
1

Appearance-Based Loop Closure Detection for

Online Large-Scale and Long-Term Operation
Mathieu Labbé, Student Member, IEEE, François Michaud, Member, IEEE

Abstract—In appearance-based localization and mapping, loop
closure detection is the process used to determinate if the current
observation comes from a previously visited location or a new
one. As the size of the internal map increases, so does the time
required to compare new observations with all stored locations,
eventually limiting online processing. This paper presents an
online loop closure detection approach for large-scale and long-
term operation. The approach is based on a memory management
method, which limits the number of locations used for loop
closure detection so that the computation time remains under
real-time constraints. The idea consists of keeping the most recent
and frequently observed locations in a Working Memory (WM)
used for loop closure detection, and transferring the others into
a Long-Term Memory (LTM). When a match is found between
the current location and one stored in WM, associated locations
stored in LTM can be updated and remembered for additional
loop closure detections. Results demonstrate the approach’s
adaptability and scalability using ten standard data sets from
other appearance-based loop closure approaches, one custom
data set using real images taken over a 2 km loop of our university
campus, and one custom data set (7 hours) using virtual images
from the racing video game “Need for Speed: Most Wanted”.

Index Terms—Appearance-based localization and mapping,
place recognition, bag-of-words approach, dynamic Bayes filter-
ing.

I. INTRODUCTION

AUTONOMOUS robots operating in real life settings

must be able to navigate in large, unstructured, dynamic

and unknown spaces. Simultaneous localization and mapping

(SLAM) [1] is the capability required by robots to build and

update a map of their operating environment and to localize

themselves in it. A key feature in SLAM is to recognize

previously visited locations. This process is also known as

loop closure detection, referring to the fact that coming back

to a previously visited location makes it possible to associate

this location with another one recently visited.

For most of the probabilistic SLAM approaches [2]–[13],

loop closure detection is done locally, i.e., matches are found

between new observations and a limited region of the map,

determined by the uncertainty associated with the robot’s

Manuscript received April 23, 2012; revised October 2, 2012; accepted
January 14, 2013. This paper was recommended for publication by Associate
Editor P. Jensfelt and Editor D. Fox upon evaluation of the reviewers
comments. This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada, the Canadian Foundation for
Innovation and the Canada Research Chair program.

M. Labbé and F. Michaud are with the Department of Electrical and
Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, CA J1K
2R1 (e-mail:{mathieu.m.labbe,francois.michaud}@usherbrooke.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2013.2242375

position. Such approaches can be processed under real-time

contraints at 30 Hz [14] as long as the estimated position is

valid, which cannot be guaranteed in real world situations [15].

As an exclusive or complementary alternative, appearance-

based loop closure detection approaches [15]–[19] generally

detect a loop closure by comparing a new location with all

previously visited locations, independently of the estimated

position of the robot. If no match is found, then a new location

is added to the map. However, a robot operating in large

areas for a long period of time will ultimately build a very

large map, and the amount of time required to process new

observations increases with the number of locations in the

map. If computation time becomes larger than the acquisition

time, a delay is introduced, making updating and processing

the map difficult to achieve online.

Our interest lies in developing an online appearance-based

loop closure detection approach that can deal with large-scale

and long-term operation. Our approach dynamically manages

the locations used to detect loop closures, in order to limit

the time required to search through previously visited loca-

tions. This paper describes our memory management approach

to accomplish appearance-based loop closure detection, in

a Bayesian framework, with real-time constraints for large-

scale and long-term operation. Processing time, i.e., the time

required to process an acquired image, is the criterion used

to limit the number of locations kept in the robot’s Working

Memory (WM). To identify the locations to keep in WM,

the solution studied in this paper consists of keeping the

most recent and frequently observed locations in WM, and

transferring the others into Long-Term Memory (LTM). When

a match is found between the current location and one stored in

WM, associated locations stored in LTM can be remembered

and updated. This idea is inspired from observations made

by psychologists [20], [21] that people remembers more the

areas where they spent most of their time, compared to those

where they spent less time. By following this heuristic, the

compromise made between search time and space is therefore

driven by the environment and the experiences of the robot.

Because our memory management mechanism is made to

ensure satisfaction of real-time constraints for online pro-

cessing (in the sense that the time required to process new

observations remains lower or equal to the time to acquire

them, as in [5], [13], [14], [47]), independently of the scale of

the mapped environment, our approach is named Real-Time

Appearance-Based Mapping (RTAB-Map1). An earlier version

of RTAB-Map has been presented in [22]. This paper presents

1Open source software available at http://rtabmap.googlecode.com.



2

in more details the improved version tested with a much

wider set of conditions, and is organized as follows. Section II

reviews appearance-based loop closure detection approaches.

Section III describes RTAB-Map. Section IV presents experi-

mental results, and Section V presents limitations and possible

extensions to our approach.

II. RELATED WORK

For global loop closure detection, vision is the sense gener-

ally used to derive observations from the environment because

of the distinctiveness of features extracted from the envi-

ronment [23]–[25], although successful large-scale mapping

using laser range finder data is possible [26]. For vision-based

mapping, the bag-of-words [27] approach is commonly used

[16], [18], [19], [28], [29] and has shown to perform online

loop closure detection for paths of up to 1000 km [30]. The

bag-of-words approach consists in representing each image by

visual words taken from a vocabulary. The visual words are

usually made from local feature descriptors, such as Scale-

Invariant Feature Transform (SIFT) [31]. These features have

high dimensionality, making it important to quantize them into

a vocabulary for fast comparison instead of making direct

comparisons between features. Popular quantization methods

are Vocabulary Tree [28], Approximate K-Means [32] or

K-D Tree [31]. By linking each word to related images,

comparisons can be done efficiently over large data sets, as

with the Term Frequency-Inverse Document Frequency (TF-

IDF) approach [27].

The vocabulary can be constructed offline (using a training

data set) or incrementally constructed online, although the first

approach is usually preferred for online processing in large-

scale environments. However, even if the image comparison

using a pre-trained vocabulary (as in FAB-MAP 2.0 [30]) is

fast, real-time constraints satisfaction is effectively limited by

the maximum size of the mapped environment. The number of

comparisons can be decreased by considering only a selection

of previously acquired images (referred to as key images) for

the matching process, while keeping detection performance

nearly the same compared to using all images [33]. Neverthe-

less, processing time for each image acquired still increases

with the number of key images. In [34], a particle filter is

used to detect transition between sets of locations referred to

categories, but again, the cost of updating the place distribution

increases with the number of categories.

Even if the robot is always revisiting the same locations

in a closed environment, perceptual aliasing, changes that can

occur in dynamic environments or the lack of discriminative

information may affect the ability to recognize previously

visited locations. This leads to the addition of new locations

in the map and consequently influences the satisfaction of

real-time constraints [35]. To limit the growth of images to

match, pruning [36] or clustering [37] methods can be used to

consolidate portions of the map that exceed a spatial density

threshold. This limits growth over time, but not in relation to

the size of the explored environment.

Finally, memory management approaches have been used

in robot localization to increase recognition performance in

454 455 

115 116 117 118 

22 

453 

114 

21 23 24 25 

… 

… 

… 

… 

… 

Fig. 1. Graph representation of locations. Vertical arrows are loop closure
links and horizontal arrows are neighbor links. Dotted links show not detected
loop closures. Black locations are those in LTM, white ones are in WM and
gray ones are in STM. Node 455 is the current acquired location.

dynamical environments [38] or to limit memory used [39].

In contrast, our memory management is used for online lo-

calization and mapping, where new locations are dynamically

added over time.

