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Appearance-based Indoor Navigation by IBVS

using Line Segments

Suman Raj Bista1, Paolo Robuffo Giordano2 and François Chaumette1

Abstract—This paper presents a method for image-based navi-
gation from an image memory using line segments as landmarks.
The entire navigation process is based on 2D image information
without using any 3D information at all. The environment
is represented by a set of reference images with overlapping
landmarks, which are acquired during a prior learning phase.
These reference images define the path to follow during the
navigation. The switching of reference images is done exploiting
the line segment matching between the current acquired image
and nearby reference images. Three view matching result is used
to compute the rotational velocity of a mobile robot during its
navigation by visual servoing. Real-time navigation has been
validated inside a corridor and inside a room with a Pioneer
3DX equipped with an on-board camera. The obtained results
confirm the viability of our approach, and verify that accurate
mapping and localization are not necessary for a useful indoor
navigation as well as that line segments are better features in the
structured indoor environment.

Index Terms—Visual-Based Navigation, Visual Servoing.

I. INTRODUCTION

THERE must exist a close relationship between the per-

ceived environment and the controller of a robot for its

autonomous navigation. Such a relationship is often defined

w.r.t. the features extracted from the sensors (e.g. images from

a camera) and associated with the real world landmarks. For

this, we need some internal representation of the environment.

The environment can be represented either in the 3D space or

in the sensor space. The first approach relies on the knowledge

of an accurate and consistent 3D model of the navigation

space. The navigation is then performed by matching the

global model with a local model deduced from sensor data.

Such a model can be computed from different features like

lines, planes, or points [1], or estimated from a learning step.

Most of the simultaneous localization and mapping (SLAM)

methods [2], [3], [4] fall in this category. The second approach,

also known as appearance-based approach, does not require a

3D model of the environment, but it has instead the advantage

of working directly in the sensor space. To simplify the process

of appearance-based navigation, the navigation environment

is generally represented topologically in a graph [5], [6], [7].
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The nodes of the graph give characteristic features or zones

of the environment (locations) obtained using the sensor data,

and arcs give adjacency relations between locations. Such

maps are built in a prior offline mapping phase. Navigation

is then usually performed by computing a similarity score

between the view acquired by the camera and the different

images of the database, or by using the features extracted

from previous images via tracking and generating associated

control command. This similarity can be based on global

descriptors, like considering the whole image [8], [9], color

histograms [10], or image gradient [11]; or by using local

descriptors, like photometric invariants [12] or local feature

points like corners, Scale-Invariant Feature Transform (SIFT)/

Speeded Up Robust Features (SURF) points or Maximally

Stable Extremal Regions (MSER) [5], [6], [7], [13].

The work in [7] has demonstrated indoor navigation of a

mobile robot using a visual memory for both perspective and

omni-directional cameras. The robot is controlled by visual

servoing based upon the regulation of successive homogra-

phies. In [5], [6], the authors have demonstrated a hybrid

model for topological navigation based on a visual memory

in an outdoor environment. Local 3D reconstruction has been

used for verifying the key-point matches and automatic key-

frame selection using SIFT, Multi Scale Harris, and MSER

features. However, the motion control was still based upon 2D

features, in particular, the centroid of matched points. They

also show that it is not necessary to converge towards each

intermediate position (key frames) as long as it is possible to

reach the final position. Hence, the use of qualitative servoing

[14] eliminates the necessity of a database accurate enough

to get satisfying trajectories regarding the initial and desired

positions, contrary to [13] where the robot converges to the

intermediary position using visual servoing by minimizing the

error between the current and successive desired positions of

visual landmarks.

From the above literature, one can then conclude that

accurate mapping and localization are not mandatory for visual

navigation. Robots are able to navigate using this approach in

urban environments and in all places where local point based

features are abundant. In this respect, the goal of this paper

is to adopt this approach for indoor navigation by exploiting

line segments as visual landmarks. Indeed, a typical navigation

task in an indoor environment can be divided into two parts: a)

Navigation through corridors and b) Navigation inside rooms.

For the latter case, it is more likely to have abundant distinctive

local features and global features whereas, for the former case,

the perceived surface may not give enough features points for

navigation. Moreover, similar texture or lack of texture may
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result in false matching. However, in indoor environments, line

segments are abundant. In addition to this, line segments are

more robust to partial occlusions and more resilient to motion

blur [4], [15]. Also, line segments in the image can be detected

quickly and accurately by line algorithms like Line Segment

Detector (LSD) [16] and Edge Drawing Lines (EDLines) [17].

