted to examine the performance of the proposed 

loop-closing algorithm. The testing platform is a 4 x 4 vehicle with a range scanners 

mounted on the top, as in Figure 4.7. This vehicle is also equipped with a Inertial 

Science DMARS-I IMU to estimate its motion. A high accuracy GPS is used to 

provide ground truth for reference. The experiments were carried out on a campus. 
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(a) The vehicle (b) Top laser 

Figure 4.7: The testing platform with laser scanner mounted on the top. 

Several photos of the testing environment are available in Figure 4.8. 

(a) (b) (c) 

Figure 4.8: Three photos taken at different places in the vehicle's trajectory. 

4.5.2 Constructing 3D submaps M 

The total length of the vehicle's trajectory is 1,890 meters. During the experiment, 

6,237 frames of 2D range scans were collected. Using the submap segmentation 

technique discussed in the previous chapter, totally 32 submaps have been con-

structed. 

The submap's origin is set to be the vehicle's pose at the moment when this 
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submap is constructed. All the 3D points within the submap are then stored 

relative to its local coordinate system. Since the objective of this work is to 

achieve global consistency, the local map building is naively performed by directly 

projecting the range scans from the vertical laser scanner to the vehicle's poses read 

from IMU. As observed in the experiment, since the submap's length is constrained, 

i.e, generally less than 30 meters, the accumulated error of IMU readings within 

each submap is moderate. However, incorporating a local SLAM scheme with EKF 

or particle filter will surely benefit the submap building process and achieve higher 

accuracy within the local submaps, as in [40] [112] [68]. 

Using above approach, a 3D submap Ms can be imaged as a pile of 2D laser 

slices horizontally deployed. By accumulating such 'slices' of range data, a submap 

can be conveniently represented by a point cloud. Two submaps are depicted in 

Figure 4.9 and Figure 4.10. 

-20 -10 0 

Local X, unit:m 

Figure 4.9: The front view of the 3D submap 1. 
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Local X, unit:m 

Figure 4.10: Submap 2 from 45° view. The road can be identified by the trees 

beside it. 

4.5.3 The vehicle motion model V 

The parameter V models the uncertainty of the estimated transformations be-

tween submaps. If the deformable submap graph is imaged as a sequence of blocks 

connected by springs, the value of V determines the toughness of the springs, or 

equivalently, how much the two submaps can deform from their initial configura-

tion. Although various approaches are available to compute the V, as in [90] and 

[64], in this work a synthesis V is employed to examine the proposed algorithm. 

In the experiments, the transformation uncertainties are set to be proportional 

to the aptitude of vehicle's transformation with respect to the previous submap. 

Let xs = ( Axs Ays Ajs ) denotes the transformation between submap s — 1 

to s, the corresponding synthesis Ps is calculated as: 

/ qxAxs 0 0 \ 

P s = 0 qyAys 0 

V 0 0 ^A% / 

where {sx, sy, ?2} are constants controlling the amount of error. Since the vehicle is 
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moving on the road, <;x and qy are set to be small to represent the small translation 

error. Meanwhile, the <;7 is set to be comparatively large to model the error during 

the turning. The initial submap configuration constructed by the above uncertainty 

model is depicted in Figure 4.11. It can be observed that this synthetic uncertainty 

50 100 , 150 , 200 250 
East, unit: pixel 

Figure 4.11: The initial submap configuration built by a synthesis uncertainty 

model V. 

model is consistent with the general characteristic of SLAM's error: the longer the 

vehicle travels, the more error will be accumulated. 

4.5.4 Initialization using genetic algorithm 

In this work, the objective of genetic algorithm is essentially to obtain a satisfactory 

initial configuration for the following gradient-based submap deformation. There-

fore, it is unnecessary to employ too large a population or too many generations, 

which can consume a lot of computational resources. 

In this work, the size of population is fixed at 150 throughout the evolution, that 

is, at each generation, there will be 150 chromosomes compete against each other 
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for survival. To examine the characteristics of the GA, the number of generations is 

fixed at 350. However, it is also possible to terminate the evolution if a convergence 

is detected, in which the mean fitness of the population stay unchanged (or with 

minor changes) for a certain number of generations. 

