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Abstract. In video-surveillance, person re-
identification is the task of recognising whether an
individual has already been observed over a network of
cameras. Typically, this is achieved by exploiting the
clothing appearance, as classical biometric traits like
the face are impractical in real-world video surveil-
lance scenarios. Clothing appearance is represented
by means of low-level local and/or global features of
the image, usually extracted according to some part-
based body model to treat different body parts (e.g.
torso and legs) independently. This paper provides a
comprehensive review of current approaches to build
appearance descriptors for person re-identification.
The most relevant techniques are described in detail,
and categorised according to the body models and
features used. The aim of this work is to provide a
structured body of knowledge and a starting point for
researchers willing to conduct novel investigations
on this challenging topic.

1 Introduction

Person re-identification[32] consists of recognising
an individual who has already been observed (hence
the term re-identification) over a network of video
surveillance cameras. The topic is currently attract-
ing much interest from researchers, due to the various
possible applications such a technique can enable,
e.g., off-line retrieval of all the video-sequences where
an individual of interest appears, whose image is
given as query, or on-line pedestrian tracking over
multiple, possibly not-overlapping cameras (a task
also known as re-acquisition [46]).

While several biometric traits can be in principle
used to this aim, strong pose variations and un-

constrained environments make the use of classical
biometric traits like face difficult of impractical [32]
with the typical sensors and setting of a surveillance
network. Therefore, researchers explored the use of
cues that pose less constraints, at the expense of an
intrinsically lower identification capability. Among
them, clothing appearance is used in the most of
re-identification methods, as a soft, session-based
cue, that is relatively easy to extract, and exhibits
uniqueness over a limited time span. Various descrip-
tors of the clothing appearance have been proposed
so far in the literature [32]. They are mostly de-
signed heuristically, and are based on the extraction
of various kinds of low-level local and global features
from the images showing the individual1. Typically,
they exploit a part-based body model, to take into
account the non-rigid structure of the human body
and treat the appearance of different body parts (e.g.
torso and legs) independently.

This paper provides an overview of existing meth-
ods used in literature for the task of person re-
identification, with particular respect to the tech-
niques used to build a descriptor of the body ap-
pearance. The presented review is mostly based on
Chapter 2 of my thesis work [88]. The remainder of
the paper is structured as follows. Sect. 2 first gives
a simple formal statement to person re-identification.
Then Sect. 3 reviews current approaches to construct
appearance descriptors. The survey is conducted un-
der two “orthogonal” viewpoints, namely the kind of
body model and the kind of features used (Sect. 3.1

1The term “local features” refers to localised characteristics
of the image, e.g. the colour distribution around a certain
salient point of the image; the term “global features”,
instead, refers to characteristics of the whole image, e.g.
the overall colour distribution.
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and Sect. 3.2 respectively). Sect. 3.3 then focuses
on the problem and current approaches of combin-
ing different feature sets While almost all existing
methods use the clothing appearance as main cue
to perform re-identification, it is worth to note that
other approaches have been attempted in literature,
for instance based on gait, or anthropometric mea-
sures captured through novel RGB-D sensors. These
methods are briefly surveyed in Sect. 4. Finally,
Sect. 5, which concludes the paper.

2 Problem overview

Formally, person re-identification can be modelled
as a recognition/matching task, where a probe in-
dividual is matched against a gallery of templates
(representing the individuals previously seen by the
camera network). Thus, the problem of re-identifying
an individual represented by its descriptor P can be
formulated as:

T = argmin
Ti

D(Ti,Q) ,Ti ∈ T (1)

where T = {T1, . . . ,TN} is a gallery of N template
descriptors, and D(·, ·) is a proper distance metric.
In order to address the re-identification problem

above, it is indeed fundamental, first, to answer
the question of how to represent persons using a
descriptor. This is the topic of investigation of the
rest of the paper.

3 Appearance descriptors

The procedure of extracting appearance descriptors
typically follow a standard pipeline (see Fig. 1 and
Fig. 2):

1. the person is detected and tracked by suitable
algorithms;

2. the pixels belonging to the person are sepa-
rated from the background (foreground extrac-
tion or segmentation) in each frame of the video-
sequence;

3. a descriptor is built from the resulting silhou-
ettes (one for each frame), using local or global
features, possibly after different body parts are
detected through a body model, in order to take
the into account the non-rigid nature of the
body;

Descriptors of Step 3 are finally stored in a data base
for subsequent searches.

Detection

Tracking

Segmentation

Descriptors
computation Database

Figure 1: Descriptor construction pipeline.

(a) (b)

Figure 2: (a) Example outputs of a pedestrian detection
algorithm in three frames taken from real-world
video-surveillance footages; Detected blobs are
in green. (b) Example of division of a blob
into person and non-person pixels.

Step 1 requires i) a method to detect people in a
given video frame [31] (i.e., to recognise the image
regions, or blobs, that contain a person), and ii) a
data association algorithm that track people found
by the detector [56, 79, 109] (i.e., to associate blobs
in subsequent frames to the same person). These two
steps may also be carried out together, and reinforce
one another [3]. Step 2 is usually carried out using
an adaptive model of the background [35].

