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Abstract. To more accurately separate each pulmonary nodule from
its background in a low dose computer tomography (LDCT) chest im-
age, two new adaptive probability models of visual appearance of small
2D and large 3D pulmonary nodules are used to control evolution of de-
formable boundaries. The appearance prior is modeled with a translation
and rotation invariant Markov-Gibbs random field of voxel intensities
with pairwise interaction analytically identified from a set of training
nodules. Appearance of the nodules and their background in a current
multi-modal chest image is also represented with a marginal probability
distribution of voxel intensities. The nodule appearance model is isolated
from the mixed distribution using its close approximation with a linear
combination of discrete Gaussians. Experiments with real LDCT chest
images confirm high accuracy of the proposed approach.

1 Introduction

Because lung cancer is the most common cause of cancer deaths, fast and
accurate analysis of pulmonary nodules is of major importance for medical
computer-aided diagnostic systems (CAD). In [I] we introduced a fully auto-
matic nodule detection algorithm showing the accuracy up to 93.3% on the
experimental database containing 200 real LDCT chest data sets with 36,000
2D slices. Below we focus in the next CAD stage, namely, on accurate segmenta-
tion of the detected nodules for subsequent volumetric measurements to monitor
how the nodules change in time.

We use a two-step procedure to separate the nodules from their background:
(4) an initial LDCT slice is segmented with algorithms introduced in [2] to isolate
lung tissues from surrounding structures in the chest cavity as shown in Fig. [l
and (i) the nodules in the isolated lung regions are segmented by evolving
deformable boundaries under forces that depend on the learned current and prior
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Fig. 1. Step 1 of our segmentation approach (e.g., [2]): an LDCT slice (a) with isolated
lungs (b), and (c) the normalized segmented lung image

appearance models. At Step 1 each LDCT slice is modelled as a bi-modal sample
from a simple Markov—Gibbs random field of interdependent region labels and
conditionally independent voxel intensities (gray levels). This step is necessary
for more accurate separation of nodules from the lung tissues at Step 2 because
voxels of both the nodules and other chest structures around the lungs are of
quite similar intensity.

Previous work. At present, segmentation of pulmonary nodules is under ex-
tensive studies. Typical conventional techniques are based on fitting a Gaussian
model to empirical data [3] but this approach becomes a challenge when initial
measurements are corrupted with outliers and margin-truncation due to neigh-
boring structures. Okada et al. [4] proposed an anisotropic intensity model fitting
with analytical parameter estimation. Zhao et al. [5] and Kostis et al. [6] pro-
posed to segment 2D and 3D nodules based on thresholding the voxel intensity.
Their algorithms accurately segment well-defined solid nodules with similar av-
erage intensities but become unreliable on the cavity or non-solid nodules. Our
segmentation overcomes these drawbacks due to using at Step 2 de-
formable boundary models such that their evolution is controlled by
both a learned prior probability model of the visual nodule appearance
and an adaptive appearance model of the nodules in a current image
to be segmented.

Basic notation. Let (z,y, z) denote Cartesian coordinates of points in a finite
arithmetic lattice R = [(z,y,2) : ¢ = 0,...,. X — 1L,y = 0,...,Y — 1,z =
1,...,Z — 1]. It supports a given 3D grayscale image g = [gz.4.- : (2,9,2) €
R; gs,y.» € Q] with gray levels from a finite set Q = {0,...,Q — 1} and its region
map m = [mg . : (2,y,2) € Rymg,, . € L] with region labels from a finite set
L = {nd, bg}. Each label my , . indicates whether the pixel (z,y, z) in the corre-
sponding data set g belongs to the goal object (pulmonary nodule), m , » = nd,
or to the background, mg . = bg. Let b = [Py : k = 1,..., K] be a deformable
piecewise-linear boundary with K control points Py = (xy, yk, 21). The index k
can be considered as a real number in the interval K indicating continuous posi-
tions around the boundary, e.g. K = [1, K] for the positions from P; to Pg.