By setting the crossover rate at 0.65 and the mutation rate at 0.025, the submap 

configuration evolves as in Figure 4.12. The GA is initialized by randomly generat-

ing possible submap configurations in the configuration space. The first figure, i.e., 

the iteration 1, depicts the configuration that has highest fitness when the GA is 

initialized. Since there is no prior on the position and heading of the configuration, 

it can be observed that this initial configuration is significantly wrong. Thereafter, 

the population starts to evolves. Several generations are selected to observe the 

evolution of the population. For each of them, the configuration with maximum 

fitness is depicted. These figures demonstrate that, by selecting chromosomes with 

high fitness and removing those poor chromosomes, the GA can gradually find a 

configuration that close to the correct one. Such improvement in fitness can also 

be observed from history of mean fitness during the evolution of population, as 

depicted in Figure 4.13. 

Basically, as a global search strategy, the genetic algorithm is not designed for 

realtime applications. It generally consumes considerable computational resources 

and is slow to converge. Qualitatively speaking, its complexity scales linearly with 

the size of population, the number of generations, and the processing of each gene. 

OpsGj4 oc [^population] x [^generation] x [size(submap)] (4.54) 
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The processing time of a chromosome depends on the number of points sampled 

from it. The more points are sampled, the more expressive the submap is; mean-

while, the more computation is required to process a submap. 

4.5.5 Local search using only appearance information 

Submap 15 is selected to examine how a submap 'moves' in the potential field 

generated from pictorial information. Figure 4.14 indicates the pose of submap 

No. 15 in the global coordinate. Correspondingly, a close-up look at the GVF field 

in that region is depicted in Figure 4.15. 

The local environment at submap 15 is a T-shape crossroad. It can be noticed 

that, without any knowledge on the vehicle's trajectory, the field equally pushes 

submap 15 in the two indicated directions F l and F2. This leads to a wrong 

convergence as showed in Figure 4.16. The result reveals the limitation of using 

appearance information alone for loop-closing. 

The problem of submap 15 actually exists in all the other submaps when there 

is no information from the mapping result. Figure 4.17 shows the result of loop-

closing with only appearance information. It can be observed that, although all 

of the submaps coincide with the vehicle's true trajectory, there exist serious con-

flictions between each pair of adjacent submaps. This is because that the trans-

formations between two nearby submaps estimated from robot mapping have not 

been modeled in the optimization process. 
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4.5.6 Local search using only mapping information 

If only the mapping information $ is available, there will be a generic loop-closing 

problem, which can be formulated as: 

p(X\X,M,V) (4.55) 

Without constraint from appearance information, it is very difficult for the SLAM 

to converge by visiting the environment for only once, as showed in Figure 4.18. 

The result in this figure is a contrast to the one with only appearance information 

available (see Figure 4.17): each two consecutive submaps are connected in a 

smooth manner, and very little confliction can be observed, but the whole submap 

structure is erroneous. Shortly speaking, the map is only consistent at the local 

level, but incorrect at the global level. This result proves that the guidance from 

global information is definitely necessary if the map needs to converge within just 

one loop. 

4.5.7 Local search using both appearance and mapping in-
formation 

The final mapping result of the proposed algorithm is showed in Figure 4.21. 

The parameter setting for this result is e = 0.05. Accuracy of the algorithm is 

measured by the root-mean-square (RMS) error between submap configuration and 

the ground truth state X9 = (Lf,L§, • • • , L^ ). The ground truth was obtained 

by the onboard GPS/INS system, which is depicted in Figure 4.19. Therefore, the 
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RMS error is defined as: 

e = 

The submap graph takes 6 iterations to converge to an optimal configuration, 

which is showed in Figure 4.21. During these 6 iterations, the submap graph 

moves gradually to the correct configuration, which can be observed through the 

reduction of RMS error in Figure 4.20. By comparing Figure 4.21 with the ground 

truth acquired from GPS data, it can be observed that the proposed algorithm 

can achieve both local and global consistences by visiting the environment for 

only once. After rendering the points cloud M. to the maximum a posteriori 

submap configuration using VRML, the final 3D mapping result for the target 

environment is depicted in Figure 4.22. It can be observed that the environment 

can be accurately mapped by one robot visiting the environment for only once. 

The vehicle platform in this work is a 4 x 4 pickup with a minimum speed, 

while Howard [40] used a small robot which could travel as slow as necessary, 

so that samples (laser reflections) in [40] are much denser than ours in Figure 

4.22. However, the presented mapping result can nevertheless provide thorough 

description for the environment, Figure 4.23 is a close look at the 3D map, the 

structure across the road can be easily identified to be a bridge. This bridge is also 

depicted in the center of Figure 4.8(b). 