Many challenging issues can affect some or all the
three steps above. Among them we cite (see Fig. 3):

• Pose and viewpoint variations. The relative
pose of a person with respect to the cameras
of the network varies depending on the walking
path of that person, and of the viewpoint of the
camera. This may cause consistent variations of
the person appearance.

• Partial occlusions. Parts of a person may
be not visible to the camera due to occlusions
caused by objects, clothing accessories or other
people. This may cause the segmentation algo-
rithm to fail in separating one person from the
rest of the scene; consequently, descriptors may
be built from images partially corrupted by the
source of the occlusion.

• Illumination changes. Illumination condi-
tions may differ in different cameras, and in
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(a) (b) (c) (d) (e)

Figure 3: Pairs of images showing the same person from
different cameras, taken from two common
benchmark data sets, VIPeR [46] and i-LIDS
[112]. Notice pose variations (a)(b)(c), partial
occlusions (d), illumination changes (a)(b)(c),
and different colour responses (e).

the same camera in different periods of time
due to changing environmental conditions. This
may result in appearance changes over different
cameras and during time.

• Changes in colour response. Different cam-
eras may have a different colour response, that
may affect person appearance as well.

The vast majority of methods assumes that the
steps of detection, tracking and segmentation have
been already accomplished using any of the algo-
rithms available in literature, and concentrate on
the task of constructing descriptors. The interested
reader is referred to [20] and [31] for a comprehen-
sive survey of pedestrian detection and foreground
segmentation algorithms. This paper concentrates
on Step 3, namely, how to construct discriminant
and robust appearance descriptors to match persons
in different views.

As stated in the introductory Section, appearance
descriptors usually follow a part-based body model:
the body is at first subdivided in parts. Then, body
parts are described via global features or bags (i.e.,
unordered sets) of local features. Therefore, it is
convenient to split the survey of current appear-
ance descriptors in two parts, first reviewing body
part subdivision models (Sect.3.1), then focusing on
appearance features (Sect.3.2). Combining different
kind of features may help in attaining a better perfor-
mance; Sect. 3.3 provides a closer insight on typical
approaches for feature combination in appearance
descriptors.

3.1 Part-based body models

The human body is not a rigid object. Instead, it has
a complex kinematics, and can be better described
using a part-based model, possibly where relative po-
sitions of parts are not fixed a-priori but are inferred
from the image. Furthermore, discontinuities of the

clothing appearance usually follow the body struc-
ture (e.g., the clothing appearances of the upper and
lower body usually differ). Many existing appear-
ance descriptors, therefore, exploit some part-based
human body model to segment the silhouette into dif-
ferent parts. Some other descriptors (e.g., [7, 13, 19,
27, 47, 51, 52, 55, 57, 60, 69, 71, 83, 103, 104, 111])
consider the body as a whole instead. Part-based
body models used in existing appearance descriptors
can roughly be divided into three categories:

• fixed models, in which size and relative position
of body parts are defined a-priori;

• adaptive models, that try to fit a predefined part
subdivision model to the image of the person;

• learned models, that previously learn the model
constraints (e.g., relative parts disposition) from
a labelled training set of images of individuals.

In the rest of this Section, part-based body models
belonging to the three categories above are reviewed
and compared.

3.1.1 Fixed part models

Probably the simplest kind of part subdivision is a
fixed one, in which the sizes and positions of body
parts are chosen a-priori. An example of this ap-
proach can be found in [67, 84, 113], where the body
is subdivided into six horizontal stripes of equal size,
that roughly capture the head, upper and lower torso
and upper and lower legs. Similarly, in [6] the silhou-
ette is subdivided in five equal-sized stripes. An even
simpler fixed part subdivision is used in [61]. Three
horizontal stripes of respectively 16%, 29% and 55%
of the total blob height roughly locate head, torso
and legs, then the first strip is discarded as the head
typically consists of few pixels and is not informative
for the clothing appearance.

3.1.2 Adaptive part models

Other body models are adaptive, in the sense that
they try to fit a predefined part subdivision model to
the image of the individual. In one of the descriptors
proposed in [8], the MPEG-7 Dominant Colour De-
scriptor (DCD) [108] is used to dynamically separate
the body into two parts, upper and lower body, look-
ing for discontinuities in dominant colours (the same
DCD is also used as feature set to describe each body
part, see Sect. 3.2). The approach of [36] extends the
basic idea of exploiting appearance anti-symmetries
of [8]. It dynamically finds three body areas, namely
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the head, torso, and legs, exploiting symmetry and
anti-symmetry properties of silhouette and appear-
ance. To this aim, two operators are defined. The
first measures is called chromatic bilateral operator.
It measures the appearance anti-symmetry of a cer-
tain image region with respect to a given horizontal
axis, and is defined as

C(y, δ) =
∑

B[y−δ,y+δ]

d2
(

pi, p̂i
)

, (2)

where d(·, ·) is the Euclidean distance, evaluated
between pixels represented in the HSV colour space
pi and p̂i located symmetrically with respect to an
horizontal axis placed at height y of the person image.
This distance is summed up over the person pixels
lying in the horizontal strip B[y−δ,y+δ] centred in y
and of height 2δ.