Conventional deformable model. moves in the direction that minimizes a
boundary energy F such as e.g. in [7]:
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B = Bu+ Bos = | (6 (5(P1) + €oxt (b(P1) d (1)
kEK
where &in, (b(Py)) and Eext (b(Py)) are internal and external forces, respectively.
In this paper we present a new class of the the external energy that guided
the evolution of deformable model based on two new probability models that
roughly describe the prior and current visual appearance of the nodules.

2 Data Normalization

To account for monotone (order-preserving) changes of signals (e.g. due to dif-
ferent illumination or sensor characteristics), for each segmented data set, we
will calculate the occurrence histogram, then we normalize the segmented data
set to make ¢mq = 255 for each segmented data set, (e.g see Fig.[Ilc)).

3 MGRF-Based Prior Appearance Model

To exclude an alignment stage before segmentation, the appearance of both small
2D and large 3D nodules is modeled with a translation and rotation invariant
generic MGRF with voxel-wise and central-symmetric pairwise voxel interaction
specified by a set N of characteristic central-symmetric voxel neighborhoods
{n, : v € N} on R and a corresponding set V of Gibbs potentials, one potential
per neighborhood.
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Fig. 2. Central-symmetric 2D (a) and 3D (b) neighborhoods for the eight distance
ranges [dy,min =V — 0.5, dy,max = v + 0.5); v € N ={1,...,8} on the lattice R

A central-symmetric voxel neighborhood n, embraces all voxel pairs such that
(z,y, z)-coordinate offsets between a voxel (z,y,z) and its neighbor (2/,y’, 2")
belong to an indexed semi-open interval [dy min, dvmax); ¥ € N C {1,2,3,...} of
the inter-voxel distances: d, min < \/(x -2+ (y—y)2+ (2 — 2)? < dy max-
Figure [ illustrates the neighborhoods n, for the uniform distance ranges [v —
0.5,v+0.5); ve N={1,...,8}.

The interactions in each neighborhood n, have the same Gibbs potential
function V,, of gray level co-occurrences in the neighboring voxel pairs, and the
voxel-wise interaction is given with the potential function Vi of gray levels in
the voxels:

V = [Voox = [Veox(9) : ¢ € Q5 { V. = [Vu(0.4) : (4.4') € Q*] : v €N}]
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Model identification. Let Ry = {(z,y,2) : (z,y,2) € R A Mmyzy. =
nd} and C,; denote the part of the 3D lattice R supporting the training
nodules in the image-map pair (g;, m;) € S and the family of voxel pairs
in R? with the co-ordinate offsets (£,7,7) € n,, respectively. Let Fyox ¢ and
F,: be a joint empirical probability distribution of gray levels and of gray
level co-occurrences in the training nodules from the image g;, respectively:
Fvox,t = [fvox,t(q) = |ﬁ{tq|la ZqEQ fvox,t(q) - ]-] and FV,t - [fu,t(Q7q/) =

C, tia.q
| Cotl |3Z(q,q/)eQ2 foa(a,q") = 1] where Ry g = {(z,y,2) : (z,9,2) € Re A

9zy,> = ¢} is a subset of voxels supporting the gray level ¢ in the train-
ing nodules from the image g; and C, .4,y is a subfamily of the voxel pairs
cenq(T,y,2) = ((m,y,2), (x + &,y +n,2+7)) € R? supporting the gray level
co-occurrence (g, ¢’) in the same nodules, respectively.

The MGRF model of the t-th object is specified by the joint Gibbs probability
distribution on the sublattice R;:

P = th eXp (Rt (VonFvox,t + Z pu,tV;th/,t)> (2)
veN
where p, = |C,,|/|R4| is the average cardinality of the neighborhood n, with
respect to the sublattice R;.

To simplify notation, let areas of the training nodules be similar, so that
R ~ Rng and |C, ;| = Cypng for t = 1,...,T, where Rng and C, g are the
average cardinalities over the training set S. Assuming the independent samples,
the joint probability distribution of gray values for all the training nodules is as

follows:
1
Ps = 7 exp (TRnd (VIQXFVOX + EEN pyVIFu>>

where p, = C) ndg/Rnd, and the marginal empirical distributions of gray levels
Fyox,nd and gray level co-occurrences F,, ng describe now all the nodules from the
training set. Zero empirical probabilities caused by a relatively small volume of
the training data available to identify the above model are eliminated if fractions
defining the empirical probabilities in terms of cardinalities of the related sublat-
tices or subfamilies are modified as follows: ((nominator) + ¢)/({denominator) +
Se). With the Bayesian quadratic loss estimate, e = 1 and S = @ for the first-
order or S = @Q? for the second-order interactions.