III. ONLINE APPEARANCE-BASED MAPPING

The objective of our work is to provide an appearance-based

localization and mapping solution independent of time and

size, to achieve online loop closure detection for long-term

operation in large environments. The idea resides in only using

a limited number of locations for loop closure detection so that

real-time constraints can be satisfied, while still gain access

to locations of the entire map whenever necessary. When the

number of locations in the map makes processing time for

finding matches greater than a time threshold, our approach

transfers locations less likely to cause loop closure detection

from the robot’s WM to LTM, so that they do not take part in

the detection of loop closures. However, if a loop closure is

detected, neighbor locations can be retrieved and brought back

into WM to be considered in future loop closure detections.

As an illustrative example used throughout this paper, Fig.1

shows a graph representation of locations after three traversals

of the same region. Each location is represented by an image

signature, a time index (or age) and a weight, and locations

are linked together in a graph by neighbor or loop closure

links. These links represent locations near in time or in space,

respectively.

Locations in LTM are not used for loop closure detection.

Therefore, it is important to choose carefully which locations

to transfer to LTM. A naive approach is to use a first-in

first-out (FIFO) policy, pruning the oldest locations from the

map to respect real-time constraints. However, this sets a

maximum sequence of locations that can be memorized when

exploring an environment: if the processing time reaches the

time threshold before loop closures can be detected, pruning

the older locations will make it impossible to find a match. As

an alternative, a location could be randomly picked, but it is

preferable to keep in WM the locations that are more suscep-

tible to be revisited. As explained in the introduction, the idea

studied in this paper is based on the working hypothesis that

locations seen more frequently than others are more likely to

cause loop closure detections. Therefore, the number of time

a location has been consecutively viewed is used to set its

weight. When a transfer from WM to LTM is necessary, the

location with the lowest weight is selected. If many locations

have the same lowest weight, the oldest one is transferred.



3

Location 

Long-Term 

Memory (LTM) 

Perception 
Sensory Memory 

(SM) 

Working Memory 

(WM) 

Retrieval Transfer 

Weight 

Update 

Location 

Image 

Short-Term 

Memory (STM) 

Location   Location 

Fig. 2. RTAB-Map memory management model.

Fig.2 illustrates RTAB-Map memory management model.

The Perception module acquires an image and sends it to

Sensory Memory (SM). SM evaluates the image signature

to reduce data dimensionality and to extract useful features

for loop closure detection. Then SM creates a new location

with the image signature and sends it to Short-Term Memory

(STM). STM updates recently created locations through a

process referred to as Weight Update. If Weight Update

considers that the new location is similar to the last one in

STM, it merges them into the new one, and it increases the

weight of the new location.

STM is used to observe similarities through time between

consecutive images for weight updates, while the role of the

WM is to detect loop closures between locations in space.

Similar to [17], RTAB-Map does not use locations in STM

to avoid loop closures on locations that have just been visited

(because most of the time, the last location frequently looks

similar to the most recent ones). The STM size TSTM is

set based on the robot velocity and the rate at which the

locations are acquired. When the number of locations in STM

reaches TSTM, the oldest location in STM is moved into WM.

RTAB-Map evaluates loop closure probabilities with a discrete

Bayesian filter by comparing the new location with the ones

in WM. A loop closure is detected and locations are linked

together when a high loop closure probability is found between

a new and an old location in WM. Two steps are then key

in ensuring that locations more susceptible to cause future

loop closure detections are in WM while keeping the WM

size under an online limit tractable by the Bayesian filter. The

first step is called Retrieval: neighbor locations of the highest

loop closure probability, for those which are not in WM, are

brought back from LTM into WM, increasing the probability

of identifying loop closures with future nearby locations. The

second step is called Transfer: if the processing time for loop

closure detection is greater than the time threshold Ttime,

the oldest of the least viewed locations (i.e., oldest locations

with smallest weights) are transferred to LTM. The number

of transferred locations depends on the number of locations

added to WM during the current cycle.

Algorithm 1 illustrates the overall loop closure detection

process, explained in details in the following sections.

Algorithm 1 RTAB-Map

1: time← TIMENOW() ⊲ TIMENOW() returns current time
2: It ← acquired image
3: Lt ← LOCATIONCREATION(It)
4: if zt (of Lt) is a bad signature (using Tbad) then
5: Delete Lt

6: else
7: Insert Lt into STM, adding a neighbor link with Lt−1

8: Weight Update of Lt in STM (using Tsimilarity)
9: if STM’s size reached its limit (TSTM) then

10: Move oldest location of STM to WM
11: end if
12: p(St|L

t)←Bayesian Filter Update in WM with Lt

13: Loop Closure Hypothesis Selection (St = i)
14: if St = i is accepted (using Tloop) then
15: Add loop closure link between Lt and Li

16: end if
17: Join trash’s thread ⊲ Thread started in TRANSFER()
18: RETRIEVAL(Li) ⊲ LTM → WM
19: pT ime← TIMENOW()− time ⊲ Processing time
20: if pT ime > Ttime then
21: TRANSFER() ⊲ WM → LTM
22: end if
23: end if

A. Location Creation

The bag-of-words approach [27] is used to create signature

zt of an image acquired at time t. An image signature is

represented by a set of visual words contained in a visual

vocabulary incrementally constructed online. We chose to

use an incremental rather than a pre-trained vocabulary to

avoid having to go through a training step for the targeted

environment.

Using OpenCV [40], Speeded-Up Robust Features (SURF)

[41] are extracted from the image to derive visual words. Each

visual word of the vocabulary refers to a single SURF feature’s

descriptor (a vector of 64 dimensions). Each SURF feature has

a strength referred to as feature response. The feature response

is used to select the most prominent features in the image.

To avoid bad features, only those over a feature response of

Tresponse are extracted. A maximum of TmaxFeatures SURF

features with the highest feature response are kept to have

nearly the same number of words across the images. If few

SURF features are extracted (under a ratio Tbad of the average

features per image), the signature is considered to be a bad

signature and is not processed for loop closure detection.

This happens when an image does not present discriminative

features, such as a white wall in an indoor scene.

For good signatures, to find matches with words already in

the vocabulary (a process referred to as the quantization step),

SURF features are compared using the distance ratio between

the nearest and the second-nearest neighbor (called nearest

neighbor distance ratio, NNDR). As in [31], two features

are considered to be represented by the same word if the

distance with the nearest neighbor is less than TNNDR times

the distance to the second-nearest neighbor. Because of the

high dimensionality of SURF descriptors, a randomized forest

of four kd-trees (using FLANN [42]) is used. This structure in-

creases efficiency of the nearest-neighbor search when match-

ing descriptors from a new signature with the ones associated



4

to each word in the vocabulary (each leaf of the kd-trees

corresponds to a word in the vocabulary). The randomized

kd-trees approach was chosen over the hierarchical k-means

approach because of its lower tree-build time [42]: FLANN

does not provide an interface for incremental changes to its

search indexes (such as randomized kd-trees or hierarchical

k-means tree), so they need to be reconstructed online at each

iteration as the vocabulary is modified. The kd-trees are built

from all the SURF descriptors of the words contained in the

vocabulary. Then, each descriptor extracted from the image

is quantized by finding the two nearest neighbors in the kd-

trees. For each extracted feature, when TNNDR criterion is not

satisfied, a new word is created with the feature’s descriptor.

The new word is then added to the vocabulary and zt. If the

match is accepted with the nearest descriptor, its corresponding

word of the vocabulary is added to zt.
A location Lt is then created with signature zt and time

index t; its weight initialized to 0 and a bidirectional link in

the graph with Lt−1. The summary of the location creation

procedure is shown in Algorithm 2.