The second is called spatial covering operator and
measures the difference of the silhouette areas of two
regions:

S(y, δ) =
1

Wδ

∣

∣

∣
A
(

B[y−δ,y]

)

−A
(

B[y,y+δ]

)

∣

∣

∣
, (3)

where W is the width of the blob, and A
(

B[y−δ,y]

)

and A
(

B[y,y+δ]

)

, denote the number of person pixels
respectively of the strip of vertical extension [y−δ, y]
and [y, y + δ]. These operators are combined to find
two axes, yHT and yTL, that respectively separate
head and torso, and torso and legs. These axes are
defined as

yTL = argmin
y

(

1− C(y, δ) + S(y, δ)
)

, (4)

yHT = argmin
y

(

− S(y, δ)
)

. (5)

The parameter δ is set to a value of δ = Y/4 where Y
is the blob height in pixels. The values yHT and yTL

isolate three regions approximately corresponding to
head, body and legs (Fig. 4-a). The head part is
discarded as it carries very low informative content.
As claimed by the authors, this strategy is able to
locate body parts which are dependent on the visual
and positional information of the clothes, robust to
pose, viewpoint variations, and low resolution. After
[36], the same part-based model has been used in
various other works [14, 72, 73, 89, 91, 93, 106].

A deformable model that is fitted to each individ-
ual to find six body regions is used one of the methods
in [44], based on decomposable triangulated graphs
[2]. A triangulated graph is a collection of cliques of
size three, that has a perfect elimination order for
their vertices, i.e., there exists an elimination order

Y

 1
 1 X

y
HT

y
TL

(a) (b) (c)

(b.1) (b.2) (c.1) (c.2) (c.3)

Figure 4: (a) Symmetry-driven subdivision in three parts
[36]. The blob of size Y ×X pixels containing
the person is divided according to two horizon-
tal axes, yHT and yTL, found by minimising
a proper combination of the operators defined
in Eqs. (2)-(3). (b) Decomposable body model
used in [44]: (b.1) the decomposable triangu-
lated graph model; (b.2) Partitioning of the
person according to the decomposable model.
(c) An example of fitting the decomposable tri-
angulated model of [44] to an individual: (c.1)
an image of an individual; (c.2) edges detected
through the the Canny’s algorithm [24]; (c.3)
result of fitting the model to the edges (in red).
All figures are taken from [36] and [44].

for all vertices such that (i) each eliminated vertex
belongs only to one triangle, and (ii) a new decom-
posable triangulated graph results from eliminating
the vertex.

The model is fit to the image of a person using the
following strategy. Let the model be a decomposable
triangulated graph T with n triangles Ti, i = 1, . . . , n.
The goal is to find a function g that maps the model
to the image domain, such that the consistency of the
model with salient image features is maximised, and
deformations of the underlying model are minimised.
The function g must be a piecewise affine map [38],
i.e the deformation of each triangle gi(Ti) must be
an affine transformation. The problem becomes to
minimise an energy functional E(g, I) that can be
written as a sum of costs:

E(g, I) =
∑

i

Ei(gi, I) =
∑

i

(

Edata
i (gi, I)+Eshape

i (gi)
)

,

(6)
where the I represents the image features. The terms
Eshape

i (gi) take into account the cost for shape distor-
tion of the i-th triangle, while Edata

i (gi, I) attracts
the model to salient image features, which are found
using an edge detector (Canny’s algorithm [24]). As
shown in [2], a model based on decomposable tri-
angulated graphs can be efficiently optimised using
dynamic programming. Once the model has been
fitted with regard to the image, the individual is par-
titioned into six salient body parts, shown Fig. 4-b
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(a) (b) (c) (d)

Figure 5: (a) Sample output of the articulated body model
used in [15, 16]. (b) Sample output of the
Pictorial Structure model used in [25]. (c)
Sample Pictorial Structure of the upper body
part, with the torso part as root node. (d)
Kinematic prior learned on the dataset from
[85]. The mean part position is shown in blue
dots; the covariance of the part relations in the
transformed space is shown using red ellipses.
Figures taken from [15] and [4].

with different colours. An example of application to
a real pedestrian image is shown in Fig. 4-c.

3.1.3 Learned part models

More recently, some methods that rely on previously
trained body part detectors and articulated body
models have been proposed. Part detectors are sta-
tistical classifiers that learn a model of a certain
body part (e.g., an arm) from a given training set
of images of people where body parts are manually
located and labelled. Typically, these detectors ex-
ploit features related to the edges contained on the
image. An approach of this kind has been used in
[15, 16] based on the work of Felzenszwalb et al. [37].
The overall body model is made up of different part
models; each one, in turn, consists of a spatial model
and of a part filter. The spatial model defines a set
of allowed placements for a part with respect to the
bounding box containing the person, and a deforma-
tion cost for each placement. To learn a model, a
generalisation of Support Vector Machines (SVM)
[22] called latent variable SVM (LSVM) is used. In
[15, 16], such model is used to detect four different
body parts, namely head, left torso, right torso and
the upper legs (see Fig. 5-a).

An articulated body model based on Pictorial
Structures (PS) was proposed in [4] and later ex-
ploited in [25] for the task of re-identification. In
[25], six parts are considered (chest, head, thighs and
legs, see Fig. 5-b), while the original PS model is
also able to detect and locate upper and lower arms.

