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We have measured how color appearance of square-wave bars varies with stimulus strength and spatial fre-
quency. Observers adjusted the color of a uniform patch to match the color appearance of the bars in square-
wave patterns. We used low-to-moderate square-wave patterns, from 1 to 8 cycles per degree (c/deg). The
matches are not photoreceptor matches but rather are established at more central neural sites. The signals at
the putative central sites obey several simple regularities. The cone contrast of the uniform patch is propor-
tional to square-wave stimulus strength (color homogeneity) and additive with respect to the superposition of
equal-frequency square waves containing different colors (color superposition). We use the asymmetric matches
to derive, from first principles, three pattern-color-separable appearance pathways. The matches are ex-
plained by two spectrally opponent, spatially low-pass mechanisms and one spectrally positive, spatially band-
pass mechanism. The spectral mechanisms that we derive are similar to luminance and opponent mechanisms
that are derived with entirely different experimental methods.

1. INTRODUCTION

We report the results of experiments designed to measure
how color appearance depends on spatial pattern. Sub-
jects set full color matches between a 2-deg box pattern
and individual bars in square-wave patterns. The square-
wave spatial frequencies ranged from 1 to 8 cycles per
degree (c/deg). We used square-wave patterns with a
wide range of stimulus strengths and colors.

Two qualitative observations stand out. First, spatial
patterns of moderate- and high-spatial-frequency patterns
appear mainly light-dark, with little color saturation.
This observation plays an important role in the determi-
nation of the color bandwidth compression in broadcast
television and compression in digital image coding.1 2 Our
data quantify the phenomenon.

Second, the spatially asymmetric color appearance
matches are not photopigment matches. For example,
moderate-frequency square-wave patterns (4 and 8 c/deg)
cannot stimulate the short-wavelength receptors signifi-
cantly because of axial chromatic aberration. Yet subjects
match the bars in these patterns with a stimulus that con-
tains considerable short-wavelength-receptor contrast.
The asymmetric color matches are established at neural
sites central to the photoreceptors.

The measurements reveal two quantitative properties of
the asymmetric matches. First, the cone contrasts of the
square wave and of the matching box remain proportional
over a large range of stimulus strength. Second, the
asymmetric color matches satisfy the principle of super-
position with respect to color mixtures of the square
waves. When the bar of a square wave of color sl matches
the box ml and a bar of a square wave of color S2 matches
a box M 2 , then the bar of a square wave of color sl + S2

matches the box ml + M 2 . Since our data are not
photoreceptor matches, this linearity must reflect a linear
representation at central neural sites.

Finally, we analyzed the data by using a pattern-color-

separable model. Suppose that the input pattern is repre-
sented as a neural image on three different pathways, and
further suppose that the color appearance of the uniform
box and the square-wave bar match when the correspond-
ing locations in the neural images match. Our data are
consistent with the hypothesis that neural-image values
are equal to the product of three terms: the pathway's
sensitivity to the spatial pattern, the pathway's sensitivity
to the square wave's color, and the stimulus strength.

We estimated the spatial and spectral tuning of the
three pathways both with respect to the image at the
cornea and with respect to an estimate of the image at
the retina. The color-sensitivity estimates remain un-
changed whether we use the corneal or the retinal calcula-
tions. In both cases we infer one broadband and two
opponent-color pathways. The pattern-sensitivity esti-
mates at the cornea and at the retina differ greatly, sug-
gesting that much of the loss of spatial contrast sensitivity
is due to axial chromatic aberration.

Our results arrive at a time when the conflicting results
in qualitative analyses of color-mechanism properties that
use adaptation have led some authors to suggest the
existence of a wide multiplicity of cortical color mecha-
nisms.3 4 To explain our asymmetric color-matching re-
sults, however, we do not need to go beyond a parsimonious
three-pathway model.

2. METHODS

A. Experimental Task
Two women with normal color vision (Ishihara plates5 )
and corrected spatial vision (6/6) served as subjects in our
experiment. The subjects viewed the screen from 1.82 m.