Algorithm 2 Create location L with image I

1: procedure LOCATIONCREATION(I)
2: f ← detect a maximum of TmaxFeatures SURF features from

image I with SURF feature response over Tresponse

3: d← extract SURF descriptors from I with features f
4: Prepare nearest-neighbor index (build kd-trees)
5: z ← quantize descriptors d to vocabulary (using kd-trees and

TNNDR)
6: L← create location with signature z and weight 0
7: return L
8: end procedure

B. Weight Update

To update the weight of the acquired location, Lt is com-

pared to the last one in STM, and similarity s is evaluated

using (1) :

s(zt, zc) =

{
Npair/Nzt , if Nzt ≥ Nzc

Npair/Nzc , if Nzt < Nzc

(1)

where Npair is the number of matched word pairs between

the compared location signatures, and where Nzt and Nzc are

the total number of words of signature zt and the compared

signature zc respectively. If s(zt, zc) is higher than a fixed

similarity threshold Tsimilarity (ratio between 0 and 1), the

compared location Lc is merged into Lt. Only the words from

zc are kept in the merged signature, and the newly added words

from zt are removed from the vocabulary: zt is cleared and

zc is copied into zt. The reason why zt is cleared is that it

is easier to remove the new words of zt from the vocabulary

because their descriptors are not yet indexed in the kd-trees

(as explained in Section III-A). Empirically, we found that

similar performances are observed when only the words of zt
are kept or that both are combined, using a different Tsimilarity.

In all cases, words found in both zc and zt are kept in the

merged signature, the others are generally less discriminative.

To complete the merging process, the weight of Lt is increased

by the weight of Lc plus one, the neighbor and loop closure

links of Lc are redirected to Lt, and Lc is deleted from STM.

C. Bayesian Filter Update

The role of the discrete Bayesian filter is to keep track of

loop closure hypotheses by estimating the probability that the

current location Lt matches one of an already visited location

stored in the WM. Let St be a random variable representing

the states of all loop closure hypotheses at time t. St = i is the

probability that Lt closes a loop with a past location Li, thus

detecting that Lt and Li represent the same location. St = −1
is the probability that Lt is a new location. The filter estimates

the full posterior probability p(St|L
t) for all i = −1, ..., tn,

where tn is the time index associated with the newest location

in WM, expressed as follows [29]:

p(St|L
t) = η p(Lt|St)

︸ ︷︷ ︸

Observation

tn∑

i=−1

p(St|St−1 = i)
︸ ︷︷ ︸

Transition

p(St−1 = i|Lt−1)

︸ ︷︷ ︸

Belief
(2)

where η is a normalization term and Lt = L−1, ..., Lt. Note

that the sequence of locations Lt includes only the locations

contained in WM and STM. Therefore, Lt changes over time

as new locations are created or when some locations are

retrieved from LTM or transferred to LTM, in contrast to the

classical Bayesian filtering where such sequences are fixed.

The observation model p(Lt|St) is evaluated using a likeli-

hood function L(St|Lt) : the current location Lt is compared

using (1) with locations corresponding to each loop closure

state St = j where j = 0, .., tn, giving a score sj = s(zt, zj).
The difference between each score sj and the standard devia-

tion σ is then normalized by the mean µ of all non-null scores,

as in (3) [29] :

p(Lt|St = j) = L(St = j|Lt) =

{ sj−σ

µ
, if sj ≥ µ+ σ

1, otherwise.
(3)

For the new location probability St = −1, the likelihood is

evaluated using (4) :

p(Lt|St = −1) = L(St = −1|Lt) =
µ

σ
+ 1 (4)

where the score is relative to µ on σ ratio. If L(St = −1|Lt)
is high (i.e., Lt is not similar to a particular location in WM,

as σ < µ), then Lt is more likely to be a new location.

The transition model p(St|St−1 = i) is used to predict the

distribution of St, given each state of the distribution St−1

in accordance with the robot’s motion between t and t − 1.

Combined with p(St−1 = i|Lt−1) (i.e., the recursive part of

the filter), this constitutes the belief of the next loop closure.

The transition model is expressed as in [29]:

1) p(St = −1|St−1 = −1) = 0.9, the probability of a

new location event at time t given that no loop closure

occurred at time t− 1.

2) p(St = i|St−1 = −1) = 0.1/NWM with i ∈ [0; tn], the

probability of a loop closure event at time t given that

no loop closure occurred at t− 1. NWM is the number

of locations in WM of the current iteration.

3) p(St = −1|St−1 = j) = 0.1 with j ∈ [0; tn], the

probability of a new location event at time t given that

a loop closure occurred at time t− 1 with j.



5

 

id 

descriptor 

word 
 

from_id 

to_id 

link_type 

link 
 

id 

weight 

location 
 

location_id 

word_id 

signature 

Fig. 3. Database representation of the LTM.

4) p(St = i|St−1 = j) with i, j ∈ [0; tn], the probability of

a loop closure event at time t given that a loop closure

occurred at time t − 1 on a neighbor location. The

probability is defined as a discretized Gaussian curve

(σ = 1.6) centered on j and where values are non-

null for a neighborhood range of sixteen neighbors (for

i = j − 16, ..., j + 16). Within the graph, a location

can have more than two adjacent neighbors (if it has

a loop closure link) or some of them are not in WM

(because they were transferred to LTM). The Gaussian’s

values are set recursively by starting from i = j to

the end of the neighborhood range (i.e., sixteen), then

p(St >= 0|St−1 = j) is normalized to sum 0.9.

D. Loop Closure Hypothesis Selection

When p(St|L
t) has been updated and normalized, the

highest loop closure hypothesis St = i of p(St|L
t) is accepted

if the new location hypothesis p(St = −1|Lt) is lower than

the loop closure threshold Tloop (set between 0 and 1). When

a loop closure hypothesis is accepted, Lt is linked with the

old location Li: the weight of Lt is increased by the one

of Li, the weight of Li is reset to 0, and a loop closure

link is added between Li and Lt. The loop closure link is

used to get neighbors of the old location during Retrieval

(Section III-E) and to setup the transition model of the Bayes

filter (Section III-C). Note that this hypothesis selection differs

from our previous work [22]: the old parameter TminHyp is no

longer required and locations are not merged anymore on loop

closures (only a link is added). Not merging locations helps

to keep different signatures of the same location for better

hypothesis estimation, which is important in a highly dynamic

environment or when the environment changes gradually over

time in a cyclic way (e.g., day-night or weather variations).

E. Retrieval

After loop closure detection, neighbors not in WM of

the location with the highest loop closure hypothesis are

transferred back from LTM to WM. In this work, LTM is

implemented as a SQLite3 database, following the schema

illustrated in Fig.3. In the link table, the link type tells if it is

a neighbor link or a loop closure link.

When locations are retrieved from LTM, the visual vocabu-

lary is updated with the words associated with the correspond-

ing retrieved signatures. Common words from the retrieved

signatures still exist in the vocabulary; therefore, a reference

is added between these words and the corresponding signa-

tures. For words that are no longer present in the vocabulary

(because they were removed from the vocabulary when the

corresponding locations were transferred [ref. Section III-F]),

their descriptors are quantized using the same way as in

Section III-A (but reusing the kd-trees and doing a linear

search on SURF descriptors not yet indexed to kd-trees of the

new words added to vocabulary) to check if more recent words

represent the same SURF descriptors. This step is important

because the new words added from the new signature zt may

be identical to the previously transferred words. For matched

descriptors, the corresponding old words are replaced by the

new ones in the retrieved signatures. However, all references

in LTM are not immediately changed because this operation

is expensive in terms of computational time. Instead, they

are changed as other signatures are retrieved, and the old

words are permanently removed from LTM when the system

is shut down. If some descriptors are still unmatched, their

corresponding words are simply added to vocabulary.

Algorithm 3 summarizes the Retrieval process. Because

loading locations from the database is time consuming, a max-

imum of two locations are retrieved at each iteration (chosen

inside the neighboring range defined in Section III-C). When

more than two locations can be retrieved, nearby locations

in time (direct neighbors of the hypothesis) are prioritized

over nearby locations in space (neighbors added through loop

closures). In Fig.1 for instance, if location 116 is the highest

loop closure hypothesis, location 118 will be retrieved before

location 23. This order is particularly important when the robot

is moving, where retrieving next locations in time is more

appropriate than those in space. However, if the robot stays still

for some time, all nearby locations in time will be retrieved,

followed by nearby locations in space (i.e., 23, 24, 22, 25).