A PS model for an object [39] is a collection of
parts with connections between certain pairs of parts
(an example is provided in Fig. 5-c). The approach of

[4] uses a PS of the human body that is made up of
a set of N parts, and a set of generic part detectors
based on descriptors of the shape. The model and
the body part detectors are trained on a training set
of images of people.

Let L =
{

l0, . . . , lN−1

}

be the set of configurations
of each body part. Each li is the state of the i-th body
part li =

(

xi, yi, θi, si
)

, where xi and yi are the image
coordinates of the part centre, θi is the absolute
part orientation, and si is the part scale, relative
to the size of the part in the training set. Given
the image evidence D, the problem is to maximise
the a-posteriori probability (posterior) p(L|D) that
the part configuration L is correct. The posterior is
proportional to

p(L|D) ∝ p(D|L)p(L) (7)

according to Bayes’ theorem [34]. The term p(D|L) is
the likelihood of the image evidence given a particular
body part configuration, while p(L) corresponds to
a kinematic tree prior. Both are learned from a
training set, as follows.
Kinematic three prior. The prior p(L) encodes

the kinematic constraints, i.e. the constraints on
the relative parts disposition. The body structure
is mapped on a directed acyclic graph, so that p(L)
can be factorised as

p(L) = p(l0)
∏

(i,j)∈E

p (li|lj) (8)

where E denotes the set of all directed edges in the
kinematic tree, and l0 is the root node, that in [4] is
chosen to be the torso body part.

The prior for the root part configuration p(l0) is as-
sumed to be uniform. To model part relations p(li|lj),
a transformed space is used, where such relations can
be modelled as Gaussian [39]. More specifically, the
part configuration li =

(

xi, yi, θi, si
)

is transformed
into the coordinate system of the joint between the
two parts i and j using the transformation:

Tji(li) =









xi + sid
ji
x cosθi + sid

ji
y sinθi

yi + sid
ji
x sinθi + sid

ji
y cosθi

θi + θ̄ji
si









(9)

where dji =
(

djix , d
ji
y

)T
is the mean relative position

of the joint between the two parts i and j, in the
coordinate system of part i, and θ̄ji is the relative
angle between the two parts. Then, part relations
are modelled as Gaussian in the transformed space:

p (li|lj) = N
(

Tji(li)|Tij(lj),Σ
ji
)

(10)

Page 5 of 18



where dji and Σji can be learned via maximum like-
lihood estimation [34] from a labelled training set of
images of people. It is worth noting that the body
parts are only loosely attached to the joints (also
called a loose-limbed model [98]), which helps increas-
ing the robustness of the pose estimation. Fig. 5-d
shows the priors learned from the multiple views
and multiple poses people data set of [85], a com-
mon benchmark corpus for body pose estimation
algorithms.

Likelihood of the image evidence. To esti-
mate the likelihood p(D|L), the methods relies on
a different appearance model for each body. Each
appearance model will result in a part evidence map
di that reports the evidence for the i-th part for each
possible position, scale, and rotation.
Assuming that the different part evidence maps

are conditionally independent, and that each di de-
pends only on the part configuration li, the likelihood
p(D|L) can be written as:

p(D|L) =
N
∏

i=0

p (di|li) . (11)

Substituting Eq. (8) and Eq. (11) in Eq. (7), one
finally obtains:

p(L|D) ∝ p(l0) ·
N
∏

i=0

p (di|li) ·
∏

(i,j)∈E

p (li|lj) (12)

The part detectors p (di|li) use a variant of the
shape context descriptor [75], that consists in a log-
polar histogram of locally normalised gradient orien-
tations. The feature vector is obtained by concate-
nating all shape context descriptors whose centres
fall inside the bounding box of the part. During de-
tection, different positions, scales, and orientations
are scanned with sliding windows. The classifier
used for detection is an ensemble of a fixed number
of decision stumps combined through AdaBoost [42].

3.2 Features

Each body part (or the whole image of the individual,
if no body part subdivision model is used) is typically
described using one or more different global or local
features. In this, Section, the main kinds of features
used in the literature are reviewed.

3.2.1 Global features

Global features are characteristics measured in the
whole image or body region considered, and are usu-
ally represented as a fixed-size vector of real numbers.

Probably the most widely used feature of this kind
is the global colour histogram. Given a colour image
of size N = W × H pixels, the colours of the im-
age are at first quantised into B bins 1, . . . , B. The
histogram is then constructed as the count of the
number of occurrences per bin. Typically, such count
is normalised as the fraction of pixels of the image be-
longing to the bin. Colour image pixels are typically
represented as a triplet of values, representing the
amount of colour in different colour channels (e.g.,
Red, Green and Blue). In this case, each colour chan-
nel is quantised separately. The resulting histogram
can be multi-dimensional (one dimension for each
channel), or mono-dimensional (the final histogram
is constructed as the concatenation of histograms in
each colour channel). The latter saves a lot of space
(e.g., if 16 bin are used for each colour channel, the
size of the multi-dimensional histogram would be
16 ∗ 16 ∗ 16 = 4096 bins, while the mono-dimensional
one would have a size of 48 bins) and has usually a
similar discriminant capability to the former. Var-
ious colour spaces exist in the literature. Among
them it is worth citing:

• The RGB colour space, where each colour is
represented as the corresponding amount of Red,
Green and Blue; it directly relates to the way
devices acquire and visualise colours.

