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Abstract— Navigating in large scale, complex and dynamic
environments requires reliable representations able to capture
metric, topological and semantic aspects of the scene for sup-
porting path planing and real time motion control. In a previous
work [11], we addressed metric and topological representations
thanks to a multi-cameras system which allows building of
dense visual maps of large scale 3D environments. The map
is a set of locally accurate spherical panoramas related by 6dof
poses graph. The work presented here is a further step toward a
semantic representation. We aim at detecting the changes in the
structural properties of the scene during navigation. Structural
properties are estimated online using a global descriptor relying
on spherical harmonics which are particularly well-fitted to
capture properties in spherical views. A change-point detection
algorithm based on a statistical Neyman-Pearson test allows us
to find optimal transitions between topological places. Results
are presented and discussed both for indoors and outdoors
experiments.

I. INTRODUCTION

Navigating in large scale, complex and dynamic environ-

ments is a challenging task for autonomous mobile robots.

Reliable representations able to capture metric, topological

and semantic aspects of the scene have to be built for sup-

porting path planing and real time motion control algorithms

[14]. It is usual to define three levels of representation as

illustrated in fig. 1. Metric representation is used at the

control level in the design of trajectory tracking algorithms

[4]. Topological representation captures the environment

accessibility properties in a graph structure and provides a

first level of abstraction allowing complex navigation tasks

in large scale environments [21]. Semantic representation

consists in adding information about the places represented

by nodes in the graph used at the topological level. The

semantic information can be basically the name of a place

[16] or its main characteristic such as office or corridor [24].

The added information can also refer to objects presence or

other kind of information linked to the place. This level, with

a higher degree of abstraction, allows us to specify context-

based navigation tasks in terms of queries [7].

In [11], we addressed metric and topological representa-

tion levels thanks to a multi-cameras system onboard a man-

driven car which allows building of dense visual maps of

large scale 3D environments. As in Google Street View [23],

the map is composed of a set of locally accurate spherical

panoramas (fig. 2) built online along the car trajectory. The
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Fig. 1. Navigation-based representation

spherical views are related by 6dof poses graph estimated

using a direct multi-views registration technique [12].

Fig. 2. Example of spherical view (Inria Campus Dataset).

The work presented here is a further step toward a

semantic representation of the scene. We aim at detecting

changes in the scene structural properties (such as textures,

appearance, frequency and orientation of the straight lines,

curvatures, repeated patterns) during navigation. A place, in

this work, is therefore associated to a segment of the robot

trajectory where the scene is sufficiently self similar, i.e. has
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the same structural properties extracted from the spherical

views. The main advantage of this definition is that it fits

both to indoor and outdoor environments in order to partition

the topological graph in terms of meaningful places. Such

partition also provides advantages such as increasing loop

closure algorithms efficiency [10] and can be viewed as a

first step to environment semantic labeling.

In [3], we presented preliminary results where the struc-

tural properties were estimated using a global descriptor

called GIST specially modified to deal with spherical images.

Given our place definition, GIST appears more adapted than

local descriptors like SIFT used in [17] and [25]. Without

additional constraints, local descriptors have difficulty to

represent the environment global consistency. Since it has

been introduced [15], GIST has been used multiple time in

image-based learning algorithms and in robotics for place

recognition and loop closure detection [13] or for indoor re-

gion classification [18]. Despite these good properties, GIST

is not well adapted to encompass the spherical representation

richness because sphere spatial periodicity is partially lost.

In this paper, we propose a novel representation relying

on spherical harmonics which are particularly well-fitted to

capture the structural properties in spherical views.

In the following, section 2 presents the representation

based on spherical harmonics. Section 3 is devoted to the

detection of statistical changes in the scene structural prop-

erties. Experimental results for indoor and outdoor environ-

ments are provided in section 4. The proposed method is

discussed in section 5.

II. SPHERICAL HARMONICS

Spherical harmonics are similar to the 2D Fourier trans-

form but defined on the sphere surface and take complete

advantage of the spherical representation. Noticeably, the

complete spatial periodicity of the sphere is integrated into

the spherical harmonics computation. They have already

shown their usefulness in the domain of robotics for local-

ization [5] and for visual odometry [9]. Spherical harmonics

will be used here to define a new scene structure descriptor.

A. Definition

In this paper, we only detail the application of spherical

harmonics to our problem. Further mathematical details

about spherical harmonics can be found in [2], [1], [8].

The unit sphere S2 included in R
3 is parametrized using

spherical coordinates. An element η of S2 is written:

η =
[

cos(θ)sin(φ), sin(θ)sin(φ), cos(φ)
]T

(1)

The spherical harmonics are defined by:

Y m
l (η) =

√

2l + 1

4π

(l −m)!