Algorithm 3 Retrieve neighbors of L from LTM to WM

1: procedure RETRIEVAL(L)
2: Lr[]← load a maximum of two neighbors of L from LTM

(with their respective signatures zr[])
3: Add references to Lr[] for words in zr[] still in vocabulary
4: Match old words (not anymore in vocabulary) of zr[] to

current ones in vocabulary
5: Not matched old words of zr[] are added to vocabulary
6: Insert Lr[] into WM
7: end procedure

F. Transfer

When processing time for an image is greater than Ttime,

the oldest locations of the lowest weighted ones are transferred

from WM to LTM. To be able to evaluate appropriately loop

closure hypotheses using the discrete Bayesian filter, neighbors

of the highest loop closure hypothesis are not allowed to be

transferred. The number of these locations is however limited

to the finite number of nearby locations in time (accordingly to

neighboring range defined in Section III-C), to avoid ‘immu-

nizing’ all nearby locations in space (which are indefinite in

terms of numbers). Ttime is set empirically to allow the robot

to process online the perceived images. Higher Ttime means

that more locations (and implicitly more words) can remain

in WM, and more loop closure hypotheses can be kept to

better represent the overall environment. Ttime must therefore

be determined according to the robot’s CPU capabilities,

computational load and operating environment. If Ttime is



6

determined to be higher than the image acquisition time, the

algorithm intrinsically uses an image rate corresponding to

Ttime, with 100% CPU usage.

Because the most expensive step of RTAB-Map is to build

the nearest-neighbor index (line 4 of Algorithm 2), processing

time per acquired image can be regulated by changing the

vocabulary size, which indirectly influences the WM size.

Algorithm 4 presents how the visual vocabulary is modified

during the Transfer process. A signature of a location trans-

ferred to LTM removes its word references from the visual

vocabulary. If a word does not have reference to a signature

in WM anymore, it is transferred into LTM. While the number

of words transferred from the vocabulary is less than the

number of words added from Lt or the retrieved locations,

more locations are transferred from WM to LTM. At the end

of this process, the vocabulary size is smaller than before the

new words from Lt and retrieved locations were added, thus

reducing the time required to create the nearest-neighbor index

(kd-trees) from the vocabulary for the next image. Saving the

transferred locations into the database is done asynchronously

using a background thread, leading to a minimal time overhead

for the next iteration when joining the thread on line 17 of

Algorithm 1 (pT ime then includes transferring time).

The way to transfer locations into LTM influences long-term

operation when WM reaches its maximum size, in particular

when a region (a set of locations) is seen more often than

others. Normally, at least one location in a new region needs

to receive a high weight through the Weight Update to replace

an old and high weighted one in WM, in order to detect loop

closures when revisiting this region. However, if there is no

location in the new region that receives a high weight, loop

closures could be impossible to detect unless the robot comes

back to a high weighted location in an old region, and then

moves from there to the new one. To handle this situation

and to improve from our previous work [22], a subset of the

highest weighted locations (defined by Trecent ×NWM) after

the last loop closure detected are not allowed to be transferred

to LTM. This way, when the robot explores a new region, there

are always high weighted locations of this region in WM until

a loop closure is detected. If the number of locations after the

last loop closure detected in WM exceeds Trecent×NWM, these

locations can be transferred like the ones in WM (i.e., with

the criterion of the oldest of the lowest weighted locations).

Trecent is a ratio fixed between 0 and 1. A high Trecent means

that more locations after the last loop closure detected are kept

in WM, which also leads to a transfer of a higher number of

old locations to LTM.

IV. RESULTS

Performance of RTAB-Map is evaluated in terms of

precision-recall metrics [30]. Precision is the ratio of true posi-

tive loop closure detections to the total number of detections.

Recall is defined as the ratio of true positive loop closure

detections to the number of ground truth loop closures. To

situate what can be considered good recall performance, for

metric SLAM, recall of around 20% to 30% at 100% precision

(i.e., with no false positives) is sufficient to detect most

Algorithm 4 Transfer locations from WM to LTM

1: procedure TRANSFER( )
2: nwt← 0 ⊲ number of words transferred
3: nwa← number of new words added by Lt and retrieved

locations
4: while nwt < nwa do
5: Li ← select a transferable location in WM (by weight

and age), ignoring retrieved locations and those in recent
WM (using Trecent)

6: Move Li to trash
7: Move words wi which have no more references to any

locations in WM to trash
8: nwt← nwt+ SIZE(wi)
9: end while

10: Start trash’s thread to empty trash to LTM
11: end procedure

TABLE I
RTAB-MAP AND SURF PARAMETERS

TSTM 30 SURF dimension 64

Tsimilarity 20% SURF TNNDR 0.8

Trecent 20% SURF TmaxFeatures 400

SURF Tbad 0.25

loop closure events when the detections have uniform spatial

distributions [30]. Note however that the need to maximize

recall depends highly on the SLAM method associated with

the loop closure detection approach. If metric SLAM with

excellent odometry is used, a recall ratio of about 1% could be

sufficient. For less accurate odometry (and even no odometry),

a higher recall ratio would be required.

Using a MacBook Pro 2.66 GHz Intel Core i7 and a

128 Gb solid state hard drive, experimentation is done on

ten community data sets and two custom data sets using

parameters presented in Table I. These parameters were set

empirically over all data sets to give good overall recall

performances (at precision of 100%), and remained the same

(if not otherwise stated) to evaluate the adaptability of RTAB-

Map. The only SURF parameter changed between experiments

is Tresponse, which is set based on the image size. Ttime is set

accordingly to image rate of the data sets. As a rule of thumb,

Ttime can be about 200 to 400 ms smaller than the image

acquisition rate at 1 Hz, to ensure that all images are processed

under the image acquisition rate, and even if the processing

time goes over Ttime (Ttime then corresponds to the average

processing time of an image by RTAB-Map). So, for an image

acquisition rate of 1 Hz, Ttime can be set between 600 ms to

800 ms. For each experiment, we identify the minimum Tloop

that maximizes recall performance at 100% precision. With the

use of these bounded data sets, the LTM database could have

been placed directly in the computer RAM, but it was located

on the hard drive to simulate a more realistic setup for timing

performances. Processing time pT ime is evaluated without

the SURF features extraction step (lines 2-3 of Algorithm 2),

which is done by the camera’s thread in the implementation.

A. Community Data Sets

We conducted tests with the following community data

sets: NewCollege (NC) and CityCentre (CiC) [16]; Lip6Indoor



7

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n
 (

%
)

 

 

NC

CiC

L6I

L6O

70 km

NCO

CrD

BI

BO

BM

UdeS

Fig. 4. Precision-recall curves for each data set.

(L6I) and Lip6Outdoor (L6O) [29]; 70 km [30]; New-

CollegeOmni (NCO) [43]; CrowdedCanteen (CrC) [44];

BicoccaIndoor-2009-02-25b (BI), BovisaOutdoor-2008-10-04

(BO) and BovisaMixed-2008-10-06 (BM) [45] data sets. NC

and CiC data sets contain images acquired from two cameras

(left and right), totaling 2146 and 2474 images respectively of

size 640× 480. Because RTAB-Map takes only one image as

input in its current implementation, the images from the two

cameras were merged into one, resulting in 1073 and 1237

images respectively of size 1280× 480. For data sets with an

image rate depending on vehicle movement or over 2 Hz, some

images were removed to have approximately an image rate of

1 Hz (i.e., keeping 5511 of the 9575 panoramic images for the

70 km data set). For NCO and CrD data sets, because they

contain panoramic images taken by a vehicle slower than for

the 70 km data set, Tsimilarity is increased to 35% (compared

to 20% for all other data sets). Ttime is set to 1.4 s for images

acquired every 2 seconds (0.5 Hz), to 0.7 s for images acquired

every second (1 Hz) and to 0.35 s for images acquired every

half second (2 Hz).