• Perceptual colour spaces, i.e., spaces inspired
to the way the human brain perceives colour;
e.g., the Hue-Saturation-Value (HSV) colour
space, in which the light intensity (V channel) is
separated from the colour tonality (H channel)
and the saturation of the colour (S channel).

Good surveys on colour spaces are provided in
[102, 105]. Many appearance descriptors use global
colour histograms, to represent the whole body ap-
pearance [13, 57, 67] or the overall appearance of each
body part [6, 14, 15, 16, 36, 44, 47, 61, 84, 106, 113].
Du et al. [33] evaluated the use of colour histograms
computed in various colour spaces for building ap-
pearance descriptors for re-identification. To tackle
with the lower amount of information usually carried
by peripheral pixels (that could actually belong to
the background, as the person segmentation is usu-
ally very noisy), in [25, 36, 106] these pixels receive
less weight than those near the vertical silhouette
symmetry axis.
The colour space is typically quantised in an uni-

form fashion. However, many colour ranges can be
irrelevant for representing a certain appearance, e.g.
colours ranges that are not present in the image, or
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whose coverage percentage with respect to the image
is irrelevant. For this reason, some approaches try
first to find the most representative colour ranges,
then describe the appearance with respect to these
ones. One of the methods of [8] and the methods
of [15, 16, 60] use the Dominant Colour Descrip-
tor (DCD) (also called Representative Meta Colours
Model, RMCM) of MPEG-7, which provides a com-
pact description of the most representative colours.
Given an image, the DCD algorithm first finds the K
dominant colours [30], via k-means clustering of all
the colour triplets in the image. Then, the descriptor
is defined as

F =
{

{ci, pi}, i = 1, . . . ,K
}

(13)

where ci is the i-th dominant colour (i.e., the cen-
troid of the i-th cluster), and pi is the percentage
of image pixels that fall into the i-th cluster. A
similar approach is used also in [23], called Global
Colour Context. The method of [27] partly differs
to the former ones, although it shares with them
the same idea of describing appearance in terms of
the most important colours. Instead of finding rep-
resentative colours by clustering, they are chosen a
priori; specifically, eleven colors, usually referred to
as culture colours [26], are used: black, white, red,
yellow, green, blue, brown, purple, pink, orange, and
grey. Each pixel of the image is assigned to the most
similar cultural colour.

Colour histograms are invariant to scale and show
a good robustness with respect to partial occlusions,
if the occlusion itself is small. However, they are
sensitive to changing brightness and colour response
of the sensor. Illumination conditions in outdoor en-
vironments may consistently vary during time due to
changing weather conditions and the varying illumi-
nation of the Sun during the day. On the other hand,
lighting conditions of indoor scenes may vary from
camera to camera due to different types of lamps
(e.g., incandescent, tungsten, neon) and also due to
weather conditions in case of presence of windows
that let the Sun light enter. Colour response of the
sensors may also vary due to environmental condi-
tions and due to the automatic colour balance that
often takes place in-camera.

Different mechanisms have been exploited to ad-
dress, at least partially, the above problems. Prob-
ably the simplest one is colour normalisation [105].
The chromaticity RGB space is one of these tech-
niques, used in [19, 33, 104], and consists of dividing
each colour channel of each pixel by the sum of all
the channels of that pixel, e.g. R′ = R/(R+G+B).

Another common technique is the Grey-world nor-
malisation [21], which relies on the assumption that
the average colour of a scene is usually a tonality of
grey. It consists of dividing each RGB channel of ev-
ery pixel by the average value of that channel in the
image, e.g. R′ = R/mean(R). Grey-world normal-
isation is used in [103, 104]. Similar to Grey-world
is the affine normalisation used in [19, 103, 104],
where pixel-values of each color channel are nor-
malised independently by subtracting the average
and scaling them with the standard deviation, e.g.
R′ =

(

R−mean(R)
)

/ std(R).

Alternative to colour normalisation is histogram
equalisation [40], which is used in the re-identification
methods of [9, 103, 104]. It is based on the as-
sumption that a change in illumination preserves
the rank ordering of sensor responses (i.e. pixel val-
ues). The rank measure for the i − th bin of the
histogram and the k-th colour channel is defined as
Mk(i) =

∑i
u=0Hk(u)/

∑N
u=0Hk(u), where N is the

number of bins and Hk() is the histogram relative to
the k-th channel.

Finally, Piccardi and Cheng [83] exploited a colour
quantisation scheme to mitigate the effect of illumi-
nation changes between cameras. They represent
the image with a Major Colour Spectrum Histogram
(MCSH), that is, an histogram of the top N repre-
sented colour values in the image.

Another problem of histograms is that they do
not retain any information on the spatial disposition
of colours. A simple way to incorporate the spatial
information is to add the relative pixel height (i.e.
the ratio between the vertical coordinate of the pixel
and the total height of the silhouette) as another
channel of the image2. A colour-position histogram
can be then built which is able to spatially localise the
colour distribution [19, 103, 104]. A similar approach
is used also in [61], where two dimensions are added
to each pixel (i.e. the radial and angular distance to
the torso center) and quantised. The Color Structure
Descriptor (CSD) of MPEG-7 [71] is used in [50], and
encodes the distribution of colour by the following
steps: (i) move a window of size 8× 8 pixel over the
picture ; (ii) determine which colours are present in
within the window; (iii) increase the corresponding
bins in a color histogram by one, independently of
the number of pixels of these colors.