Because of all these reasons, this work will explore the use of

line segments as visual landmarks. This, however, requires a

suitable modification/extension of all the steps that have been

previously designed for point features.

A. Navigation based on line segments

Tracking/matching of multiple line segments is still an

open problem in computer vision. This is due to inaccurate

locations of line endpoints, fragmentation of lines, lack of

strongly disambiguating geometric constraints for an image

pair, and lack of distinctive appearance in low-texture scenes

[18], [19], [20]. Despite these problems, [3], [4], [21] have

demonstrated line segments-based navigation, but using a 3D

model-based approach. In [3], a model-based SLAM using

3D lines as landmarks has been presented, where unscented

Kalman Filters are used to initialize new line segments and

generate a 3D wire-frame model of the scene that can be

tracked with a robust model-based tracking algorithm. The

authors of [21] have extended the monocular SLAM using

points [2] to line segments, where Kalman filters are used to

track the lines. Both methods rely on control points (a set

of sample points placed along the line) for tracking, which,

however, is not suitable when line segments are close to each

other because of failure in tracking. Recently [4] has used

Nearby Line Tracking to track lines and an Extended Kalman

Filter (EKF) is used to predict and update the state of the

camera and line landmarks.

In [22], [23], [24], a vision-based corridor navigation al-

gorithm has been proposed that uses the vanishing point

extracted from corridor guidelines for the Nao humanoid robot,

a wheelchair and a mobile robot respectively. The first two

works are map-less methods. In [24], the vanishing point is

used for the heading control whereas an appearance-based

process is used to monitor the robot position along the path.

A set of reference images are acquired manually at relevant

positions along the path which correspond either to areas in

the workspace where some special action can be undertaken

(e.g doors, elevators, corners, etc.) or viewpoints where very

distinctive images can be acquired. During navigation, these

reference images are compared with current images using the

Sum of Squared Differences (SSD) metric. The solution in

[15] not only uses two pairs of natural line and point, but also

the odometer data (to determine the height of the landmarks)

for the visual localization.

B. Main Contribution

Our main contribution is a complete method for indoor

navigation (automatic construction of a navigation route, initial

localization that enables the robot to start from any position

within the map, successive localization and a control law

for choosing the rotational velocity) that coarsely follows the

learned path by just using the information provided by the 2D

line segments detected in the image without need of accurate

mapping, localization and robot odometry. To our knowledge,

the closest works to ours that use image memory are [5], [6],

[7], which, however, still use 3D information for navigation

based on point features. The approach proposed in this paper

is instead different from the available literature as our method

only exploits 2D line segments detected in the image and

does not depend upon specific types of lines (e.g. vertical

lines or corridor lines). Indeed, we show that the information

obtained from the 2D line segment matching between the

current acquired image and nearby reference images is enough

for automatic switching of key images and for robot control

without 3D reconstruction.

The next section describes the complete framework for

mapping and navigation. Section III presents experimental

results with a real robotic system, which demonstrate the

validity of the proposed navigation scheme, and advantage

w.r.t. classical point features. Finally, concluding remarks are

reported in Section IV.

II. NAVIGATION FRAMEWORK

A. Constraints

We consider a non-holonomic mobile robot of unicycle type

equipped with a fixed perspective camera as the only sensing

modality. The intrinsic parameters of the camera are constant

and coarsely known. The presented framework is concerned

only with a goal-directed behavior without considering ob-

stacle avoidance, which will be considered in future works.

Thus, in the navigation experiments we assume that other

moving objects will adopt collision-free trajectories, while a

human supervisor is responsible for handling the emergency

stop button. The devised control scheme exhibits a qualitative

path following behavior, since the learned path in general is not

tracked precisely. It is therefore suitable to prefer the center of

the free space during the acquisition of the learning sequence.

During navigation, it is assumed that the robot is initially

inside the mapped environment. The localization outside the

mapped location is out of scope of this paper.

B. Line Segments Matching

For matching the line segments, there exists a considerable

number of works on this topic [18], [19], [20], [25], [26].

In this work, we use the line matching method proposed by

[20] to generate pairwise matches, which utilizes Line Band

Descriptors to get candidate matches at first, and then exploits

geometric constraints and topological filters to eliminate the

false matches. To detect line segments, EDLines detector [17]

has been used. These methods have been selected because of

their high accuracy and computational speed.