Throughout the experiment the monitor displayed a
neutral, 5-deg uniform background. The test patterns
were horizontal square-wave patterns, subtending 2 deg,
superimposed upon the uniform background. Subjects
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compared the color appearance of one of the bars in the
test pattern and a uniform 2-deg-square matching box.
Subjects initiated serial presentation of the stimuli, which
always consisted of the test pattern, a half-second pause,
and then the matching box. Stimulus signals were in-
creased and decreased smoothly with a Gaussian temporal
envelope (ov = 140 m, duration = ±3.5o). Subjects re-
viewed the stimulus patterns and continued to adjust the
matching box until they were satisfied that they had ob-
tained a complete perceptual match.

During the 8 months of the experiment, each subject
made more than 720 match settings. They set at least
two matches to the two bars in square-wave patterns of
nine different colors, four stimulus-strength levels, and
four different spatial patterns. Subjects also set control
matches between uniform boxes for all nine color pairs
and strength levels (2 X 2 9 X 4 X 5). The test pat-

terns included color signals that appeared white-black,
red-green, greenish-purple, yellow-blue, and orange-
light blue when presented in a uniform field.

B. Stimulus Representation

For many of our calculations we represent the square-wave
colors in a color space defined by the Smith-Pokorny 6' 7

cone fundamentals, LMS. We use a version of the cone
fundamentals in which each spectral responsivity is nor-
malized to a peak value of 1.0. The uniform-background
LMS coordinates are (7.67,7.20,6.31). These three values
are proportional to the rate of the photopigment absorp-
tions created by a uniform field in the three cone classes
for a standard observer. 8

We represent the matching box and square waves as
three-dimensional vectors. Each entry in the vector
specifies the percent modulation of a cone type with re-
spect to the uniform background, s = (AL/L, AM/M, AS/S).
This is the color representation in cone-contrast space.
In Table 1 we list the color representation of the square-
wave gratings in cone-contrast space, and we describe the
color appearance of a uniform box with the same color

representation.
It is convenient to define two additional terms to repre-

sent the stimulus. First, we define the square-wave
stimulus strength to be the vector length of the square-
wave color representation in cone-contrast space:

Ilsil = [(AL/L)2 + (AM/M) 2 + (AS/S)2 ]1"2 (1)

Second, we define the color direction of a square wave to

be the corresponding unit length vector in cone-contrast
space, slsll. Specifying the square-wave color direction
and stimulus strength is equivalent to specifying the
square-wave cone-contrast values, since

S= I1shI-
11sf I

C. Monitor Calibration

We presented our stimuli on a 60-Hz noninterlaced color

monitor (Hitachi Model 4319) controlled by a graphics
card (TrueVision Model ATVista) in an IBM PC-AT. We

tested for monitor phosphor additivity and corrected for
the nonlinear relationship between graphics card input

and monitor output (gamma correction). We measured
the spectral power distribution of the monitor's three
phosphors weekly, using a spectroradiometer to ensure
proper color calibration.9 We measured the square-wave
patterns at several stimulus strengths, using a spatial
scanner (Photo Research Model PR-719) to verify the
spatial accuracy of the square waves and to verify that
gamma correction did not depend on spatial frequency.

D. Error Measures for Model Evaluations

We report tests of several models of the asymmetric match-
ing data. The models share a common form, m = Ts,
where s is a vector representing the square-wave cone con-
trast, m is a vector representing the observed matching
box contrast, and T is a 3 x 3 linear transformation.

For any model transformation T, there will be some dif-
ference between the match settings predicted by the model
and the subjects' match settings; we require an error
measure for choosing a best-fitting transformation. We
evaluate the size of the difference between predicted and
observed matches relative to our estimate of the match
covariance.