Table II summarizes experimental conditions and results.

Recall performance corresponds to the maximum recall per-

formance observed at 100% precision, and precision-recall

curves are shown in Fig.4. Compared to other approaches that

also used these data sets, RTAB-Map achieves better recall

performances at 100% precision (with improvements up to

54%, as shown at the bottom of Table II) while respecting

real-time constraints: the maximum processing time pT ime is

always under the image acquisition time.

B. Université de Sherbrooke (UdeS) Data Set

The data set used for this test is made of images taken over

a 2 km loop of the Université de Sherbrooke (UdeS) campus,

traversed twice, as illustrated by Fig.5. A total of 5395 images

of 640×480 resolution at 1 Hz were captured with a handheld

webcam, over 90 minutes. The data set contains a variety of

environment conditions: indoor and outdoor, roads, parkings,

pedestrian paths, trees, a football field, with differences in

illumination and camera orientation. To study the ability of

RTAB-Map to transfer and to retrieve locations based on their

occurrences, we stopped at 13 waypoints during which the

camera remained still for around 20 to 90 seconds, leading

to 20 to 90 images of the same location. After processing

the images of the first traversal, it is expected that the related

locations will still be in WM and that RTAB-Map will be

Fig. 5. UdeS data set aerial view. The first traversal is represented by the
dotted line. The second traversal is represented by a line located around the
first. The start/end point is represented by the circle. The small white dots in
the waypoint ID numbers represent camera orientation at this location. Recall
performance is from the test case with Ttime = 0.7 s.

able to retrieve nearby locations from LTM to identify loop

closures. Tresponse is set to 150.

Table III presents results using different Ttime to show the

effect of memory management on recall performances. When

Ttime = ∞, all locations are kept in WM; therefore, loop

closure detection is done over all previously visited locations.

The resulting maximum processing time is 10.9 seconds,

which makes it impossible to use online (image acquisition

time is 1 sec). With Ttime <= 0.75 s, processing is done

online (i.e., processing time is always lower than the image

acquisition time).

For Ttime ∈ [0.95; 0.35] s, recall varies between 39% and

54%, and this variation is caused by the choice of locations

kept in WM: small computation time variations and different

Ttime explain why some locations are transferred or retrieved

in some experiments while they are not in others. Lower recall

performance at Ttime = ∞ is caused by the presence of

a large vocabulary: as words are added to vocabulary, the

matching distance between SURF features becomes smaller

because of the TNNDR matching criterion. Although this

provides more precise matches, the matching process is more

sensitive to noise. Note also that with a larger WM, there

are more chances that a new location (in presence of dynamic

environmental changes) would also be found similar to another

old location still in WM (which would have been in LTM

with a smaller WM), creating more false positives. Conducting

tests to determine the optimal size of WM for the best recall

could be done, but this would be highly dependent on the

environment and the path followed by the robot, and would not

necessarily satisfy real-time constraints. For Ttime < 0.35 s,
the WM size becomes too small, and RTAB-Map is unable to

detect as many loop closures: when Ttime is reached (because

the retrieved locations cannot be immediately transferred), old

locations with large weights are transferred instead, making

it difficult to detect loop closures if Retrieval does not bring

back appropriate locations.



8

TABLE II
EXPERIMENTAL CONDITIONS AND RESULTS OF RTAB-MAP ON COMMUNITY DATA SETS

Data set NC CiC L6I L6O 70 km NCO CrC BI BO BM

# images 1073 1237 388 531 5511 1626 692 1757 2277 2147

Image size 1280x480 1280x480 240x192 240x192 1600x4602 2048x618 480x270 320x240 320x240 320x240

Image rate ≈0.5 Hz ≈0.5 Hz 1 Hz 0.5 Hz ≈1 Hz 1 Hz 2 Hz 1 Hz 1 Hz 1 Hz

Tresponse 1000 1000 10 10 1000 1000 75 50 50 50

Ttime (s) 1.4 1.4 0.7 1.4 0.7 0.7 0.35 0.7 0.7 0.7

Max pT ime (s) 1.77 1.73 0.74 1.58 0.94 0.94 0.44 0.86 0.87 0.87

Max dict. size ×10
3 110 112 52 111 57 56 28 57 57 57

Max WM size 410 377 334 373 162 259 101 220 210 204

Min Tloop 0.11 0.08 0.14 0.07 0.11 0.10 0.09 0.43 0.17 0.18

Precision (%) 100 100 100 100 100 100 100 100 100 100

Recall (%) 89 81 98 95 59 92 95 82 56 72

Recall (%) from other
47 [16]

37 [16] 78 [44]
71 [29] 49 [30]

≈7 [46]
87 [44] 58 [47] 6 [47] 28 [47]

approaches [ref. #] 80 [44] 80 [29] 38 [48]

TABLE III
EXPERIMENTAL RESULTS OF RTAB-MAP FOR THE UDES DATA SET (5395 IMAGES OF SIZE 640X480 TAKEN AT 1 HZ)

Ttime (s) ∞ 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25

Max pT ime (s) 10.9 1.11 1.08 1.05 1.01 0.94 0.87 0.81 0.74 0.72 0.61 0.56 0.50 0.46 0.37 0.32

Max dict. size ×10
3 714 76 73 68 65 60 57 52 49 44 41 36 33 29 24 21

Max WM size 2870 302 280 265 256 240 221 205 184 169 155 136 118 103 85 69

Min Tloop 0.19 0.11 0.09 0.09 0.09 0.10 0.10 0.11 0.11 0.10 0.15 0.12 0.12 0.12 0.10 0.14

Precision (%) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Recall (%) 34 47 48 51 54 48 51 49 50 53 41 44 47 39 34 11

a) b) c) 

Fig. 6. Examples (with visual words represented as circles) of loop closure
hypotheses that are insufficient (under Tloop) to detect loop closures, caused
by changes in illumination conditions (a) or camera orientation (b and c). New
words are colored in green or yellow, and words already in the vocabulary
are colored in red or blue.

0 1000 2000 3000 4000 5000 6000
0

200

400

600

800

1000

T
im

e
 (

m
s)

Location indexes

 

 

Fig. 7. Processing time in terms of locations processed over time with the
UdeS data set. Ttime is set at 0.7 s, as shown by the horizontal line.

2The 5-view omni-directional images were stitched using The Panorama
Factory software.

To illustrate more closely the results obtained for Ttime =
0.7 s, at the end of the trial each waypoint is represented in

WM by at least one location with a high weight. The other

locations with smaller weights that are still in WM are the

ones where the images did not change much over time (like

the football field). At its maximum, the vocabulary has 57K

visual words for 251 locations (221 in WM + 30 in STM).

With TmaxFeatures = 400, there are then about 227 unique

words and 173 common words per location. The high number

of unique words is attributable to TNNDR criterion on feature

quantization. Fig.5 illustrates recall performance over the 2

km loop, categorized using three colored paths:

• Green paths identify valid loop closure hypotheses.

Ground truth was labeled manually, based on similar

visual appearance and proximity between images. The

images from the second traversal are not taken at exactly

the same position and the same angle compared to the

first traversal. Therefore, a match within a margin of 10

locations is considered acceptable for loop closure.

• Yellow paths indicate an insufficient loop closure prob-

ability under Tloop. However, a Yellow path also means

that Retrieval works as expected, i.e., RTAB-Map is able

to retrieve appropriate transferred signatures (those near

ground truth loop closures) as previously visited locations

are encountered. Fig.6 a) illustrates an example: a change

in illumination conditions from the first traversal (top

image) caused a change in the visual words extracted

from the image of the second traversal (bottom image).