To demonstrate the superiority of the proposed algorithm, the accuracies of 

different loop-closing techniques are depicted in Figure 4.24. For each submap, 

the Euclidean distance between the LCAI estimate and GPS ground truth is com-
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pared: the proposed technique achieves much higher accuracy than the other two 

methods. It can be further noticed that, for generic loop-closing with only mapping 

information (marked with squares), the error grows almost monotonously from the 

beginning to the middle of the submap configuration. Such error is caused by accu-

mulation of local filtering errors: the longer the robot travels, the bigger the error 

will be. Loop-closing tries to re-distribute this error to obtain a more consistent 

map, which leads to the drastic decrease of error from the middle to the end of 

submap configuration. 

4.5.8 The parametr ic e 

The setting of e plays an important role in the LCAI, it controls how much the 

constraint from appearance information can deform the initial submap configu-

ration. Mathematically, it relates the squared pictorial gradient in (4.21) to the 

non-dimensional x2 m (4.22). However, deriving e analytically is a challenging 

task, because the quality of the input image (with respect to matching with real 

world structure) is difficult to measure. Based on the available data, in this thesis 

the author tries to qualitatively analyze the characteristics of the e. 

During the experiment, it is observed that bigger value should be given to e 

when the image's quality is poor, e.g., blurry or noisy. The original image, and a 

synthetic blurry image are depicted in Figure 4.25. As can be observed, the blurry 

image provides much less information about the environment than the original 

image. Consequently, if the same e is employed in this case, we actually 'over-

weight' the contribution of appearance information in the LCAI. Consequently, 
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the final mapping result is distorted by the error coming with the blurry image, as 

in Figure 4.27. 

A bigger e puts more weight on the loop-closing using only mapping informa-

tion, which is equivalent to release the constraint from appearance information. 

This can to some extent alleviate the distortion existing in Figure 4.26. The map-

ping result using bigger e is depicted in Figure 4.27. Being blurry, the input image 

now is less informative than the original one, consequently, LCAI basically cannot 

achieve the performance as using non-blurred image: there are still minor distor-

tions existing in the final map, as in the regions C and D indicated by the arrows. 

The setting of e is also variant to the scale of input image. In the experiments, 

only two scales of the input image are available, one is at the scale of 1 pixel = 

1.189 meter, as used in Figure 4.21. The other one is at a higher scale: 1 pixel = 

3.303 meter. These two input images are depicted in Figure 4.28. 

When image has a larger scale, i.e., larger meter per pixel value, the constraint 

calculated from mapping information is reduced when projected into the image 

domain, while the external force from appearance information will be about the 

same due to the characteristic of the dense vector field. Therefore, the increase 

of scale essentially amplifies the constraint from appearance information. If the 

same e = 0.05 is employed as the one used in the small scale image, the resulting 

map could be seriously distorted. For example, in the regions marked as A and 

B in Figure 4.29(a), the constraint from mapping information has been released 

in scaling, so it cannot compensate the force from appearance information which 
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strongly attracts submaps to wrong places. It can thus be observed from Figure 

4.29, by setting e to larger value, the distortion can be reduced. 

For large-scale input image, a larger value of e should be employed. The distor-

tion existing in Figure 4.29(a) is reduced when e is set to be 0.09, the improvement 

can be found in Figure 4.29 (b). Please note that there are still errors existing 

in the result using large e, as indicated by C. This can be attributed to the less 

detailed information provided by the large-scale image, which has a lower resolu-

tion than the small scale one. The accuracy of the mapping results using different 

setting of e is plotted in Figure 4.30. By comparing it with Figure 4.24, it can be 

observed that, although the accuracy is improved by increasing the e, the over-

all performance is not as good as the one using original image. This can also be 

explained by the lose of information when the image is zoomed out. 
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Figure 4.12: The evolution of the submap configuration in the genetic algorithm. 
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Figure 4.13: The evolution of mean fitness in LCAI based on genetic algorithm. 