Using the analytical approach similar to that in [2], the potentials are approx-
imated with the scaled centered empirical probabilities:

Vvox,nd(Q) =A fvox,nd(Q) - é) ; <Q) €eQ;
Vind(4,q") = A fonala,q') — le) i(0.4') € Q%reN

3)

where the common factor A is also computed analytically. It can be omitted
(A =1) if only relative potential values are used for computing relative energies
E, e of the central-symmetric pairwise voxel interactions in the training data.
The energies that are equal to the variances of the co-occurrence distributions:
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Eu,rel = Z fu,nd (Qa q/) (fl/,nd (Qa q/) - ég)

7,9'€Q?

allow for ranking all the central-symmetric neighborhoods n, and selecting the
top-rank, i.e. most characteristic ones N’ C N to include to the prior appearance
model of Eq. @)). Under the model, any grayscale pattern within a deformable
boundary b in an image g is described by its Gibbs energy

E(g,b) = Von,ndFVOX,nd(g b) + Z V;r,ndFV,nd(ga b) (4)
veN’

where N’ is an index subset of the selected top-rank neighborhoods, and the
empirical probability distributions are collected within the boundary b in g.

4 LCDG-Based Current Appearance Model

The visual appearance of nodules in each current data set g to be segmented
typically differ from the appearance of the training nodules due to non-linear in-
tensity variations from different data acquisition systems and changes in patient
tissue characteristics, radiation dose, scanner type, and scanning parameters.
This is why, in addition to the appearance prior learned from the normalized
training nodules, we model the marginal gray level distribution within an evolv-
ing boundary b in g with a dynamic mixture of two distributions for current
candidates for nodules and their background, respectively. The mixture is closely
approximated with a bi-modal linear combination of discrete Gaussians (LCDG)
and then partitioned into the nodule and background LCDGs. The approxima-
tion is performed with the modified EM-based approach in [2].

5 Boundary Evolution Using Two Appearance Models

The following external energy term in Eq. () combines the learned prior and
current appearance models to guide an evolving boundary in a way such that
maximizes the energy within the boundary:

Sext (D(Pr = (2,,2))) = —Pvox,nd(9r.y,2)Tp (9a,y.2/S) (5)

where pyox.nd(q) is the marginal probability of the gray level ¢ in the LCDG
model for the nodules, arteries, and veins (see Section H) and 7p(g|S) is the
prior conditional probability of the gray level ¢, given the current gray values in
the characteristic central-symmetric neighborhoods of Py, for the MGRF prior
model in Section Bt

exp (Ep(gs,y,2|S
WP(gw,y,z|S) _ ( P( Y ))

Y exp(Ep(qlS))
7€Q
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where Ep(g|S) is the voxel-wise Gibbs energy for a gray level ¢ assigned to
P and the current fixed gray levels in all neighbors of P in the characteristic
neighborhoods n,; v € N:

EP (Q|S) = Vvvox,nd (Q) +Z Z (Vy,nd (gx—g,y—n,sz q) +Vu,nd <Q7 g$+§,y+n,z+’7))
veN(¢,n,y)En,

The boundary evolution in each 2D section with the fixed z-coordinate termi-
nates after the total energy E, of the region r C R inside the boundary b does
not change:

Er - Z EP(gx,y,z|S) (6)

VP=(z,y,z)Er
The deformable boundary b evolves in discrete time, 7 =0,1,...,T, as follows:

1. Initialization (7 = 0):

(a) Initialize a boundary inside a nodule (e.g. automatically as in [2]).

(b) Using voxels within and outside the initial boundary, estimate the cur-
rent “nodule” and “background” LCDGS Pyox,nd and Pyox,bg-

2. Evolution (7 «— 7+ 1):

(a) Calculate the total energy of Eq. (B) within the current boundary b..