(l +m)!
P

|m|
l (cos (φ)) ejmθ (2)

with l ∈ N and |m| ≤ l where l is the band number

corresponding to a frequency and m is an orientation param-

eter. Pm
l corresponds to the associated Legendre polynomials

with x ∈ [−1, 1] such that:

Pm
l (x) =

(−1)m(1− x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l (3)

Every function defined on the sphere surface can be

decomposed in a sum of spherical harmonics as follows:

f =
∑

l∈N

∑

|m|≤l

fm
l Y m

l (4)

The fm
l coefficients are obtained from a function f by:

fm
l =

∫

η∈S2

f(η)Y m
l (η)dη (5)

If fm
l = 0 for all l > L, f is said to be band limited

with a bandwidth L. The coefficients set fm
l is called the

spherical Fourier transform or the spectrum of f . The first

five spherical harmonics bands are displayed in fig. 3.

Fig. 3. The first five spherical harmonics bands are presented as unsigned
spherical functions from the origin and by color on the unit sphere. Green
corresponds to positive values and red to negative values. (From [8])

Due to the integral, fm
l coefficients exact computation can

be very time consuming. While it exists the fast Fourier trans-

form, there exists a fast method to compute those coefficients,

based on the Monte Carlo integration, precomputed tables

and the properties of the associated Legendre polynomials.

This method is widely used in computer graphics for real-

time lighting rendering. Further details can be found in [8].

B. Spherical harmonics as environment structure description

Assuming that environment structure information is con-

tained in the spherical image frequencies, pixel intensities

can be chosen as the samples f(xi) values of the function

f . Spherical harmonics being a frequency description of the

spherical image, we propose to directly use the spectrum as

a structure descriptor. Frequency information corresponds to

band number l and orientation information to parameter m
(the higher l is, the higher the frequency is, see fig. 3). The

spectrum coefficients fm
l are stacked into a vector which

constitutes the global structure descriptor.

The number of bands used is an important parameter. In

the case of the 2D discrete Fourier transform, the spectrum

size is constrained by the image size. In the case of the spher-

ical harmonics, nothing constraints the required number of

bands. The number of coefficients follows a square function
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of the number of bands. The descriptor size is Sd = l2. In

fig.3, l = 5 and we have l2 = 25 coefficients.

In computer graphics, only three bands are used due to an

exponential attenuation in bands of higher frequencies [8].

For our study, there is no such attenuation and it is hard

to determine the required number of bands. In [5], precise

localization is achieved using only the first five bands. While

we seek a global description of the environment, the first five

bands should guarantee a sufficient information.

III. CHANGE-POINT DETECTION ALGORITHM

A. Hypotheses and assumptions

According to our place definition as a set of positions

from which environment structure is similar, we aim to

detect the significant changes in the global descriptor value

along the sequence of spherical views. This can be viewed

as novelty detection as used in [19] or [20] for vehicle

safeguarding or as change-point detection as used in [17]

and [16] for landmark detection and place labelling. Change-

point detection is based on hypothesis testing:

• Null hypothesis H0 is the normal situation in which the

observed parameters stick to the previous model.

• Alternate hypothesis H1 is the alternate situation where

parameters vary from the previous model.

Change-point detection algorithm evaluates the monitored

parameters and determines when a switch occurs from hy-

pothesis H0 to hypothesis H1.

Let us assume a set of independent input observations:

X1, X2, ..., Xτ−1, Xτ , ..., Xt (6)

Assume that the input observations X1, ..., Xτ−1 are inde-

pendent random variables with a probability density function

f0(Xj), while the observations Xτ , ... are independent ran-

dom variables with a probability density function f1(Xj).
Let us assume that f0 is the probability density function

under hypothesis H0 and f1 under H1. Suppose we have

X1, ..., Xt observations up to an instance t and we test the

above hypotheses for these observations. The likelihood ratio

(eq. 7) indicates whether the value Xj mostly belongs to f1
or f0.

sj = ln
f1(Xj)

f0(Xj)
(7)

The Neyman-Pearson lemma conducting a simple hypothesis

test, as used in [22], defines the uniformly most powerful test

as the one rejecting the null hypothesis H0 whenever:

St
τ =

t
∑

j=τ

ln
f1(Xj)

f0(Xj)
=

t
∑

j=τ

sj > ν (8)

The above equation yields to the simple hypothesis test:

tc = min{t : argmax
0≤τ≤t

t
∑

j=τ

ln
f1(Xj)

f0(Xj)
> ν} (9)

where ν is the threshold controlling the detection sensitivity.

argmax
0≤τ≤t

∑t
j=τ ln

f1(Xj)
f0(Xj)

> ν returns the instant τ giving the

maximum of dissimilarity between f0 and f1. t being the

current instant, tc will be either t leading to no change-point

detection or τ which is the exact change-point instant.