The corresponding parameter setting is pc — 0.65; pm = 0.025; e=0.05 
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Figure 4.14: Submap 15 in the global coordinate. A close-up look at this region 
can be found in Figure 4.15. 
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Figure 4.15: (a) Close-look at the roadmap image, (b) The generated GVF field 
at the region of submap 15, within the region above the T-shape road, forces are 
mostly in two directions. 
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Figure 4.16: Submap 15's shift in the potential field without SLAM information. 
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Figure 4.17: The final mapping result using only appearance information. 
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Figure 4.18: The loop-closing result using only mapping information. 
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Figure 4.19: The map ground truth calculated from GPS data. 
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Iteration 

Figure 4.20: The submap graph takes 6 iterations to converge. 
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Figure 4.21: The mapping result using the proposed algorithm. The loop has been 

accurately closed by visiting the environment for only once. 

. . . ' S ^ ^ 

(a) Ground truth (b) Result of LCAI 

Figure 4.22: The 3D environmental map rendered by VRML, using the ground 
truth from GPS/INS and the result of LCAI. 

Figure 4.23: Close-look at the VRML mapping result: a bridge can easily be 

identified. The bridge is also observed in Figure 4.8(b). 
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Figure 4.24: Accuracy comparison between LCAI, mapping information only 
(generic SLAM), and appearance information only. 
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Figure 4.25: The original image and the blurred image. They are used to analyze 
the characteristic of e. 
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Figure 4.26: The LCAI result using blurry image, when e = 0.05. Significant 
distortion can be observed in the indicated regions as A and B. 
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Figure 4.27: LCAI using blurred input image when e = 0.09. By increasing the 
e, the distortion can be reduced. However, some minor distortions can still be 
observed. 
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Figure 4.28: The images at two different scales. They are used to analyze the 
characteristic of e. 
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Figure 4.29: Comparison of mapping result using large-scale image, at different 
settings of e. 
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Figure 4.30: Accuracy comparison between different e values for zoom-out image. 
Setting e to a larger value can to some extent reduce the error when the input 
image is at a larger scale. 

4.5.9 Algorithmic complexity of gradient search 

Using absolute pose representation, the generic SLAM algorithms generally scale 

as C(n3) , where n in the total number of map items. In this work, the relative 

pose representation introduces highly sparse matrices, which can be exploited in 

the optimization by means of well-established sparse methods. Therefore, the 

presented algorithm can close the loop in O(N^) computation time, where iVm is 

the size of submap transformation X. 

However, the appearance information causes additional computational burdens 

in the off-line and online processing: 

Op *SNAKE — 

Ops 
offline + O p S o n t o e ( 4 - 5 7 ) 

The off-line processing's objective is to construct the potential field from input 
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image, whose operation is linear: 

Opso / / i i n e oc [image size] x [^iteration] (4.58) 

The more iterations it loops, the further the field can affect. How many iterations 

should be used may vary with the applications. This pre-processing can be con-

ducted independently, which means that the field can be constructed even before 

mapping begins. Furthermore, for a given environment, once the GVF field V is 

built, no more adjustments are necessary. Therefore, one single pictorial model can 

support several SLAM algorithms running in a parallel mode, which is a desirable 

characteristic in multi-robot mapping tasks. The algorithm is implemented using 

Matlab version 6.5, on a laptop with a Pentium M 1.5G Hz CPU. For a raw image 

at the size of 504 x 509 pixels, it took 96.1256 seconds to loop for 160 iterations 

and construct the GVF. 

The online operation of LCAI scales linearly with two terms: 

OPson(me a [submap number] x [submap size] (4.59) 

The number of submaps is determined by the submap segmentation scheme. 

The submap's size depends critically on submap representation. In this work, 

an unstructured representation is employed. A submap's size is equivalent to the 

number of 3D points that it contains. To improve the efficiency, the raw range data 

are pre-processed to remove those points too close to each other. The algorithm 

then takes around 2 seconds to optimize the map with 6 iterations. According to 

the experiments, the time consumed by each single iteration is about the same, 

which is between 0.29 and 0.3 second. 
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4.6 Conclusion 

In this chapter, a appearance information based technique is presented to con-

duct large scale mapping by only one single robot going through the environment 

for only once. The map is represented as a sequence of submaps deployed as a 

deformable configuration in a global coordinate system. The submap graph is 

estimated by maximum a posteriori, based on both mapping information and ap-

pearance information. The MAP estimation is finally formulated as an energy 

minimization problem, the genetic algorithm and active contour algorithm are ap-

plied to optimize the submap configuration efficiently. 

A major limitation of LCAI in its current form is the setting of parameter e. 