Because we have only two replications of each match, we
must make some guesses about the appropriate covariance
matrix. In this paper we report the results of minimizing
with respect to a single covariance matrix, N. This co-
variance matrix is derived by combining all the matches
in the control condition in which both patterns are a uni-
form box. We also have evaluated our models by using

other error measures. We have performed minimizations
with respect to the CIELUV metric space, LMS space,
and we have used separate covariance matrices derived
from matches made to each spatial pattern. The results
that we obtain by using all these different error measures
lead to the same qualitative conclusions, although specific

Table 1. Cone Contrast of Square-Wave Color
Pairs and Appearance Description

a Ma Sa Appearance Descriptionb

0.490 0.522 -0.596 Bright green
-0.490 -0.522 0.596 Purple

0.490 0.522 0.000 Light green

-0.490 -0.522 0.000 Bluish purple
0.000 0.000 0.745 Light bluish purple
0.000 0.000 -0.745 Olive green

0.059 -0.049 0.000 Pinkish red
-0.059 0.049 0.000 Aqua green

0.059 -0.049 -0.596 Rust orange
-0.059 0.049 0.596 Aqua blue

0.490 0.522 0.596 Greenish white

-0.490 -0.522 -0.596 Brownish black
0.549 0.473 -0.596 Yellow

-0.549 -0.473 0.596 Blue
0.432 0.571 0.000 New leaf green

-0.432 -0.571 0.000 Redish purple
0.600 0.590 0.476 White (subject JL only)

-0.600 -0.590 -0.476 Dark gray (subject JL only)
0.127 0.152 0.798 Purplish blue (subject AW only)

-0.127 -0.152 -0.798 Dark olive green (subject AW only)

aOnly the highest cone-contrast values are given.
bSpatial pattern is a uniform, square, 2-deg field.
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parameters do vary. We continue to explore other statis-
tical models of the data set.

The specific error measure that we have minimized is
shown in Eq. (2). Denote the difference between the ob-
served and the predicted match as the column vector ei.
We minimize the error measure

a

> (eitl.-lei)/2. (2)
i-l

This error measure is equivalent to transforming the
model deviations into a color space in which the difference
between the mean match and each individual match in the
control condition forms a spherical cloud with unit vari-
ance and measuring the Euclidean distance in the new
color space."" We call the new color space the spherical
color space. When we report errors in terms of the vector
length in this space, we use the term spherical units.

This error measure yields the same minimum for any
color space related by a linear transformation. To see
this, notice that when the observed matches m are linearly
transformed into a new color space Lm, the errors are
also transformed into Lei. The new covariance matrix
becomes LZLt. By substituting these terms into Eq. (2),
we see that the error is independent of the color space that
we use to represent the data. When the same data are
represented in a new color space so that n' = Lm, s' =
Ls, and ' = T's', the minimization procedure finds
model transformations T and T', which are related by
T' = LTL-1.

We used the iterative search procedure STEPIT12 to
perform the error minimizations. We repeated the mini-
mization search procedure starting at several different
initial parameter locations to ensure against finding local
minima in the error surface.

Each panel in Fig. 2 shows the cone contrast of the mean
match on the vertical axis and the cone contrast of the
individual matches on the horizontal axis for one cone
type. The center point in each graph represents the gray
background. All cone-contrast values are those measured
at the monitor. The deviation about the diagonal line is a
visual representation of the precision in the task. The
distance of the average deviation for this subject is 2.0
spherical units.

C. Tests of Color Linearity

The asymmetric color matches for a square wave establish
a transformation T between the color representation of
the square-wave bars s and the color representation of the
matching box m. We analyze two main properties of the
transformation T.

First, we evaluate color homogeneity. Consider an ex-
periment in which we fix the square-wave frequency f and
the color direction c and we measure matches to a series
of stimulus strengths. We test whether scaling the
square-wave strength also scales the matching box
strength. If s matches m, then does as match am?

Second, we evaluate color superposition. Suppose that
s and s' are square waves at the same spatial frequency.
When s matches m and s' matches n', will the square
wave with color superposition of s and s' match m + n'?

If both of these properties are satisfied, then the trans-
formation T is linear, and we may represent it with a
3 3 matrix.