For two views, the line segments do not provide strong

geometric constraints as opposite to points (epipolar geom-

etry). The trifocal tensor provides instead a strong geometric

constraint for lines, but it requires line correspondences in

three views. Let T = [T1, T2, T3] be the 3 × 3 × 3 trifocal

tensor, T1,T2 and T3 be the individual 3×3 matrices of T , and

l1 ↔ l2 ↔ l3 be the line correspondences in three views: these
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are 3×1 vectors representing line parameters. By letting [l1]×
represent the skew-symmetric matrix associated to vector l1,

and lT2 represent the transpose of vector l2, the trifocal tensor

T can be estimated by the following relationship [1]

(lT2 [T1, T2, T3]l3)[l1]× = 0. (1)

The estimation of the trifocal tensor with Random Sample

Consensus (RANSAC) [1] can be used to verify the line

segment correspondences in three views. However, the cost

function associated with the trifocal tensor is computationally

more expensive than in the fundamental matrix case when used

with RANSAC. In addition, at least 13 line correspondences

are required to compute the trifocal tensor (instead of only

6 point correspondences) for three views. Nevertheless, the

number of outliers in three views matching is quite low

compared to two views only, which makes it possible for the

RANSAC-based estimation to converge in few iterations. The

process is described in [1].

In our method, two view matches are used in initial local-

ization, switching of key images and generating three view

correspondences. Three view matches are used in mapping,

switching of key images and motion control. For three view

matching, the current key image and the two most recently

acquired images are used during the mapping, whereas, the

two key images and the currently acquired image are used

during the navigation. When obtaining the three view cor-

respondences, only the matched lines between the first two

images are used to match with the third image in order to

reduce the cost of matching (see Fig. 1).

C. Mapping from line segment

Mapping or learning a path starts with driving the robot on a

reference path under manual control. The acquired images are

used to automatically create a map based on matching of the

line segments across the views and organizing them within

an adjacency graph. A correct mapping is important for a

successful navigation. It is not always necessary to perform the

mapping in real time. Therefore, it is better to use verification

of the matching using trifocal tensor and RANSAC to get a

better set of key images for representing the environment.

The key image selection procedure is sketched in Fig. 1.

The first acquired image is always stored in a database as a

key image (first node in the topological map). Let Ic−1 and Ic
be the two most recently acquired images and Ik be the most

recent key image. For the case just after the new key image

is set, Ic−1 and Ic are the two images acquired successively

after Ik. The detected line segments of Ik are matched with

Ic−1 to get the first set of matched lines {Mkcp}. The lines

in Ik present in {Mkcp} are matched with the detected line

segments in Ic to get the second set of matched lines {Mkc}.

The common line segments in {Mkcp} and {Mkc} give three

view correspondences. If there are not sufficient number of

lines (for example less than 20) after three view matching, or a

low ratio (for example less than 0.5) of inlier to total number of

matches after trifocal tensor estimation with RANSAC, Ic−1 is

saved in the database as a recent key image Ik, and Ic becomes

the new Ic−1. Otherwise, {Mkc} becomes {Mkcp} and the

Fig. 1. Building the map from line segments.

Fig. 2. The map consists of key images and line segments. Adjacent key
images share some line segments with the current image. These corresponding
line segments with the current acquired image are used for motion control with
the aim of following the arc defined in the map.

line segments of next acquired image Ic and Ik are matched

to get a new set of {Mkc}. This idea is similar to tracking the

line segments of the key image in successive frames. Then

the process continues. The last acquired image is also stored

in the database, which helps to determine when the robot has

to stop at the end of the navigation. Three view matching is

always done between the current key image Ik and the two

most recently acquired images Ic−1 and Ic. Hence, the output

of the mapping process is a set of key images that represents

the arc the robot has to follow during the navigation. The

neighboring key images share some common line segments as

shown in Fig. 2, which makes it possible to consider multiple

key images in a neighborhood for defining the heading angle

of the robot.

D. Navigation in the map using line segments

After the mapping phase, a set of key images that represents

the nodes of the adjacency graph of the environment is

available. For simplicity, a linear map is considered here. The

navigation process can be divided into two tasks: a) initial

localization in the map, and b) successive localization in the

map and motion control. The topological location corresponds
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to the actual arc of the graph, which determines the two

key-images used for visual servoing. For smooth motion and

switching of key images, one more key image next to current

key images in the forward direction is also used (see Fig. 2).

1) Initial Localization: The navigation starts with the initial

localization where the first image acquired (Ia) is compared

with all the images in the database based upon line segment

matching. Initial localization helps to determine the initial

position of the robot in the map. This enables to start the robot

from any position in the mapped location. The key image with

the maximum number of matches is selected. Let it be Ik. Then

the adjacent key image with second maximum matches is also

selected. This image can be either Ik+1 or Ik−1. If the robot is

assumed to be moving along the same direction as the images

arranged in the database, Ia is between Ik−1 and Ik, or Ik
and Ik+1. For simplicity, we denote the previous key image

as IP and the next key image as IN . Hence, the position of

Ia in the topological map is in between IP and IN as shown

in Fig. 3.