It plays an important role in the iterative energy minimization process, however, 

to derive the e is a challenging task as it is difficult to obtain a quantification of 

the error in the image. On the other hand, the aerial photos or satellite images 

required by LCAI are often sensitive and not available to the public, this also limits 

further experiments to analyze the characteristics of e. 

Due to the limitations on experimental facilities, in this work, no satellite or 

aerial images can be utilized for fusion. The author advocates here that, the joint 

research between image processing and SLAM will become a promising direction. 

As demonstrated in [82], today's remote sensing and active contour technology 

has become advanced enough to provide global constraints for a SLAM algorithm. 

This topic deserves further research endeavors. 

Similar to genetic algorithm, simulated annealing (SA) [50] is another popular 
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optimization technique. Rather than an analogy to the competition in nature, SA 

solves the optimization problem by approximating thermodynamics. Energy in 

thermodynamics is the cost function in SA, the ground state, change of state, and 

temperature in thermodynamics translate to the optimal solution, the neighboring 

and the control parameter in simulated annealing. Therefore, the abstract system 

can be described as if it were a thermal physical system for which the aim is to lo-

cate the ground state as the temperature is diminished. Both these two techniques 

are powerful in terms of their searching capabilities. However, a major advantage 

of GA against SA is the fact that GA can be implemented in a parallel computing 

system. The chromosomes can processed independently, even by different comput-

ers, while simulated annealing must be computed sequentially. With its discrete 

nature, the genetic algorithm can be possibly implemented on a discrete system 

composed of several computing units. Each computing unit may process a certain 

portion of the whole population, so the computational time would be significantly 

reduced. 

However, the author also agree that, considerable progresses have been made 

in the simulated annealing domain. A lot of innovative derivatives with attractive 

characteristics have been proposed. Using simulated annealing in SLAM is still an 

open issue that deserves further research. 
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Chapter 5 

Conclusion and Recommendations 

5.1 Conclusion 

This thesis presents a probabilistic framework for conducting mobile robot localiza-

tion and mapping using appearance information. Being completely independent of 

metric level feature information, the proposed algorithm outperforms the conven-

tional SLAM algorithms with respect to its capability of handling highly unstruc-

tured cross-country environments. Based on a hierarchical map representation, 

this framework can achieve much higher robustness and efficiency in large-scale 

localization and mapping tasks. Meanwhile, the proposed framework makes triv-

ial assumptions about the characteristics of the sensor input, and therefore can 

be applied to various mapping scenarios and sensor configurations. The major 

innovations in this thesis are itemized below. 

• Hierarchical map representation 

In this thesis, the map representation is organized as a three-layer hierar-

chy. The top layer is the submap layer: successive sensor measurements are 

grouped into a sequence of clusters that distinctively describe the appearance 
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information of the local environments. The second layer is the topological 

node layer which further segments the submaps according to a fixed resolu-

tion. This layer makes it convenient to model the motion of the robot at the 

topological level. The third, also the lowest layer, stores the metric informa-

tion for the raw data. It provides the most comprehensive description of the 

environment. 

• Appea rance based inference 

By exploiting the environment's appearance information, rather than metric 

geometric information, the proposed SLAM framework in this thesis is com-

pletely independent of features or landmarks, which enables it to be applied 

to highly unstructured cross-country environments. By employing a linear 

dimensionality reduction technique, a low dimensional manifold of the raw 

measurement space is constructed. After the high dimensional raw sensor 

measurements are projected onto this manifold, they are expected to form 

compact clusters that can be approximated by a series of Gaussian distri-

butions. These Gaussian distributions naturally become the 'glue' between 

the map topology and Bayesian inference. As such probabilistic analysis at 

the metric level can be conveniently applied to the topological level. In this 

work, probabilistic analysis is applied to the loop-closure detection problem 

in a large cross-country environment and satisfactory results are achieved. 

• Appearance-based loop-closing optimization 

In this paper, an appearance-based technique is proposed to conduct loop-
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closing with one single re-visiting. The map is represented as a sequence of 

submaps deployed in a deformable configuration. The posterior PDF of the 

map configuration is calculated by MAP, using both mapping information 

and appearance information. The MAP estimation is finally formulated as 

energy minimization problem and solved in a coarse-to-fine manner. A pow-

erful but expensive global searching approach, i.e., a genetic algorithm, is 

first employed to search the submap configuration space. After convergence 

(which is not necessarily accurate), a local gradient search algorithm inspired 

by the active contour method is applied to further tune the configuration, 

achieving higher accuracy in a much more efficient manner. 