Instead of looking at colour properties, other kinds
of global features try to characterise gradients, tex-
tures and repeated patterns of the whole body ap-

2The horizontal coordinate of the pixel is typically not used,
as it is not robust to body rotations and viewpoint changes.
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pearance or of each body part. Gabor filters [76]
ans Schmid filters [95] are orientation-sensitive fil-
ters that capture texture and edge informations on
the image. The former ones are aimed at detecting
horizontal and vertical lines, while the latter ones
detect circular gradient changes. They are used in
various appearance descriptors [47, 67, 69, 84, 113]
in conjunction with other colour-related features.

Hahnel et al. [50] compared various different tex-
ture features. The fist is the 2D Quadrature Mirror
Filter (QMF), a well known filter in signal process-
ing that splits a 2D input signal into two bands
(high and low-pass) in each direction (horizontal,
vertical and diagonal. The second is the Oriented
Gaussian Derivatives (OGD) filter, based on steer-
able Gaussian filters. Also, two MPEG-7 texture-
related descriptors, are used the Homogeneous Tex-
ture Descriptor (HTD) that uses Gabor filters, and
the Edge Histogram Descriptor (EHD), basically an
histograms of the directions of each edge pixel in the
image [99].

It is worth pointing out that texture-based features
have always been used in combination to colour-
based ones. Information on repeated patterns is in
fact likely to be not distinctive enough when used
alone. Hahnel et al. [50] confirmed this thought,
and showed also that the combination of colour and
texture-based descriptors may lead only to minor
performance improvements.

3.2.2 Local features

The term local feature refers to an appearance char-
acteristic of a small portion of the image (e.g., the
neighbourhood of a pixel). The regions where local
features are extracted can be chosen in various way
(e.g. by dense sampling, by an interest operator or
at random). Each small region is described by a
feature vector (e.g., an histogram). This lead to a
representation of the image as as a bag (set) of local
features.

Interest points are one important category of local
features. The most famous among them is SIFT
(Scale Invariant Feature Transform) [68], where at
first salient points of the image are chosen via in
interest operator that looks for “stable” locations in
the image (i.e. locations that are identifiable over
different scales and rotations). This operation is
carried out by detecting scale-extrema locations in
the scale space of scale σ, which is defined by the
function

L(x, y, σ) = N (x, y, σ) ∗ I(x, y) (14)

where ∗ is the convolution operation in the image
coordinates x and y, andN (x, y, σ) is a 2-D Gaussian
with standard deviation σ. Stable key-points can be
detected in this space e.g. by using difference-of-
Gaussians functions convolved with the image:

D(x, y, σ) =
(

N (x, y, kσ)−N (x, y, kσ)
)

∗ I(x, y) =

L(x, y, kσ)− L(x, y, σ)
(15)

To detect the local minima and maxima of
D(x, y, σ), each point (x, y) is compared with its
8 neighbours at the same scale kσ, and its 9 neigh-
bours in the two scales (k− 1)σ and (k+1σ). If this
value is the minimum or maximum of all these points,
then this point is an extrema, and it is labelled as
key-point. A subsequent stage filters out low-contrast
and noisy points. The remaining key-points are de-
scribed as a histogram of the edge orientations of
a small window centred on the key-point. SIFT
points or its variants, (e.g., Speeded-Up Robust Fea-
tures, SURF [12]) are used in various appearance
descriptors to represent the whole body appearance.
Interest point are typically chosen via interest opera-
tors [29, 51, 52, 60, 69, 72, 73] but some works exist
(e.g.,[111]) that adopt dense sampling instead.

Other approaches use different kinds of local fea-
tures.

Maximally Stable Colour Regions (MSCR) [41]
are used in [25, 36, 69]. The MSCR algorithm first
detects a set of regions in the image (Fig. 6-a) by us-
ing a constrained agglomerative clustering on image
pixels, which show the maximal chromatic distance.
The detected regions are then described by their area,
centroid, second moment matrix and average color,
forming 9-dimensional feature vectors, and are stable
to scale and affine transforms.

Recurrent Highly-Structured Patches (RHSP) used
in the method of [36], try instead to capture repeated
patterns and textures of the clothing appearance.
The procedure of creating RHSPs is as follows. First,
random and possibly overlapping small patches are
extracted from the image. Patches that do not carry
texture informations (e.g. showing uniform colours)
are discarded by thresholding the patch entropy, com-
puted as the sum of the entropy of each colour chan-
nel. Remaining patches are then further filtered,
keeping only those that exhibit invariance to rota-
tions. Second, the recurrence of each patch is eval-
uated, via Local Normalised Cross-Correlation over
a small local region containing that patch. Third,
patches that show a high degree of recurrence are
clustered, maintaining for each final cluster the patch
nearest to the centroid. These patches are finally
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Figure 6: (a) Maximally Stable Colour Regions [41] de-
tected in two images showing the same pedes-
trian. (b) Steps of the extraction of RHSP:
random extraction, rotational invariance check,
recurrence check, entropy thresholding, clus-
tering. The final result of this process is a set
of patches (in this case only one) characteris-
ing repeated patterns of each body part of the
individual. Figures taken from [36].

described as their Local Binary Pattern histogram
[81], a simple yet efficient way to describe textured
content, based on a per-pixel transform that encodes
small-scale appearance structures.