Color Homogeneity
Figure 3 illustrates one test of color homogeneity. Each
panel shows the homogeneity test for a single dimension of
the color representation in cone-contrast space. The
horizontal axis of each panel is the cone contrast of the
square-wave bar, and the vertical axis is the cone contrast
of the matching box. Again, both axes refer to quantities

3. EXPERIMENTAL RESULTS

A. Asymmetric Pattern Matches Are Not Photopigment

Matches

Figure 1 illustrates how color saturation decreases as
spatial frequency increases and that the asymmetric
matches are not photopigment matches. The left-hand
panel shows the chromaticity coordinates of the bars in an
8-c/deg square wave. The chromaticity coordinates of the
matches to these bars are shown in the right-hand panel.
Had the asymmetric color matches been physical matches,
the two graphs would have been identical. Instead, the
matches set to the moderate-frequency square waves oc-
cupy a much smaller portion of the chromaticity diagram,
illustrating the reduced saturation in the color appearance
of the 8-c/deg pattern.

B. Precision in the Task

We evaluate our models of these appearance matches by
comparing a model's residual error with the precision ob-
tained in our spatially asymmetric color-matching task.
We define precision as the difference between the average

match in a particular condition and each individual
match. We quantify the magnitude of this difference by
calculating the length of the difference vector in spherical
color space.
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Fig. 1. Chromaticity coordinates (x, y) of the square-wave bars
in an 8-c/deg test stimulus (left) and corresponding matching box
settings (right). The neutral gray background was (x, y, Y =
0.27,0.30,49.80 cd/lu2 ). Were te subject making physical
matches, these two graphs would be identical. Instead, the
subject's matching box settings occupy a smaller region of the
chromaticity diagram, illustrating that the square-wave bars
appear desaturated.
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matches

matches

matches

Fig. 2. Visual representation of the precision in the task for sub-
ject AW Cone contrast of mean match on the vertical axis is
plotted against the cone contrast of the individual matches on the
horizontal axis. The center point represents the background
value. Each panel represents a different cone type. The dis-
tance of the average deviation is 2.0 spherical units. For our
second subject (JL) this value is 1.53.

measured at the monitor, not at the retina. The panel
origin represents the mean background.

The square wave used for the data plotted in Fig. 3 was
1 c/deg, and its bars appear orange and light blue. Each
data point represents the average of at least two matching
box settings. The matches were made at four stimulus-
strength levels for each of the two bars, yielding a total of
sixteen matches.

Color homogeneity implies that for each test frequency
and color-direction condition there is a 3 x 3 matrix Tf
that maps the test stimuli into the matching box set-
tings.' 3 This matrix defines a line in three-dimensional
space. The lines in the panels represent the best-fitting
line through the origin and the data. Color homogeneity
holds to the extent that the data fall precisely upon a line.
If the subject makes a physical match, the data will fall
upon a line with unit slope in each panel. Even at 1 c/deg
the matches do not fall upon lines of unit slope.

Each observer collected data for 45 graphs like the
one in Fig. 3. Figure 4 contains a subset of these graphs
for one square-wave color direction at several spatial
frequencies.

In the control condition, when the test pattern is a uni-
form box (left-hand column), the subject's matching box
settings are close to physical matches. As the spatial fre-

quency increases, the slopes tend to decrease, and the
matches deviate from physical matches.

The data in Figs. 3 and 4 are typical of the precision of
color homogeneity that we have observed. To illustrate
the overall quality of the color-homogeneity prediction, we
combined the data from all 45 conditions into a single
graph. To combine the data, we fitted straight lines
through each of the graphs individually; we then merged
the data into a single graph that shows the observed and
the predicted values. This coarse test of homogeneity is
shown for subject AW in the left-hand panel of Fig. 6
below. The average deviation from color homogeneity is
2.79 spherical units.

Color homogeneity serves as a good first-order model of
the data. We comment on some of the failures of color
homogeneity in more detail at the end of this section.

Color Superposition
We test color superposition by comparing matches to the
sum of square waves with the sum of matches to square
waves. We illustrate the test for one spatial pattern and
cone type schematically in Fig. 5. Suppose that a sub-
ject's matches to two different square-wave stimuli fall
upon the two dotted lines. The additivity prediction is
that matches to the sum of the square waves will fall upon
the solid line.