This algorithm gives the exact change-point instants

whereas it needs a delay to evaluate the probability density

function f1. The computation time is very low for a small

t but increases rapidly with the number of observations.

No assertions are done concerning H0 and the probability

density functions f0 and f1 always need to be estimated for

all the change-points τ tested over all observations.

Let’s assume the density functions under each hypothesis,

i.e. f0 and f1, follow a multivariate normal distribution:

f0 ∼ N (µ0,Σ0 f1 ∼ N (µ1,Σ1) (10)

As each hypothesis is characteristic of one topological

place, density functions characterize the structural parameters

of topological places. The mean vector represents the most

probable structural parameters set. The covariance matrix

represents the parameters distribution tolerance inside a topo-

logical place. Two matters arise concerning the distributions

parameters estimation:

• Sufficient number of samples are necessary to insure

well conditioned density function estimation and in par-

ticular the covariance matrix semi-definite positiveness

property.

• Density function estimation requires identically and

independently distributed samples (i.i.d). Independence

is assumed due to independent input observations as-

sumption from Neyman-Pearson lemma. Approximate

constant distance interval gathering (constant time gath-

ering with minimal distance between samples condition)

allows approximate identical distribution. This simple

method avoids accumulation at low or null speed.

B. Online application

As explained previously, the algorithm rapidly becomes

time consuming and only one change-point detection is

possible for a complete set of input observations. In order to

alleviate those limitations, we introduce a fixed size sliding

window over the signal made up of the input observations

(fig. 4). First half of the sliding window corresponds to

normal hypothesis H0 while second half corresponds to

alternate hypothesis H1. Change-point hypothesis is then

tested only at the sliding window center. Each time the robot

acquires a new observation, the signal is expanded with a new

input. The sliding window always encompasses the N last

input observations. Older observations, already analysed, are

forgotten. We finally obtain an approximation (due to non

complete signal observation) of the exact change-point.

This simple trick brings many advantages. The most

obvious ones are constant time change-point detection and

dynamic signal analysis leading to an inline algorithm.

Moreover, one of the most important is multiple hypothesis

testing. This last one allows to have many change-points

over the signal contrarily to the original Neyman-Pearson

algorithm formulation.
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Fig. 4. Sliding window used in the estimation process.

Considering hypotheses about the density functions and

the sliding window trick, the Neyman-Pearson final equation

results in:

St
τ =

N

4
ln

(

|Σ0|

|Σ1|

)

+

N

4

(

µT
0 Σ

−1
0 µ0 + µT

1 Σ
−1
1 µ1 − 2µT

0 Σ
−1
0 µ1

)

+

1

2

t
∑

j=t−N/2

(

XT
j

(

Σ−1
0 − Σ−1

1

)

Xj

)

(11)

The equation contains three terms:

• First term is linked to distribution spreads. The term is

canceled for equal spreads.

• Second term approximately corresponds (because of im-

possible factorization) to the squared difference between

distribution means.

• Last term is the sum of the squared observations

weighted by the spread difference between the density

functions. The term is canceled for equal spreads.

As stated before, we can observe that the equation com-

putes a value linked to the difference between two distribu-

tions. The greater the difference is, the higher the value is.

In our case, this leads to change-point detection indicating a

change in the structural parameters, which corresponds to a

transition between two topological places.

An example of signal obtained with equation 11, made up

of the change-point values, is displayed in fig. 5. The signal

is filtered in the time domain with a simple Gaussian filter

(parameters: µ = 0, σ = N/10) in order to reduce the signal

noise. Peak detection mechanism relies on peak magnitude

relatively to the minima flanking the peak. Threshold (ν =
0.4) is then used on the peak amplitude and not on the

peak maximum value. This results in a peak detection less

sensitive to noise.

Considering the density function estimation constraints

aforementioned, the sliding window has to be sufficiently

large for a correct estimation. For the experiments, the size

is of 80 observations. As the minimal distance between two

samples is 0.015m, the sliding window spatial size is 1.2m.

Each density function is then estimated over a distance of

0.6m. These values satisfy the requisites for density estima-

tion but has consequences on the experiment as two change-

points cannot be closer than 0.6m for detection. This distance

Fig. 5. Sample signal obtained with the change-point detection algorithm
combined with spherical harmonics approach for structural parameters
description. Detected peaks are marked with red dots.

is a reasonable trade-off between minimal environment size

for structural parameters extraction and minimal detectable

topological place. For environments changing slowly, the

window can be larger.