Instead of using interest operators like the one
defined by Eqs.(14)-(15), or other proper selection
criteria to choose where to extract a local feature,
in [47], a set of strips of fixed height and position
are extracted from the image, and described by a
concatenation of colour histograms in different colour
spaces and Gabor and Shmid filters. Similarly, in [55]
partly overlapping rectangular patches of fixed size
are sampled from the image following a pre-defined
regular grid. Each patch is represented by its colour
histogram in the HSV colour space, and by its LBP
histogram to capture textures and repeated patterns.
An analogous approach is also used in [111], except
for the fact that patches are not overlapping. Finally,
instead of using regular sampling, one could sample
patches at random, an approach followed for instance
in [93].

To reduce the dimensionality of local features-
based descriptors, in [89, 91] a dissimilarity approach
has been introduced [82]: a bag of local features is
turned into a dissimilarity-vector that encodes the
degree of similarity to a set of predefined prototype
local features. Prototypes are found by clustering
local features extracted from a design set of images
of people. In case a part-based body model is used,
memberships to body parts are kept and each body
part is represented via a dedicated dissimilarity vec-
tor. The same dissimilarity-based descriptor was

then used in [90, 92, 94], also for tasks different that
person re-identification.

3.3 Combination of features and matching

Many person re-identification methods use appear-
ance descriptors made up of only one kind of features
among the above mentioned ones, typically based
on colour or interest points [6, 8, 15, 16, 19, 23, 27,
44, 51, 52, 61, 72, 73, 103, 104]. However, as com-
bining different sources of information usually helps
in attaining a better performance, especially when
sources are complementary (i.e. they look at different
aspects of the appearance, e.g. colour and texture),
many authors have defined descriptors that use a
combination of features.

In principle, two main combination techniques can
be exploited to this aim [87]:3

1. feature-level fusion: if the features used are made
up of a single vector of fixed size (e.g. global fea-
tures, or local features with an intrinsic ordering)
they can be combined simply by concatenating
feature vectors;

2. score-level fusion: a distinct detector/matcher
is used for each feature, and their real-valued
scores are combined (e.g., by averaging them, or
using their maximum value).

The first approach is followed for instance in [33,
55, 106]. The second approach requires to define a
proper fusion rule. Many methods used a weighted
average of the partial scores attained with each single
feature, where weights are fixed a-priori by the sys-
tem designer [13, 14, 25, 36]. Another approach is to
learn a proper metric or a set of weights from a train-
ing set. In [47], AdaBoost[42] is used to this aim:
each feature set is associated to a weak two-class
classifier (a decision stump) which discerns between
the class 0 (identities differ) and 1 (identity is the
same) based only in that feature set. The method of
[84] tries to find a linear function to weight the abso-
lute difference of samples by training an ensemble of
RankSVM rankers [59] given pairwise relevance con-
straints. The Probabilistic Relative Distance Com-
parison (PRDC) technique of [113] maximises the
probability that a pair of true match has a smaller
distance than that of a wrong match. The output

3In verification tasks, whose goal is to establish whether the
claimed identity is true, combination can also be performed
at decision level, i.e., by combining the crisp outputs of
classifier/detectors. It can not be applied to person re-
identification, which is a recognition task instead.
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(a) (b)

Figure 7: (a) Two sequences of aligned foreground sil-
houettes. (b) Their corresponding Gait Energy
Image. Figures taken from [53].

is an orthogonal matrix which essentially encodes
the global importance of each feature. In [69] a pair-
wise metric is learned through a recently proposed
method, Pairwise Constrained Component Analysis
(PCCA) [74], which learns a projection into a low-
dimensional space where the distance between pairs
of data points respects the desired constraints.

Metric learning and similar approaches always help
in boosting re-identification performance. However,
it is worth to note that all the above methods require
a training set of labelled data. Such set can be for
instance the gallery of templates. This requires that
the template gallery is fixed, i.e. templates cannot
be added during system operation; such constraint
might be too strong for real-world application sce-
narios.

4 Other cues

Some cues alternative to the clothing appearance
have been exploited in the literature to perform per-
son re-identification or assimilable tasks. Despite
the intrinsic limitations of such cues, they could be
potentially of help in certain conditions, possibly
combined with appearance cues.

Human gait, i.e. the recurrent pattern of motion
of a person walking, is among these cues. In cogni-
tive science, it is known to be one of the cues that
humans exploit to recognise people [100]. Among the
approaches to characterise gait, the recently proposed
Gait Energy Image (GEI) [53] has attracted the at-
tention of many researchers. Here, the gait signature
is formed by by normalising, aligning and averaging
a sequence of foreground silhouettes corresponding
to one “walking period” (see Fig. 7). Principal Com-
ponent Analysis (PCA) is then used to reduce the
dimensionality of the signature.