Most of the words extracted in the top image are from



9

Fig. 8. Map of NFSMW data set showing Area 1 and Area 2.

the tree on the left, compared to the building section in

the bottom image.

• Red paths identify when there is no location in WM

which could be matched with the current location. A

transition from a Yellow to a Red path occurs as fol-

lows. The likelihood of the observed location with the

corresponding location of the first traversal still in WM

is too low (i.e., words extracted are too different or are

too common) and is lower than with other locations in

the map. Because the associated loop closure hypothesis

is not the highest one anymore, nearby locations of

the real loop closure cannot be retrieved from LTM to

WM. Therefore, the next observed locations do not have

any locations in WM which can be used to find loop

closures. Fig.6 b) and c) illustrate what happens at the

beginning of two Red paths (before the waypoints 6 and

10 respectively): over several consecutive images, the

camera was not oriented in the same direction as in the

first traversal, and RTAB-Map was not able to retrieve

neighbor locations from LTM because the new acquired

locations were more similar to locations in another part

of the map. However, the wrong loop closure hypotheses

(or false positives) during a Red path stayed low under

Tloop, and thus they were not accepted. A transition from

a Red to a Yellow path happens when the camera returns

to a location still in WM, increasing the associated loop

closure hypothesis to become the highest and resulting in

a retrieval of neighbor locations from which loop closures

can be detected.

• Other indicates paths different from the ones taken

during the first traversal, and therefore there are no loop

closures to find.

Finally, Fig.7 shows the processing time for each acquired

image with Ttime = 0.7 s. As expected, once the processing

time has reached Ttime = 0.7 s (after 444 images), the memory

management is triggered and the processing time remains close

to Ttime, with an average processing time of 0.67 s and a

maximum processing time of 0.87 s.

C. “Need for Speed: Most Wanted” (NFSMW) Data Set

For this experiment, the video game “Need for Speed : Most

Wanted” (NFSMW) was used to acquire images by driving

around (while respecting speed limits) city Area 1 about one

hundred times and then moving to Area 2 for another hundred

traversals. Fig.8 illustrates these two areas. This data set was

generated to evaluate RTAB-Map in two specific conditions:

1) Frequently observing the same locations;

a) b) 

Fig. 9. Samples of the NFSMW data set. In a), the sun shines come from the
east (bottom) or the west (top); note the high color and contrast differences
for the left and right buildings caused by the dynamic shadows. In b), four
different atmospheric conditions are shown for the same location (over 30
minutes).

0 50 100 150 200 250
0

20

40

60

80

100

R
e
c
a
ll

 (
%

)
Traversals

0 0.5 1 1.5 2 2.5 3

x 10
4

0

20

40

60

80

100

R
e
c
a
ll

 (
%

)

Time (s)

AREA 2AREA 1

AREA 1 AREA 2

Fig. 10. Recall performance over traversals (top) and time from t = 0

(bottom) for the NFSMW data set (at 100% precision).

2) Moving to new locations after observing the same area

for a long period of time.

Even though the environment is synthetic, there are many large

changes in illumination conditions (sun and shadows move

slowly; there are also bright sunrises and random storms) that

makes it very challenging for loop closure detection over long-

term operation. Fig.9 illustrates examples of such changes. A

total of 25098 images of 640×480 size were taken at 1 Hz,

totalizing 7 hours of driving. Because of the presence of the

head-up display in the images and that the lower portions are

generally made of common and repetitive road textures, the

upper 10% and lower 40% of the images are not used for

SURF features extraction. Tresponse is set to 150.

The upper portion of Fig.10 illustrates recall performances

computed for each traversal. The performances for the 102

traversals of Area 1 and the 103 traversals of Area 2 are

delimited by the red vertical line. Recall of 0% is observed

for the first traversal of Area 1 and the first traversal of

Area 2, as expected. Recall variations are caused by changes

in illumination conditions during the traversals : if a storm

happens when sunny locations are retrieved, loop closures are

not detected until the storm finishes or a darker version of

the encountered locations are retrieved. Generally, Red paths



10

end on road intersections, which corresponds to locations

with higher weights (caused by having the vehicle stop) and

where neighbors (by loop closures) with different illumination

conditions are retrieved. For Area 1 and Area 2, recall at 100%

precision varies from 60% to 100%.

The lower portion of Fig.10 shows recall performances

over time at 100% precision, considering all loop closures

detected from t = 0. After encountered most of the changes

in illumination conditions between t = 0 to t = 5000 (which

corresponds to 41 traversals), the average recall performance

stabilizes around 89%, for a minimum Tloop = 0.10. With

a ground truth of 24800 loop closures and 89% recall, there

are 2728 duplicated locations in the global graph of the 280

locations of Area 1 and Area 2. These duplicated locations

create new paths in the global map. Fig.1 illustrates such

a case: locations 453 and 454 are duplicates of 114 and

115 respectively because the environment changed too much;

location 455 then have two paths representing the same real

location. In practice, it is likely that one of the paths will

eventually be transferred in LTM, keeping only one version

of the real location in WM. However, keeping two paths

representing the same locations in WM may be beneficial,

especially in dynamical environments with cyclic atmospheric

changes like in this data set: locations in dark conditions could

have almost no features similar to their versions in bright

conditions, then loop closures are found alternately between

dark and bright versions.

Looking more closely at the transition between the two

areas, when moving to Area 2, the WM only contains locations

of Area 1 with large weights. If a set of the new locations

would not have been kept in the recent part of WM (as

explained in Section III-F), loop closures would have been im-

possible to detect if no location received a high weight (from

Weight Update) to replace locations in WM from Area 1. After

the first traversal of the Area 2, the recent part of WM was

populated mostly by locations representing road intersections

(having higher weights because the vehicle stopped). The first

loop closure detected on the second traversal was found on the

first intersection encountered during the first traversal of Area

2. Next locations were then retrieved, and a recall of 100% at

100% precision was achieved for the second traversal.

Regarding processing time, once Ttime = 0.7 s is reached, a

mean time of 0.71 s is achieved for the rest of the experiment.

The maximum processing time is 0.93 s, thus respecting the

real-time constraint of 1 Hz. At the end of the experiment,

there were 19 locations of the Area 1 and 38 locations of the

Area 2 with high weights in WM, distributed mainly on road

intersections.

V. DISCUSSION

Results presented in Section IV suggest that RTAB-Map

can achieve good recall performances at 100% precision over

diverse and large-scale environments. Real-time constraints

can be satisfied independently of the scale of the environment,

which is very important for long-term online mapping.

Overall, using similarity occurrences reveal to be a simple

and functional method to determine which locations to keep

in WM. Obviously, it has limitations when an area is seen

only one time before moving to a new area for a long time.

To illustrate, we conducted a trial using the NFSMW setup

by doing only one traversal of Area 1 and then moving for

one hundred traversals of Area 2. After the first traversal

of Area 1, the highest weight of a location is 2. After 56

traversals of Area 2, all locations of Area 1 were transferred

to LTM (in comparison to 19 locations remaining in WM

after 103 traversals of Area 2 in Section IV-C). The number

of traversals of Area 2 required to transfer all locations of

Area 1 in LTM depends on the weight assigned to locations

during the first traversal. Returning to Area 1 then leads to the

creation of duplicated locations that cannot be associated to the

locations of Area 1 stored in LTM (unless they were revisited

backward from the entry point of Area 2), and these duplicated

locations, if visited frequently, can remain in WM to be used

in future loop closures. This illustrates the compromise to

be made to satisfy real-time constraints: it may happen that

infrequently visited locations get transferred to LTM without

being able to be remembered back, but at the same time

such locations are not used in the loop closure detection

process, allowing to speed up the process using only locations

that have more chance to be revisited. Such compromise is

therefore driven by the environment and the experiences of the

robot. Note that other methods to assign weights to locations

could be imagined, such as having the system identify which

locations are important (and assigning directly a high weight

to these locations) based on events, the robot’s internal states

or even from user inputs. Also, approaches such as sparsely

or randomly sampling the LTM could be used to prevent

forgetting entire areas not visited often enough.