Our data set includes measurements in nine color direc-
tions for each spatial pattern. The color directions are
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Fig. 3. Definition of subject J's full-color matches to a 1-c/deg
square wave; the square-wave bars appeared orange and light
blue. The horizontal axis plots the physical measure of the
square-wave bar; the vertical axis plots the subject's matching
box setting. The axes are cone contrast, the center represents
the background value, and each panel describes the settings for
one cone type. The line is the prediction from the best-fitting
color-homogeneous model.
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Fig. 4. Each column is as in Fig. 3, for subject JL. The columns show matches for different test frequencies. The square-wave bars
were of colors different from those in Fig. 3 and appeared bright green and purple at low spatial frequencies.

interrelated sums. Color superposition implies that there
is a single 3 x 3 matrix that maps all test stimuli pre-
sented in a given spatial frequency condition into the cor-
responding matching box setting. We refer to this matrix
as Tf, dropping the matrix's dependence on color direction.
For each subject and each spatial pattern we solve for the
matrix Tf that minimizes the error described in Section 2
[Eq. (2)].

We plot the observed and the predicted cone contrast,
using the color-superposition model for all the asymmetric
matches in the middle panel of Fig. 6. Color superposition
and color homogeneity are nested hypotheses: in the
presence of weak continuity assumptions, superposition
implies homogeneity. By comparing the left and the
middle graphs of Fig. 6, one can see that the added re-
quirement of color superposition does not worsen the fit
substantially.

D. Pattern-Color-Separable Model

How does the linear transformation Tf depend on the
spatial pattern? We analyze this dependence by casting
the asymmetric matching experiment as a neural model.
Suppose that three parallel neural pathways code color ap-
pearance. The pathways differ in their color and pattern
sensitivities. We assume that each pathway forms a
neural image of the visual pattern. Two locations in the

visual field have the same color appearance when the
three pathway values are equal.

We examine the hypothesis that the pathway represen-
tations are pattern-color separable. We assume that the

value in one neural image is the product of three terms.
One term defines the pathway's sensitivity to the square
wave's color direction. A second term defines the path-
way's sensitivity to the spatial pattern. The third term is
the square wave's stimulus strength.

We can express this hypothesis in matrix notation as fol-
lows. We represent the terms defining the color-direction
sensitivity by the 3 3 matrix C. This matrix maps the
color-direction vector ssJJ into the color space defined by
the three visual pathways. We represent the sensitivities
to the spatial pattern by the 3 x 3 diagonal matrix Df.
Each entry in this matrix scales one pathway's response.
We represent the three pathway responses succinctly as

Df Cs = sJJDfC -

The matrix C is the same for all different spatial patterns.
The diagonal matrix Df depends only on the spatial pat-
tern. Because the individual pathways are separable with
respect to pattern and color, we call the model pattern-
color separable.

Finally, we note that it is possible to follow the pathway
responses with an arbitrary nonlinearity without chang-
ing any predictions of the model.

E. Applying the Model to the Experiment

Experimentally, we observe matches between a square-
wave bar s and a box m. By assumption, two stimuli

, .>
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-0.60 

Fig. 5. Additivity predictions for color superposition for one
cone type. Suppose that a subject's matches to two different
square-wave stimuli fall upon the dotted lines. The additivity
prediction is that matches to the sum of the square waves will fall
upon the solid line.

match when

DoCm = Df Cs

m = C-'D-'Df Cs.

To simplify the notation, and without loss of generality,
we assume that Do is the identity matrix and are left with

m = C-'DfCs. (4)

The pattern-color-separable model is restricted com-
pared with the color-homogeneous and color-superposition
models. Color homogeneity permits an arbitrary matrix
for each color direction and each spatial pattern Tf,.
Color superposition permits an arbitrary matrix for each
pattern Tf. Pattern-color separability implies that all the
matrices Tf must share a common form, Tf = C Df C,
and contain the same color matrix C.