Fig. 3. Localization in the map represented by the topological graph.

2) Successive Localization: After initial localization in the

map, further localizations can be done by just comparing with

few adjacent images in the database. The previous key image

IP , the next key image IN and the second next key image

INN are compared with the current acquired image Ia. Let

n(...) be the number of lines matched between the images.

Then switching of key images is done when at least one of

the following criteria is fulfilled for two consecutive acquired

images Ia and Ia+1:

n(Ia, IN , INN ) > n(IP , Ia, IN ) or

n(Ia, INN ) > n(Ia, IN ) && n(Ia, INN ) > n(Ip, Ia).

The first criterion is based on the result of three view matching

between the images inside the brackets, whereas the second

criterion is based on two view matching of images. The second

criterion is essentially useful when there are no three view

matches or very few number of three view correspondences.

Such a condition may sometimes occur with sharp turns in

corridors having no texture at all. After switching the images,

IN becomes IP , INN becomes IN , and next key image from

IN becomes INN . Then the process repeats. When the end

of the database is reached, INN will not be available and IN
will be the last image acquired during the mapping. So, the

navigation needs to be stopped. Otherwise, the robot will be

moving out of the mapped environment.

E. Motion Control

For navigation, the robot is not required to accurately reach

each reference image of the path, or to accurately follow the

learned path. In practice, the exact motion of the robot should

be controlled by an obstacle avoidance module [5], which will

be the future work. Therefore, Image-Based Visual Servoing

(IBVS) [27] is the adequate strategy for such purpose. The

rotational velocity is derived from the matched lines between

Ia, IN and INN , whereas the translational velocity is kept

constant and reduced to smaller constant value when turning.

Such turnings are automatically detected by looking at the

commanded rotational velocity.

Let us define a vector of visual features as s, the

camera velocity expressed in camera frame as uc =
(vcx, vcy, vcz, ωcx, ωcy, ωcz) and the robot velocity as u =
(vr, ωr) , where v is the linear velocity and ω is the rotational

velocity around the given axes. The velocity of s can be related

via an interaction matrix Js [27] to uc as

ṡ = Jsuc. (2)

Fig. 4. Top view of robot (orange) equipped with a perspective camera
(blue) with its optical axis perpendicular to axis of robot rotation, (Left) and
Representation of line in polar form (Right).

For the considered unicycle-like robot (Fig. 4 (left)), uc can

be expressed in terms of (vr, ωr) as

uc = (−δωr, 0, vr, 0, −ωr, 0), (3)

where δ is the distance between the camera center and the

robot center of rotation. From (2) and (3), we obtain

ṡ = Jvvr + Jωωr, (4)

where Jv and Jω are the Jacobian associated with vr and ωr

respectively. In order to drive s to desired value s
∗, we control

ωr as [27]

ωr = −J
+
ω (λ(s− s

∗) + Jvvr), (5)

where λ is a positive gain, and J
+
ω is the pseudo-inverse of

Jω . The expression of Jv and Jω can be obtained as follows.

In 3D, a straight line can be represented by the intersection

of two planes:

aix+ biy + ciz + di = 0, i = 1, 2. (6)

Except for the degenerate cases (d1 = d2 = 0), a 3D line

in a scene projects onto the image plane as a 2D line. As in

[28], we choose to parameterize line segments with parameters

(ρ, θ) as

X cos θ + Y sin θ − ρ = 0. (7)

The interaction matrix related to ρ and θ is given by [28]

Lρ = [λρCθ λρSθ −λρρ (1 + ρ2)Sθ −(1 + ρ2)Cθ 0]
Lθ = [λθCθ λθSθ −λθρ −ρCθ −ρSθ −1],

(8)

where Cθ = cos θ , Sθ = sin θ , λρ = (aiρ cos θ+ biρ sin θ+
ci)/di and λθ = (ai sin θ − bi cos θ)/di. Since we only

control ωr, only one feature derived from all line segments is

sufficient. We have chosen the abscissa of the centroid of the

points of intersection of the matched lines and their respective

normal from the origin. For a given line as shown in Fig. 4

(right), X = ρ cos θ gives the abscissa of such a point.
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For a set of n matched lines between Ia, IN and INN , we
define:

Xai = ρai cos θai, Xa =
1

n

n∑

i=1

Xai,

XNi = ρNi cos θNi, XN =
1

n

n∑

i=1

XNi,

XNNi = ρNNi cos θNNi, and XNN =
1

n

n∑

i=1

XNNi.