In RTAB-Map, LTM’s growth influences loop closure de-

tection performance over large-scale and long-term operation.

To understand such influence, let’s define ww, the number of

words in WM and STM (i.e., the visual vocabulary), nw, the

number of locations in WM, wl, the number of words in LTM

and nl, the number of locations in LTM. Time complexity for

each step of Algorithm 1 is given as follows:

• Location Creation: building the kd-trees from the vocab-

ulary is O(wwlogww), and quantizing SURF descriptors

extracted from the new image to kd-trees is O(logww).
The SURF features extraction can be considered O(1) as

image size is fixed.

• Weight Update: updating weight is O(1).
• Bayesian Filter Update: computing observation is O(nw)

and belief if O(n2
w).

• Loop Closure Hypothesis Selection: hypothesis selection

is O(nw).
• Retrieval: SURF descriptors quantization is O(logww).

Database selection query is O(log[wl + nl]).
• Transfer: selecting a transferrable location is O(nw).

Database insertion query is O(log[wl + nl]).

When Ttime is reached, WM size remains fixed, bounding

time complexities associated to ww and nw. However, for

Retrieval and Transfer, time complexities also depend on

LTM, and LTM size is not bounded. With the growth of

LTM, Ttime is more likely to be reached, and WM size will



11

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.005

0.01

T
im

e
 (

s)

Location indexes

0 0.5 1 1.5 2 2.5 3

x 10
4

0

100

200

W
M

 s
iz

e
 (

lo
c
a
ti

o
n
s)

Location indexes

Fig. 11. (Top) Total database (LTM) access time to retrieve and transfer
locations per iteration. (Bottom) WM size variation during the experiment.

gradually decrease over time to satisfy real-time constraints.

Theoretically, WM size may eventually become null, disabling

loop closure detection. In practice, though, the logarithmic

growth in time complexity caused by LTM is very small and

WM size is not affected. For the NFSMW experiment, top

of Fig.11 shows the total database access time required to

retrieve and to transfer locations for each RTAB-Map iteration,

for up to 7 hours of use. Time growth is unnoticeable. At

the end of the experiment, the database size is 3.1 GB with

6.3 million words and 25098 locations (all merged and bad

locations were kept in the database for debugging purpose).

The bottom of Fig.11 shows the WM size over time. The

higher variations of WM size after around 12000 locations

are mainly caused by environmental changes from Area 1

to Area 2. If necessary, a solution to LTM size would be to

limit database growth by permanently removing offline some

locations from the database. For instance, paths leading to

the same high weighted locations could be eliminated based

on the sum of the weights of locations in the paths. If the

number of distant high weighted locations gets very high,

important locations could ultimately be deleted, resulting in

a dismembered global map (i.e., many disconnected smaller

maps) if weight is the primary transfer criterion. Pruning the

oldest locations (independently of the weight) may be better

to preserve a unique global map, at the cost of forgetting

important old locations.

In dynamic environments, the performance of RTAB-Map

is also highly dependent on the quality of the SURF features

extracted. We observed in our experiments that SURF features

are relatively sensible to changes in illumination and shad-

ows, reducing the number of discriminative features for more

“garbage features” (or common words) in images. In RTAB-

Map, at least one discriminative feature in the environment is

required to find a loop closure, but if there are many “garbage

features”, this means that other locations also receive high

likelihoods, thus shadowing the weight of the discriminative

feature. In this case, Eq. 4 scores high (for a new location

probability) because the standard deviation of the likelihood

scores is small comparatively to the mean. Feature weighting

may help in such cases by assigning a high weight to dis-

criminative features and a lower weight to “garbage features”.

However, we think that doing so would lead to more false

positives. By considering all features with the same weight in

RTAB-Map, many discriminative features are required for a

location to score higher than others if many “garbage features”

are present, decreasing the chance of false positives. We prefer

avoiding to find a loop closure in such condition (like in

environments populated with many dynamic objects or people)

rather than increasing the probability to accept a false positive.

As additional improvements, exploiting sparseness of the

Bayesian filter [30] or using more efficient nearest-neighbor

structures (to avoid reconstructing the whole kd-trees at each

iteration) may speed up the process to keep more locations

in WM. However, our focus in this paper is on real-time

constraints satisfaction (i.e., what should be done when com-

putation time reaches the time threshold), and not optimizing

complexities depending on WM size. Finally, to overcome

the occurrences of Red paths caused by changes in camera

orientation (see Section IV-B), active localization could be

triggered by detecting decreasing hypotheses, which could

make the system move the camera in the right direction to let

RTAB-Map retrieve appropriate locations from LTM to WM.

VI. CONCLUSION

Results presented in this paper suggest that RTAB-Map,

a loop closure detection approach based on a memory ma-

nagement mechanism, is able to meet real-time constraints

needed for online large-scale and long-term operation. While

keeping a relatively constant number of locations in WM,

online processing is achieved for each new image acquired.

Retrieval is a key feature that allows RTAB-Map to reach

adequate recall ratio even when transferring a high proportion

of the perceived locations in LTM, which are not used for

loop closure detection. In future work, in addition to possible

extensions outlined in Section V, we plan to study how RTAB-

Map can be combined to other approaches to implement a

complete Simultaneous Localization and Mapping system.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2005.

[2] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,” in Proc. Int. Joint Conf. on

Artificial Intelligence, vol. 18, 2003, pp. 1151–1156.
[3] M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultaneous localiza-

tion and map building in large-scale cyclic environments using the atlas
framework,” Int. J. of Robotics Research, vol. 23, no. 12, pp. 1113–39,
December 2004.

[4] A. I. Eliazar and R. Parr, “DP-SLAM 2.0,” in Proc. IEEE Int. Conf. on

Robotics and Automation, 2004, pp. 1314–20.
[5] C. Estrada, J. Neira, and J. D. Tardós, “Hierarchical SLAM: Real-time

accurate mapping of large environments,” IEEE Trans. on Robotics,
vol. 21, no. 4, pp. 588–596, August 2005.

[6] J. Folkesson and H. I. Christensen, “Closing the loop with graphical
SLAM,” IEEE Trans. on Robotics, vol. 23, no. 4, pp. 731–41, August
2007.

[7] L. Clemente, A. Davison, I. Reid, J. Neira, and J. Tardós, “Mapping large
loops with a single hand-held camera,” in Proc. of Robotics: Science and

Systems, Atlanta, GA, USA, June 2007.
[8] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for

grid mapping with Rao-Blackwellized particle filters,” IEEE Trans. on

Robotics, vol. 23, no. 1, pp. 34–46, February 2007.
[9] J.-L. Blanco, J. Fernandez-Madrigal, and J. Gonzalez, “Toward a unified

Bayesian approach to hybrid metric–topological SLAM,” IEEE Trans.

on Robotics, vol. 24, no. 2, pp. 259–270, April 2008.
[10] J. Callmer, K. Granström, J. Nieto, and F. Ramos, “Tree of words for

visual loop closure detection in urban SLAM,” in Proc. Australasian

Conf. on Robotics and Automation, 2008, p. 8.



12

[11] L. M. Paz, J. D. Tardós, and J. Neira, “Divide and conquer: EKF SLAM
in O(n),” IEEE Trans. on Robotics, vol. 24, no. 5, pp. 1107–1120, 2008.

[12] P. Pinies and J. D. Tardós, “Large-scale SLAM building conditionally
independent local maps: Application to monocular vision,” IEEE Trans.

on Robotics, vol. 24, no. 5, pp. 1094–1106, October 2008.

[13] D. Schleicher, L. Bergasa, M. Ocaña, R. Barea, and E. López, “Real-time
hierarchical stereo Visual SLAM in large-scale environments,” Robotics

and Autonomous Systems, vol. 58, no. 8, pp. 991–1002, 2010.