We performed an iterative search to find the collection
of similar matrices Tf = C Df C that minimizes the error
measure in Eq. (2). The graph on the right-hand side
of Fig. 6 plots the observed and the predicted matches of
the pattern-color-separable model. The pattern-color-
separability hypothesis does not substantially worsen this
visualization of the error. The average length of the
residual errors for observers AW and JL is 3.39 and 3.15
spherical units, respectively. The precision of their
matches is 2.00 and 1.53 spherical units, respectively.

A second way to quantify the magnitude of the error
in the separable model is to calculate the length of the
residual vector in CIELUV color space. This space at-
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Fig. 6. Each column plots the observed versus predicted matches for subject AW: left-hand column, color-homogeneity model; middle
column, color-superposition model; right-hand column, pattern-color-separable model. Each row shows the predictions for a different
receptor class. The axes are cone-contrast units measured at the monitor, and the center position represents the background value. The
average residual errors for this subject and the three models are 2.79, 3.33, and 3.39 spherical distance units. (For subject JL the values
are 2.48, 3.07, and 3.15.) The number of parameters required for fitting the color-homogeneity, color-superposition, and pattern-color-
separable models to one subject's data is 135, 45, and 21, respectively.
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Fig. 7. Pattern-color-separable color (top) and pattern (bottom)
functions for subject AW. Spectral and spatial functions from
each of the three pathways are drawn with the same type of curve
(solid, dashed, or dotted) in both panels.

tempts to make equally discriminable colors equal in
length. To calculate this distance measure, AE.,, one
needs to make an estimate of the observer's white point.
We assumed that the uniform background field repre-
sented a 20% gray surface. The average length of the
residual errors in AEV units for observers AW and JL is
3.17 and 2.79, respectively. The precision of the matches
for AW and JL is 1.87 and 1.47 AE"" units, respectively.

F. Evaluation of the Model

For many industrial imaging applications, 3-4 AEUV units
is considered small, approximately one just-noticeable dif-
ference. For some demanding commercial applications
involving matches between large areas of paint or fabric
placed directly adjacent to one another, AE., values of 1 or
less are required. The difference between the precision of
the observers' replications of their matches and the model
predictions is -1 AEUV and also -1 spherical unit. While
pattern-color separability may not be precisely correct,
the deviations are small enough that we think it is useful
to consider the properties of the mechanisms derived from
the observers' matches.

G. Pattern and Color-Sensitivity-Function Estimates
The pattern-color-separable calculation estimates the
color and pattern sensitivities of all three putative path-

ways. Each row in the matrix C defines the spectral re-
sponsivity of a pathway that is a weighted sum of the cone
photopigment absorptions. The diagonal entries of Df
define the pattern sensitivity of the pathways. In Ap-

pendix A we prove that the matrices Df and C that we
recover from our search are unique up to a scale factor
applied to each row of C.

For one observer, AW, we plot the spectral responsivity
of the three pathways in the top panel of Fig. 7. We plot
the pattern sensitivities to the square waves in the bottom
panel of Fig. 7. Spectral and spatial functions from one
pathway are drawn with the same type of curve in both
panels. These pattern-sensitivity plots are not modula-
tion transfer curves, for two reasons. First, our measure-
ments are based on square waves, not sinusoids. Second,
and more important, we have not tested pattern super-
position. Modulation transfer functions are meaningful
only for linear systems.

The formal simplifications from pattern-color separabil-
ity have a geometric counterpart. First, represent both
the matching box settings and the physical signal of the
square-wave bars in the color-coordinate frame defined by
matrix C. Second, scale the axes in this new color space
to make the physical signal of the square-wave bars coinci-
dent with the matching box settings. The appropriate
scale factor for a given axis and spatial pattern f is given
in the appropriate entry of the diagonal matrix Df.

Figure 8 shows subject AW's appearance matches plot-
ted in the pattern-color-separable color-coordinate frame.
The lines in each panel are the predictions from the
pattern-color-separable fits to her data. The data in each
column include the matches from the nine color directions
at each spatial frequency. Were the model perfect, all the
data would lie upon the solid line drawn in each panel.
The slope of the lines at each spatial frequency define a
color pathway's pattern sensitivity.