(b) For each control point Py on the current boundary, indicate the exterior
(=) and interior (+) nearest neighbors with respect to the boundary.

(¢) For each (+)-point, calculate the total energy of Eq. () for each new
candidate for the current control point.

(d) Select the minimum-energy new candidate.

(e) Calculate the total energy of Eq. (B) within the boundary that could
have appeared if the current control point has been moved to the selected
candidate position.

(f) If the total energy increases, accept this new position of the current
control point, otherwise for each (—)-point, calculate the total energy of
Eq. (@) for each new candidate for the current control point.

(g) Select the minimum-energy new candidate.

(h) Calculate the total energy of Eq. (@) within the boundary that could
have appeared if the current control point has been moved to the selected
candidate position.

(i) If the total energy increases, accept this new position of the current
control point.

(j) Otherwise do not move the current control point because it is already
located on the edge of the desired nodule.

(k) Mark each voxel visited by the deformable boundary.

(1) If the current control point moves to the voxel visited earlier, then find
the edge formed by the already visited voxels and use the edge points as
the new control points of the deformable boundary.

(m) If the new control points appear, interpolate the whole boundary using
cubic splines and then smooth its control points with a low pass filter.

(n) If the total energy within the boundary does not change, terminate the
process; otherwise return to Step
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6 Experimental Results and Conclusions

The proposed segmentation algorithm was tested on a database of clinical mul-
tislice 3D chest LDCT scans of 29 patients with 0.7 x 0.7 x 2.5 mm? voxels that
contains 350 nodules, in particular, 150 solid nodules of larger than 5 mm in
diameter, 40 small solid nodules of less than 5 mm diameter, 10 cavity nodules,
61 nodules attached to the pleural surface, and 89 largely non-spherical nodules.
The diameters of the nodules range from 3mm to 30mm.

S (d)
Fig. 3. 3D segmentation of pleural attached nodules; results are projected onto 2D axial
(A), coronal (C), and saggital (S) planes for visualization: 2D profile of the original
nodule (a), pixel-wise Gibbs energies (b) for v < 11, our segmentation (c), and (d) the
radiologist’s segmentation.

Figure B illustrates results of segmenting pleural attached nodules shown by
axial, sagittal, and coronal cross sections. The pixel-wise Gibbs energies in each
cross section are higher for the nodules than for any other lung voxels including
the attached artery. Therefore, our approach separates accurately the pulmonary
nodules from any part of the attached artery. The evolution terminates after 50
iterations because the changes in the total energy become close to zero. The error
of our segmentation with respect to the radiologist “ground truth” is 1.86%.

(d)

Fig. 4. 2D segmentation of cavity nodules: (a) 2D profile of the original nodule, (b)
pixel-wise Gibbs energies for v < 11, (c¢) our segmentation, and (d) the radiologist’s
segmentation

The main advantage of our approach over the existing algorithms is in the
more accurate segmentation of thin cavity nodules, i.e. the nodules that appear
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only in a single slice. Experimental results in Fig. Ml show that the error of our
segmentation with respect to the radiologist is 2.1%. It is worthy to note that all
the existing approaches fail to segment this cavity nodule because it is totally
inhomogeneous. Figure [ presents more segmentation results obtained by our al-
gorithm. In total, our segmentation of the 350 nodules has an error range of 0.4%
- 2.35% with a mean error of 0.96%, and a standard error deviation of 1.1%.

Fig. 5. Our segmentation for five more patients

We introduced a new method to accurately segment small 2D and large 3D
pulmonary nodules on LDCT chest images. In our approach, the evolution of
a deformable model is controlled with probability models of visual appearance
of pulmonary nodules. The prior MGRF model is identified from a given train-
ing set of nodules. The current appearance model adapts the control to each
bi-modal image of lung regions to be segmented. Both the models are learned
using simple analytical and numerical techniques. Experiments with real LDCT
chest images confirm high accuracy of our segmentation with respect to the radi-
ologist’s ground truth. Our segmentation outperforms other existing approaches
for all types of nodules, in particular, for cavity nodules where other existing
approaches fail.
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