[14] A. Davison, I. Reid, N. Molton, and O. Stasse, “MonoSLAM: Real-time
single camera SLAM,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 29, no. 6, pp. 1052–1067, June 2007.

[15] P. Newman, D. Cole, and K. Ho, “Outdoor SLAM using visual ap-
pearance and laser ranging,” in Proc. IEEE Int. Conf. on Robotics and

Automation, 2006, pp. 1180–7.

[16] M. Cummins and P. Newman, “FAB-MAP: probabilistic localization and
mapping in the space of appearance,” The Int. J. of Robotics Research,
vol. 27, no. 6, pp. 647–65, June 2008.

[17] A. Angeli, S. Doncieux, J. Meyer, and D. Filliat, “Incremental vision-
based topological SLAM,” in Proc. IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems, 2008, pp. 1031–1036.

[18] T. Botterill, S. Mills, and R. Green, “Bag-of-words-driven, single-camera
simultaneous localization and mapping,” J. of Field Robotics, vol. 28,
no. 2, pp. 204–226, 2011.

[19] K. Konolige, J. Bowman, J. Chen, P. Mihelich, M. Calonder, V. Lepetit,
and P. Fua, “View-based maps,” The Int. J. of Robotics Research, vol. 29,
no. 8, pp. 941–957, July 2010.

[20] R. Atkinson and R. Shiffrin, “Human memory: A proposed system
and its control processes,” in Psychology of Learning and Motivation:

Advances in Research and Theory. Elsevier, 1968, vol. 2, pp. 89–195.

[21] A. Baddeley, Human Memory: Theory and Practice. Psychology Pr,
1997.

[22] M. Labbé and F. Michaud, “Memory management for real-time
appearance-based loop closure detection,” in Proc. IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems, 2011, pp. 1271–1276.

[23] M. J. Milford and G. F. Wyeth, “Mapping a suburb with a single camera
using a biologically inspired SLAM system,” IEEE Trans. on Robotics,
vol. 24, no. 5, pp. 1038–1053, October 2008.

[24] P. Newman and K. Ho, “SLAM- loop closing with visually salient
features,” in Proc. IEEE Int. Conf. on Robotics and Automation, 2005,
pp. 635–642.

[25] A. Tapus and R. Siegwart, “Topological SLAM,” in Springer Tracts in

Advanced Robotics. Springer, 2008, vol. 46, pp. 99–127.

[26] M. Bosse and J. Roberts, “Histogram matching and global initialization
for laser-only SLAM in large unstructured environments,” in Proc. IEEE

Int. Conf. on Robotics and Automation, 2007, pp. 4820–4826.

[27] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to
object matching in videos,” in Proc. 9th Int. Conf. on Computer Vision,
Nice, France, 2003, pp. 1470–1478.

[28] D. Nistèr and H. Stewènius, “Scalable recognition with a vocabulary
tree,” in Proc. IEEE Computer Society Conf. on Computer Vision and

Pattern Recognition, 2006, pp. 2161–2168.

[29] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer, “Fast and incre-
mental method for loop-closure detection using bags of visual words,”
IEEE Trans. on Robotics, vol. 24, no. 5, pp. 1027–1037, October 2008.

[30] M. Cummins and P. Newman, “Highly scalable appearance-only SLAM–
FAB-MAP 2.0,” in Proc. of Robotics: Science and Systems, Seattle,
USA, June 2009.

[31] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[32] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in Proc.

IEEE Conf. on Computer Vision and Pattern Recognition, 2007, pp.
1–8.

[33] O. Booij, Z. Zivkovic, and B. Kröse, “Efficient data association for
view based SLAM using connected dominating sets,” Robotics and

Autonomous Systems, vol. 57, no. 12, pp. 1225–1234, 2009.

[34] A. Ranganathan, “Pliss: Detecting and labeling places using online
change-point detection,” in Proc. of Robotics: Science and Systems,
2010.

[35] A. J. Glover, W. P. Maddern, M. J. Milford, and G. F. Wyeth, “FAB-
MAP + RatSLAM: Appearance-based SLAM for multiple times of day,”
in Proc. IEEE Int. Conf. on Robotics and Automation, 2010, pp. 3507–
3512.

[36] M. Milford and G. Wyeth, “Persistent navigation and mapping using a
biologically inspired SLAM system,” The Int. J. of Robotics Research,
vol. 29, no. 9, pp. 1131–53, August 2010.

[37] K. Konolige and J. Bowman, “Towards lifelong visual maps,” in Proc.

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2009, pp. 1156–
1163.

[38] F. Dayoub and T. Duckett, “An adaptive appearance-based map for long-
term topological localization of mobile robots,” in Proc. IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, 2008, pp. 3364–9.
[39] A. Pronobis, L. Jie, and B. Caputo, “The more you learn, the less you

store: Memory-controlled incremental svm for visual place recognition,”
Image and Vision Computing, vol. 28, no. 7, pp. 1080–1097, 2010.

[40] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.
[41] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded Up Robust

Features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[42] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in Proc. Int. Conf. on Computer

Vision Theory and Application, 2009, pp. 331–340.
[43] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, “The new

college vision and laser data set,” The International Journal of Robotics

Research, vol. 28, no. 5, pp. 595–599, 2009.
[44] A. Kawewong, N. Tongprasit, and O. Hasegawa, “PIRF-Nav 2.0: Fast

and online incremental appearance-based loop-closure detection in an
indoor environment,” Robotics and Autonomous Systems, vol. 59, no. 10,
pp. 727 – 739, 2011.

[45] S. Ceriani, G. Fontana, A. Giusti, D. Marzorati, M. Matteucci,
D. Migliore, D. Rizzi, D. Sorrenti, and P. Taddei, “Rawseeds ground
truth collection systems for indoor self-localization and mapping,”
Autonomous robots, vol. 27, no. 4, pp. 353–371, 2009.

[46] P. Newman, G. Sibley, M. Smith, M. Cummins, A. Harrison, C. Mei,
I. Posner, R. Shade, D. Schroeter, L. Murphy et al., “Navigating,
recognizing and describing urban spaces with vision and lasers,” The

International Journal of Robotics Research, vol. 28, no. 11-12, p. 1406,
2009.

[47] D. Gálvez-López and J. Tardós, “Real-time loop detection with bags of
binary words,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems, 2011, pp. 51–58.
[48] W. Maddern, M. Milford, and G. Wyeth, “Continuous appearance-based

trajectory SLAM,” in Proc. IEEE Int. Conf. on Robotics and Automation,
2011, pp. 3595–3600.

Mathieu Labbé received the B.Sc.A. degree in
computer engineering and the M.Sc.A. degree in
electrical engineering from the Université de Sher-
brooke, Sherbrooke, Québec Canada, in 2008 and
2010, respectively. He is currently working toward
the Ph.D. degree in electrical engineering at the same
university.

His research interests include computer vision,
autonomous robotics and robot learning.

François Michaud (M’90) received his bachelors
degree (’92), Masters degree (’93) and Ph.D. degree
(’96) in electrical engineering from the Université
de Sherbrooke, Québec Canada.

After completing postdoctoral work at Brandeis
University, Waltham MA (’97), he became a faculty
member in the Department of Electrical Engineering
and Computer Engineering of the Université de
Sherbrooke, and founded IntRoLab, a research labo-
ratory working on designing intelligent autonomous
systems that can assist humans in living environ-

ments. His research interests are in architectural methodologies for intelligent
decision-making and design of interactive autonomous mobile robots.

Prof. Michaud held a Canada Research Chair (2001-11) in Mobile Robots
and Autonomous Intelligent Systems, and is the Director of the Interdisci-
plinary Institute for Technological Innovation (3IT). He is a member of IEEE,
AAAI and OIQ (Ordre des ingénieurs du Québec).