(9)

Hence, our visual feature is s = Xa and the desired feature is

s∗ = XN . We then have

ṡ = Ẋa =
1

n

n∑

i=1

(ρ̇ai cos θai − ρai sin θaiθ̇ai). (10)

From (4), (8) and (10), we obtain

Jv = 1

n

n∑

i=1

(λθaiρ
2
ai sin θai − λρaiρai cos θai).

Jω = 1

n

n∑

i=1

((1 + ρ2ai) cos
2 θai − ρ2ai sin

2 θai)

+δ(λθaiρai sin θai cos θai − λρai cos
2 θai)).

(11)

Neglecting δ with respect to di (distance of line from image

plane), and assuming the camera optical axis is orthogonal to

the axis of robot rotation and that the centroid stays near the

image plane center, (11) can be approximated as

Jv ≃ 0 and Jω ≃
1

n

n∑

i=1

(cos2 θai − ρ2ai cos(2θai)) = Ja.

(12)

Since visual servoing is known to be robust against modeling

errors [29], such approximations are reasonable. Thus, from

(5) and (12) we finally obtain the following expression for the

rotational velocity:

ωr = −
λ

Ja ± ǫ
(Xa −XN ), (13)

where ǫ is a small constant to prevent possible division by zero.

In order to smooth the rapid steering actions when switching

between frames, a feed-forward command is also added to

ωr. The calculation of the feed-forward term is based on the

difference of the centroids between the shared lines of Ia with

IN and INN . The final equation is given as follows

ωr = −
λ

Ja ± ǫ
(h1(Xa −XN ) + h2(Xa −XNN )), (14)

where h1 and h2 are positive weights such that h1 + h2 = 1.
Thus, our complete framework uses only the 2D information

obtained from the line segments matching, without requiring

any 3D information, which was not the case in previous works.

From this 2D information, we derive the required rotational

velocity using IBVS, which makes the robot to follow the

learned path successfully without any need of the accurate

mapping or localization.

III. EXPERIMENTAL RESULTS

The experiments were performed with a Pioneer 3DX

equipped with an AVT Pike 032C camera module. All com-

putations, except for the low-level control, were performed on

a laptop with 3-GHz Intel Core i7-3540M CPU. The image

resolution in the experiments was 640×480. The mapping

was done offline, whereas the navigation experiment was per-

formed online at 6 Hz. The acquisition of images and the high-

level motion control for the Pioneer were done through the

interface provided by ViSP [30]. For line segments detection

and matching, the implementation provided by the MIP group
1, University of Kiel, has been used with some modifications

as per our requirements. The image coordinates have been

normalized by the camera intrinsic parameters before deriving

the rotational velocity. The experiments have been performed

in an indoor environment, i.e., inside a room and a corridor.

Even though simple navigation path with linear and curved

trajectories have been used in the experiment, the method

can be easily extended for the graphs with intersections

and multiple paths. The qualitative results of mapping and

navigation using different trajectories in corridor and inside

the room are now presented.

A. Experiment I: Inside a room

1) Mapping: 617 images have been acquired as the learning

sequence. 18 images shown in Fig. 5 have been selected

automatically from the mapping algorithm described in Sect.

II-C as key frames. The trajectory obtained from the odometry

is shown by a red curve in Figs. 6 and 7, where the red

symbol ∗ represents the location of the key images. The

obtained key images are able to represent the learned path.

There are more key images over a small distance in case of

quick displacements of features like in turnings or when line

segments cannot be successively matched over the sequence

due to changes in illumination.

Fig. 5. Key images of the robotics room.

2) Navigation: The robot was placed inside the mapped

environment with the camera facing towards the mapped

direction (initial position shown by green dot). The forward

velocity was set to 0.2 m/s. During navigation, the robot was

able to follow the learned trajectory as shown by the blue curve

in Figs. 6 and 7, with automatic switching of the reference

images. Figure 6 shows the navigation of the Pioneer in the

map without any change in environment from the time of

mapping.The navigation in presence of obstacles is shown in

Fig. 7 (left). Even during a continuously obstructed view by

walking in front of the camera (as shown in Fig. 8 (left)), the

robot was still able to follow the desired path. Fig. 7 (middle)

shows the navigation with some changes in the room as shown

in Fig. 8 (third column), where the table was moved from the

1http://www.mip.informatik.uni-kiel.de/tiki-download file.php?fileId=1965
[Accessed: August 24,2015].



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

end to the middle of the room and replaced by a chair and

the stool was pushed further from the time of mapping. Fig.