By integrating the above innovations into a general mobile robot localization 

and mapping framework, the algorithms presented in this thesis can outperform 

conventional metric SLAM in following aspects: 

• Coarse-to-fine analysis 

By employing a hierarchical representation, both the mapping and local-

ization process can be performed in a coarse-to-fine manner. The time-

consuming analysis can be first applied to the higher levels. Only when a 

convergence is achieved need it be applied to lower level representations, 

which significantly reduces the searching space. 

• Landmark-independent 

It is known that the map topology is inherently symbolic and difficult to pro-

cess in a numeric manner. A major contribution of this thesis is to use Gaus-
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sian models to calculate the observational probabilities of local regions, and 

therefore bridge the gap between map topology representations and Bayesian 

probabilistic inference. The experimental results demonstrate that the pro-

posed Eigenmap technique can robustly detect loop-closure in cross a country 

environment where no geometrical features are available. 

• Out of central SLAM loop 

Different from the conventional loop-closure detection techniques which rely 

on feature tracking, in this inference framework, no vehicle pose prediction 

is necessary. In other words, it is no longer required that the vehicle's global 

pose or the features' global position are accurately estimated. So even if the 

vehicle's localization error is huge, the detection algorithm can nevertheless 

work properly. This is a desirable property for a tracked vehicle moving 

in a cross-country environment, because in this case, the localization error 

could be quite big after a short distance. With large localization error, it is 

impossible to use any 'gating' mechanism to determine whether the vehicle 

has re-visited a certain place. 

• Handling large environment 

By exploiting the global appearance as an additional source of information, 

the presented algorithm can drastically reduce the time necessary for map 

convergence. This is an extremely desirable characteristic in large scale 

SLAM applications, where the robot's trajectory could be as long as a few 

kilometers. Meanwhile, the presented loop-closing algorithm makes almost 
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no assumption about the input measurements, so it can be applied to various 

SLAM problems without any major modifications as long as measurements 

can be represented as a point cloud. 

• Efficiency and robustness 

The two-stage loop-closing optimization approach presented in this thesis 

makes a reasonable compromise between the algorithm's efficiency and ro-

bustness. Robustness is assured by the genetic algorithm based global search-

ing strategy, while the local gradient optimization reduces the total compu-

tational time and makes the algorithm efficient. Additionally, the presented 

two stage process is highly scalable. By tuning a few parameters of the GA 

and the active submap deformation, the computational time can be adjusted 

according to the usability of the input information. 

5.2 Recommendations 

This thesis has presented a comprehensive, self-contained framework for mobile 

robot localization and mapping in large unstructured outdoor environments. The 

author also wants to propose some potential yet promising directions for future 

research. 

• Nonlinear dimensionality reduction 

This thesis introduced an innovative 'feature extraction' approach which uses 

the linear dimensionality reduction technique to extract the useful informa-

tion from raw sensor data. Although powerful, such a strategy nevertheless 
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has its own limitation: the manifold where the data actually exist may not 

be linear. Consequently, PCA and its derivatives may not fully handle the 

distribution of the data. A possible remedy is to employ non-linear dimen-

sionality reduction techniques such as ISOMAP[91]. 

• Viewpoint invariance 

Currently, a limitation of the proposed appearance model is that it cannot 

handle viewpoint invariance. If the vehicle revisits a place coming from a 

different direction, it is impossible for the appearance-based technique to 

detect the loop-closure. In the pattern recognition community, one way to 

solve this problem is to build a more comprehensive training pool which can 

teach the algorithm the scenes of the same place from different perspectives, 

such as trace transform [76]. 

• UGV-UAV collaborative mapping 

The proposed loop-closing optimization with appearance information can 

be conveniently extended to the collaborative mapping between unmanned 

ground vehicle (UGV) and an unmanned aerial vehicles (UAV). Currently, 

the performance of LCAI is still limited by the availability of comprehensive 

appearance information. In terms of global appearance information, the best 

scenario of conducting LCAI is the collaboration between UGV and UAV. 

The UAV can provide real-time color images which exactly represent the 

environment, and the ground vehicle may then enrich the image with local 

3D models. On the other hand, the UGV can also use the rich pictorial 
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information collected by the UAV to ensure the map's consistency. 
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