The use of Gait Energy Image can lead to high
recognition rates [107] and can overcome one of the
main limitations of clothing appearance-based ap-
proaches, that is, the impossibility of distinguishing

people when their clothing changes between observa-
tions. It is also not directly affected by illumination
changes. However, it requires perfect alignments of
the silhouettes to be compared, and is sensible to
segmentation errors. These two constraints severely
limit the use of GEI-based methods on practical,
real-world applications. Researchers have therefore
attempted to explore other approaches. Zhao et
al. [110] and more recently Gu et al. [48] used a
3D skeletal representation, that however requires
multiple overlapping camera views or a constrained
environment to construct and track it.

Some authors attempted instead to perform remote
face recognition [78], that is, face recognition with low
resolution images. As low resolution face images are
not directly usable for recognition, many approaches
attempted to address the problem through the obvi-
ous way of trying to increase image resolution, using
super-resolution techniques [49, 54, 58, 96]. Other au-
thors proposed instead techniques that work directly
on low resolution images, by exploiting metric learn-
ing [65, 66], multidimensional scaling [18], or multiple
frames from video sequences [5]. All the approaches
above could in principle be used in conjunction with
appearance cues to increase re-identification accuracy
when the face is visible.

Another useful set of soft cues is anthropometry,
that is, the characterisation of individuals through
the measurement of physical body features [86], e.g.,
height, arm length, and eye-to-eye distance. Mea-
sures are typically taken according to a number of
body landmark points (e.g., elbows, hands, knees,
feet), that have to be localized either automatically
or manually. In the classic study by Daniels and
Churchill [28], the uniqueness of 10 different anthro-
pometric traits was evaluated on a large data base of
4063 individuals. None of the considered traits was
found to be “average” (i.e., approximately close to
the mean point), considering all 10 dimensions. Fur-
thermore, only 7% of the individuals were “average”
in 2 dimensions, and 3% in 3 dimensions.

Although the use of anthropometric measurements
for person recognition has been proposed in many
works, their extraction was often based on costly de-
vices, like 3D laser scanners, and/or require user col-
laboration in a constrained environment [45, 77, 80].
In some works, anthropometric measurements are
extracted from a single RGB camera view, instead.
In [11] a method that does not require camera cali-
bration was proposed, for simultaneously estimating
anthropometric measurements and pose. However,
the former are measured up to a scale factor, and con-
sequently can not be used to directly compare individ-
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Figure 8: (a) The 20 skeletal points tracked by the Kinect
SDK in the classical representation of the Vit-
ruvian Man. (b–d) Examples of the pose es-
timation capabilities of the Kinect SDK. De-
pending on the degree of confidence of the esti-
mation of the points position, the Kinect SDK
distinguishes between good (in green) or in-
ferred (in yellow) points, the latter being less
reliable than the former.

uals in images acquired by different cameras. Calibra-
tion is not required in [1] as well, although 13 body
landmarks have to be manually selected, from an im-
age of an individual in frontal pose. Other methods
focus on height measurement only [17, 43, 63, 64, 70],
but require camera calibration to estimate absolute
height values. Interestingly, in [70] height is used as
a cue for the task of associating tracks of individuals
coming from disjoint camera views, which is actu-
ally the same re-acquisition task that is enabled by
person re-identification.

None of the above works fits the typical setting of
person re-identification tasks, which is characterised
by multiple, uncalibrated cameras and unconstrained
environment, with free poses and non collaborative
users. Recently, it has been shown that body pose
can be reliably estimated in real-time by exploiting
RGB-D sensors [97, 101], like the MS Kinect, a de-
vice recently introduced in the video-gaming market.
The pose estimation functionality of Kinect SDK
[62], which is based on a similar method, provides
the absolute position (in meters) of 20 different body
joints in real-time, with high reliability (see Fig. 8).
Detecting joint positions enables the evaluation of
several anthropometric measures. In [10] such joints
were used to extract a set of different anthropometric
measures from front or back poses: distance between
floor and head, ratio between torso and legs, height,
distance between floor and neck, distance between
neck and left shoulder, distance between neck and
right shoulder, and distance between torso center
and right shoulder. Other three geodesic distance
measures were estimated from the 3D mesh of the ab-
domen, obtained from the Kinect depth map: torso

center to left shoulder, torso center (located in the
abdomen) to left hip, and between torso center to
right hip. Results reported in [10] appear promising.
However, many of the considered anthropometric
measures are hard or impossible to extract from un-
constrained poses. For instance, extracting measures
from 3D mesh requires near-frontal pose (abdomen is
hidden in back pose); neck distance to left and right
shoulders becomes hard to compute from lateral pose,
even using a depth map, and requires to distinguish
between left and right body parts. Such issues limit
the actual set of anthropometric measures that can
be used in realistic scenarios.

5 Conclusions

This paper provided a survey of current approaches
and methods for constructing appearance descriptors
for person re-identification. State-of-the-art descrip-
tors have been reviewed from two different view-
points, namely the kind of body model and the kind
of features used to represent a person. We tried to
provide a comprehensive analysis and description of
the algorithms in a structured and consolidated way.
We hope that this work will be a useful reference for
anyone in the research community willing to work
on this interesting and challenging topic.
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