Fig. 6. Initial localization and navigation inside the robotics room.

Fig. 7. Navigation inside the robotics room in presence of people (left) and
changes in mapped scene (middle and right).

Fig. 8. Obstruction in view (left), mapped scene (second column) and changes
in scene (third column, right).

7 (right) shows navigation in the room performed 6 months

later than the mapping stage with many changes and dynamic

objects in the scene like a table, chairs, boxes, etc (Fig. 8

(right)). The successful navigation in these latter cases was

possible due to the presence of sufficiently large number of

line matches from the static objects like ceilings, floor tiles,

posters, and pillars. In all cases, the drift was within 3cm from

mapped position.

B. Experiment 2: In a Corridor

1) Mapping: Out of 1208 images acquired in the corridor,

45 have been selected automatically as the key images (Fig.

9). Similarly, 53 key images have been obtained from 1083

images of the same corridor taken from a reverse direction

(Fig. 10). The mapping has been done with all doors closed

except one. This was meant to ensure that illumination from

the room and outside windows has negligible effects. The

obtained key images represent a path of length 32 meters.

The distribution of key images concentrated at the turnings

and when line segments of key images cannot be successively

matched over the sequence.

Fig. 9. Odd key images (1st,3rd,5th,..) of the corridor.

Fig. 10. Odd key images (1st,3rd,5th,..) of the corridor from reverse direction.

2) Navigation: Figures 11 and 12 show navigation in the

corridor. The robot was placed inside the mapped location (ini-

tial position shown by green dot). The forward velocity was set

to 0.15m/s and reduced to 0.075m/s when turning, whereas the

rotational velocity was controlled by the navigation algorithm.

Even with the open doors, people walking in the corridor and

blur in some images as shown in Fig. 13, the robot was still

able to navigate successfully with turning whenever it was

required. Right angle turning is a challenging task, in the

Fig. 11. Navigation in the corridor.

sense that there are few lines with fast changes. However,

the key images obtained from the mapping part were still able

to handle such situations. The lateral drift when navigating

through 32 meters in the corridor is within 5 cm from the

mapped position, thus confirming the accuracy of the visual

servoing control law.
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Fig. 12. Navigation in the corridor in reverse direction.

Fig. 13. Changes in the navigation environment from the mapped one: people
passing by, opening of the doors, change in the local illumination due to a
dead bulb and blur in the image.

C. Experiment 3: Navigation in room and corridor

Two experiments have been performed in which the robot

moves between a corridor and a room. Some key images of the

learned paths are shown in Fig. 14. In the first experiment, the

robot navigated a 40m path from corridor to inside the room.

Out of 7745 images acquired during mapping, 105 images

have been automatically selected as reference images. In the

second experiment, the robot navigated inside the room and

then into the corridor in a 22m path. Out of 4291 images

acquired, 73 images were selected as reference images. The

navigation path consists of straight line and multiple turns as

shown in Fig. 15.

Fig. 15 presents the navigation of the robot. The robot

successfully followed the learned path with turning whenever

required. There are more deviations in turnings especially in

case of turning in large angle (semi-circular turnings) because

of approximation of the arcs as straight lines and few lines

detected with fast changes between the frames. Even though

a large drift is present while doing circular turn in the second

experiment, the navigation was still successful.

Fig. 14. Some key images from the navigation paths. Top row represents the
40m navigation path. Bottom row represents the 22m navigation path.

Fig. 15. Navigation in the corridor and the room.

D. Discussions

The presented results show the viability of our approach

in many different scenarios and constraints. The robot has

been able to navigate autonomously in the learned path from

the start position. Our framework does not depend upon any

particular type of line segment, and the key images selected

by our approach proved to be good enough for the navigation.

Our navigation algorithm is based on the idea that the key

images around the immediate neighborhood of the robot have

more matches than others. The bar graphs in Figs. 6, 11

and 12 confirm this idea. The adjacent key images that have

maximum common lines give the initial location in the map.

Based upon line matching results, the key images are switched

automatically and the appropriate rotational velocity is set

that allows the robot to follow the learned path. IBVS has

been able to keep the error within small bounds. The robot

did not exactly follow the learned path because neither 3D

information nor any 3D motion estimation to correct the pose

was used, as this is not our objective of the navigation to be

accurate, but to be successful and robust. The other reason

is also due to approximation of the path by straight lines.

However, neglecting 3D information also results in some

limitations like more lateral deviation especially after sharp

turnings. Nevertheless, based on 2D information only, a useful

navigation could be performed in the corridors and inside the

room as visual servoing is robust enough to handle such errors.