IV. EXPERIMENTAL RESULTS

This section presents experimental results for topological

segmentation in indoor and outdoor environments. Testing

different kind of environment aims to show the method is

generic and robust to context change. Using various kind of

camera for spherical view acquisition furthermore highlights

the generic spherical concept. The indoor experiment was

realized in the Robotic Hall at INRIA Sophia Antipolis using

a Neobotix MP-500 platform equipped with a paracatadiop-

tric camera. In the outdoor experiment, a man-driven vehicle

equipped with the multi-cameras system described in [11]

was used. The trajectory was about 600 meters across the

INRIA Sophia Antipolis research center.

The whole code is written in Matlab without being specif-

ically optimized. Spherical harmonics spectrum computation

requires 290ms using the implementation described above

(the sphere is sampled with 62500 samples uniformly dis-

tributed). The change-point detection algorithm runs in 10ms.

The complete algorithm then runs inline in about 300ms

(acquisition up to 3.3Hz). However, the spherical harmonics

spectrum code is highly parallelizable and might take great

advantage of a C/C++ parallel implementation.

A. Indoor experiment analysis

Figure 6 presents the robot trajectory and the detected

change-points. It is first interesting to notice that all change-

points correspond to important structure variations such as

doorsteps or room volume variation (i.e. passing from a nook

to a more open space). The trajectory in the wide space is

very little segmented.

The easiest way to validate a topological place segmen-

tation algorithm is to consider the doorsteps case. This case

is illustrated by images 2680, 3480, 5328, 10455, 11954

and 12322 where change-points are precisely localized at

doorsteps. The examples illustrated by images 996, 1401 and

2044 correspond to room volume variations. Image 996 and

1401 show when the robot comes from a narrow space to

a wider space. Image 2044 shows the opposite case when

the robot leaves a wide environment to enter a quite narrow

place similar to a corridor. Images 6376 and 6624 correspond

to the detection of changes in the objects present in the
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Fig. 6. Indoor trajectory inside the Robotic Hall. Detected change-points are marked with red crosses.

environment. The images (9516, 11231) define the space

between the wall and the electric vehicles.

All those aforementioned change-points are relevant and

are very significant considering the topological place defi-

nition we gave. There are however some false and missing

change-points. Concerning the false change-points, one is

illustrated by image 8940 in the upper left office. This

change-point is detected while the robot was turning around,

we suppose the problem is due to strong illumination vari-

ations in the images caused by the automatic shutter of the

camera. Conversely, a change-point which should be detected

is missing at the entrance of the same office.

B. Outdoor experiment analysis

The results are shown in fig. 7. The parking areas are

clearly identified in (630, 842) and in (1035,1450). In the

last case, it is interesting to notice that this parking is long

enough and has a significant curve to prevent mutually seen

features from the beginning and the end of the parking. This

demonstrates that detection is linked to the intrinsic structure

associated to the parking area and not to the observation

of same objects along the sequence of views. This behavior

perfectly fits what we aimed by giving an original topological

place definition. Globally, the changes between the buildings

and the vegetation areas are also well detected (229, 325,

403). A change-point, image 842, occurs when the vehicle

crosses under a sidewalk and discovers a new area.

V. CONCLUSION AND FUTURE WORK

We have presented an new method to cluster images into

significant topological places. A place is defined as a segment

of trajectory where the structural properties extracted from

spherical views are sufficiently self similar. Place character-

ization is made by a global descriptor given by the spherical

harmonics spectrum. The segmentation algorithm relies on

an efficient change-point detection based on multi-hypothesis

testing and allowing constant time computation. Results are

very satisfying for both indoor and outdoor environments.

While the results are very good, the algorithm still shows

some limitations. As descriptors are based on appearance

frequencies, when the robot approaches walls, frequencies

become lower and a new topological place is defined.

For future work, we plan to improve our algorithm robust-

ness to illumination condition following [6] and its rotation

independence. The algorithm presents a certain robustness to

rotation due to the sliding window reducing the environment

sensed, but the spherical harmonics spectrum is not indepen-

dent to any rotation. De-rotation mechanism can be applied

as rotations can be estimated from spectra.

In a longer term, the segmentation algorithm could be

coupled with a loop closure detection algorithm in order
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Fig. 7. Outdoor experiment in the INRIA campus with the spherical harmonics feature. Detected change-points are marked with blue crosses.

to improve change-point localization stability and with a

semantic level by adding place classification and labelling.

Finally, experiments with drones could test rotation indepen-

dence and validate the generic approach elaborated.
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