Comparing with point based method [5], [6], our method

performs better especially in low textured environment as in

tunings of corridor and in-presence of motion blur due to rapid

camera motion as shown in Fig. 16, where reliable point based

features cannot be detected, resulting in failure in tracking

and 3D reconstruction (without using external informational

from sensors like IMU). Our framework performs better in

the environments like those in Figs. 13 and 16 because line

segments are abundant in a structured indoor environment,

and they are also more resilient to motion blur and partial

occlusions. However, our framework also has some limitations

that are mainly due to the line matching algorithm, which

is not still a mature field in computer vision unlike points,

especially in the cases where there are very few line segments

detected in the images. Initial localization might produce

false results when there are few matches (say less than 10)

by using just two view matching. In such cases, 3 view
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Fig. 16. Some cases where point based methods [5], [6] failed and our
approach succeed.

matching can be used for verification to select the two nodes

in the map. However, most of these problems can be greatly

avoided by selecting proper trajectory during the mapping. The

other problem that might be encountered in our framework

is a singularity of Ja (of (14)). During all our experiments,

singularity condition never occurred. The smallest value of Ja
encountered during our all experiments was −0.0018. In most

cases, the value of Ja is always greater than 1. The possible

strategy that can be used during the singularity (if occurred)

is to only use fewer lines that have errors around the median

value.

IV. CONCLUSIONS

We have presented a method for indoor qualitative mapping

and navigation based on a topological representation of the

environment using only line segments extracted from a per-

spective camera. Our navigation is exclusively based on 2D

image measurement without relying on any 3D reconstruction

process as in most existing literature. This is possible due

to a topological representation of the environment and the

use of image based visual servoing for motion control. We

also showed that image-based navigation could be performed

without accurately tracking the trajectory used in the learning

phase. Using line segments as features, instead of points as

classically done, makes navigation possible despite some level

of occlusions and blur in the image. The experiments showed

that the method is able to handle moderate changes in lighting

conditions and new objects in the environment. Difficult

situations include featureless areas like smooth/texture-less

walls (especially for sharp turnings), photometric variations

like strong shadows, rapid and sharp turnings. More elaborate

image processing and/or robot control strategies can address

these issues. Obstacles avoidance during the navigation will be

handled using an approach similar to [31] in a future work.

REFERENCES

[1] R. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision. Cambridge Univ. Press, ISBN: 0521540518, second ed., 2004.
[2] A. Davison, I. Reid, N. Molton, and O. Stasse, “Monoslam: Real-time

single camera slam,” Pattern Anal. and Machine Intl., IEEE Trans. on,
vol. 29, pp. 1052–1067, June 2007.

[3] A. P. Gee and W. Mayol-Cuevas, “Real-time Model-based SLAM using
Line Segments,” in Proc. of the Second Int. Conf. on Advances in Visual

Computing, ISVC’06, pp. 354–363, Springer-Verlag, 2006.
[4] L. Zhang and R. Koch, “Hand-held monocular SLAM based on line

segments,” Int. Machine Vision and Image Processing Conf., vol. 0,
pp. 7–14, 2011.

[5] A. Diosi, S. Segvic, A. Remazeilles, and F. Chaumette, “Experimental
evaluation of autonomous driving based on visual memory and image
based visual servoing,” IEEE Trans. on Intelligent Transportation Sys-

tems, vol. 12, pp. 870–883, September 2011.
[6] S. Segvic, A. Remazeilles, A. Diosi, and F. Chaumette, “A mapping

and localization framework for scalable appearance-based navigation,”
Computer Vision and Image Understanding, vol. 113, pp. 172–187,
2009.

[7] J. Courbon, Y. Mezouar, and P. Martinet, “Indoor navigation of a non-
holonomic mobile robot using a visual memory,” Autonomous Robots,
vol. 25, no. 3, pp. 253–266, 2008.

[8] F. Labrosse, “Short and long-range visual navigation using warped
panoramic images,” Robotics and Autonomous Systems, vol. 55, no. 9,
pp. 675 – 684, 2007.

[9] A. Dame and E. Marchand, “Using mutual information for appearance-
based visual path following,” Robotics and Autonomous Systems, vol. 61,
no. 3, pp. 259 – 270, 2013.

[10] F. Werner, J. Sitte, and F. Maire, “Visual topological mapping and
localisation using colour histograms,” in Control, Automation, Robotics

and Vision, 2008. 10th Int. Conf. on, pp. 341–346, Dec 2008.
[11] J. Kosecka, L. Zhou, P. Barber, and Z. Duric, “Qualitative image based

localization in indoors environments,” in Computer Vision and Pattern

Recognition, 2003. Proc.. 2003 IEEE Computer Society Conf. on, vol. 2,
pp. II–3–II–8 vol.2, June 2003.

[12] T. Goedeme, M. Nuttin, T. Tuytelaars, and L. Van Gool, “Omnidirec-
tional vision based topological navigation,” Int. Journal of Computer

Vision, vol. 74, no. 3, pp. 219–236, 2007.
[13] O. Booij, B. Terwijn, Z. Zivkovic, and B. Krose, “Navigation using an

appearance based topological map,” in Robotics and Automation, 2007

IEEE Int. Conf. on, pp. 3927–3932, April 2007.
[14] A. Remazeilles, N. Mansard, and F. Chaumette, “A qualitative visual

servoing to ensure the visibility constraint,” in Intelligent Robots and

Systems, 2006 IEEE/RSJ Int. Conf. on, pp. 4297–4303, October 2006.
[15] N. X. Dao, B.-J. You, and S.-R. Oh, “Visual navigation for indoor mobile

robots using a single camera,” in Intelligent Robots and Systems, 2005,

IEEE/RSJ Int. Conf. on, pp. 1992–1997, Aug 2005.
[16] R. von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall, “LSD: A fast

line segment detector with a false detection control,” Pattern Anal. and

Machine Intl., IEEE Trans. on, vol. 32, pp. 722–732, April 2010.
[17] C. Akinlar and C. Topal, “EDlines: A real-time line segment detector

with a false detection control,” Pattern Recognition Letters, vol. 32,
no. 13, pp. 1633 – 1642, 2011.

[18] C. Schmid and A. Zisserman, “The geometry and matching of lines and
curves over multiple views,” Int. Journal of Computer Vision, vol. 40,
no. 3, pp. 199–233, 2000.

[19] B. Fan, F. Wu, and Z. Hu, “Line matching leveraged by point cor-
respondences,” in Computer Vision and Pattern Recognition (CVPR),

2010 IEEE Conf. on, pp. 390–397, June 2010.
[20] L. Zhang and R. Koch, “An efficient and robust line segment matching

approach based on LBD descriptor and pairwise geometric consistency,”
Journal of Visual Communication and Image Representation, vol. 24,
no. 7, pp. 794 – 805, 2013.

[21] P. Smith, I. Reid, and A. Davison, “Real-time monocular SLAM with
straight lines,” in Proc. British Machine Vision Conf., pp. 17–26, 2006.

[22] A. Faragasso, G. Oriolo, A. Paolillo, and M. Vendittelli, “Vision-based
corridor navigation for humanoid robots,” in Robotics and Automation

(ICRA), 2013 IEEE Int. Conf. on, pp. 3190–3195, May 2013.
[23] F. Pasteau, A. Krupa, and M. Babel, “Vision-based assistance for

wheelchair navigation along corridors,” in IEEE Int. Conf. on Robotics

and Automation, ICRA’14, (Hong Kong, China), June 2014.
[24] R. F. Vassallo, H. J. Schneebeli, and J. Santos-Victor, “Visual servoing

and appearance for navigation,” Robotics and Autonomous Systems,
vol. 31, no. 1, pp. 87–97, 2000.

[25] L. Wang, U. Neumann, and S. You, “Wide-baseline image matching
using line signatures,” in Computer Vision, 2009 IEEE 12th Int. Conf.

on, pp. 1311–1318, September 2009.
[26] Z. Wang, F. Wu, and Z. Hu, “MSLD: A robust descriptor for line

matching,” Pattern Recognition, vol. 42, no. 5, pp. 941 – 953, 2009.
[27] F. Chaumette and S. Hutchinson, “Visual servo control, part i: Basic

approaches,” IEEE Robotics and Automation Mag., vol. 13, pp. 82–90,
December 2006.

[28] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” IEEE Trans. on Robotics and Automation, vol. 8,
pp. 313–326, June 1992.

[29] F. Chaumette and S. Hutchinson, “Visual servo control, part ii: Advanced
approaches,” IEEE Robotics and Automation Mag., vol. 14, pp. 109–118,
March 2007.

[30] E. Marchand, F. Spindler, and F. Chaumette, “Visp for visual servoing:
a generic software platform with a wide class of robot control skills,”
IEEE Robotics and Automation Mag., vol. 12, pp. 40–52, Dec. 2005.

[31] A. Cherubini and F. Chaumette, “Visual navigation of a mobile robot
with laser-based collision avoidance,” The Int. Journal of Robotics

Research, 2012.