The data from our two subjects are similar. Figure 9
contains the pattern-color-separable mechanisms derived
by combining the data from both observers. We tabulate
matrix C (Table 2) and matrices Df (Table 3) for the indi-
vidual subjects and for the joint fit.

To estimate the precision of our derived functions, we
used a resampling procedure. 4 We drew a random sample,
with replacement, of 720 color matches from the collection
of 720 color matches. For each draw we found the best-
fitting pattern-color-separable model and its correspond-
ing spectral and spatial tuning functions. We repeated
this process 25 times to obtain 25 estimates of each tuning
curve. Figure 9 plots the envelope of the estimates from
each draw around the estimate from the true data.

H. Model Limitations

Separability is an important property; it guides practical
measurement and hypothesis formation about the neural
representation of visual appearance. We wish to qualify
our support, since two assumptions that underlie sepa-
rability are contradicted in portions of our measure-
ments. We believe that these deviations represent modest
but genuine failures of color homogeneity, linearity, or
separability.

First, we have observed instances in which the data are
not symmetric through the origin. For example, the data
from subject AW in the 4-c/deg condition (Fig. 8, fourth
column, top panel) are not odd symmetric through the
origin. Data in this plot fall primarily above the predic-
tion line. The data appear linear in each quadrant, but
the two line segments are themselves not aligned.
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Second, we also have observed instances in which the
data are not strictly linear. For example, data in the red-
green plot in the 1-c/deg condition are more nearly sig-
moidal than linear (Fig. 8, second column). The model
overestimates the scale factor for small signals in this
case. Small decrements fall below the line and small
increments fall above the line predicted by the model.

4. DISCUSSION

A. Color Representations

We compare our derived pattern-color-separable repre-
sentation with four pattern-color-separable representa-
tions that extend color representations proposed in other
contexts.

Color representation DKL extends the MacLeod-
Boynton 5 chromaticity diagram. The representation was
first described in a paper evaluating physiological re-
sponses in the lateral geniculate nucleus of macaque
monkeys"6 (see also Flitcroft 7 ). The MJHJ representa-
tion was proposed by Muller,1 8 19 quantified by Judd,20 and
studied by Hurvich and Jameson21 2 3 in unique-hue
cancelation experiments. The YIQ representation was
defined by the National Television Standards Committee
based on a variety of psychophysical measurements involv-
ing spatial judgments of color appearance.2 4 Guth2 526 and
his colleagues have developed the ATD representation as

a coarse summary of a broad variety of different color
judgments.

Each color representation defines a color matrix C. We
extend the color representations to pattern-color repre-
sentations by searching for diagonal matrices Df that
minimize Eq. (2) with respect to our data set.

The spectral sensitivities of each color representation
are plotted in the top row of Fig. 10. The estimated
pattern-sensitivity functions are plotted in the bottom
row. Our current error measure does not distinguish
strongly between the DKL, MJHJ, and YIQ representa-
tions. The difference between these model fits is com-
parable with the difference that we observe when we apply
the best fit from the data of one observer to the data of the
other. The ATD representation is somewhat worse. All
these color representations, combined with their appropri-
ate spatial functions, fit the pooled data, with AE."
residual errors ranging from 3.61 to 3.89.

B. Optical Factors

Our analysis has combined the optical and neural compo-
nents of vision. Can we separate the contributions of
these two factors?

Axial chromatic aberration is the most important optical
factor limiting the eye's spatial resolution. To estimate
the contribution of axial chromatic aberration to the
matches, we need an estimate of the optical transfer func-
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Fig. 9. Pattern-color-separable color (top) and pattern (bottom)
functions estimated by combining the data of subjects AW and
JL. The envelope (lighter curve) around each bold curve (solid,
dashed, or dotted) describes the extreme values from a resam-
pling procedure. See text for details.

tion at different wavelengths. We are unaware of any
empirical estimates of this function, so we used an esti-
mate based on a model described by Wandell and
Marimont27 based on methods introduced by Hopkins.2 5

The model assumes that the optics introduce only
spherical aberration and that the eye is statically accom-
modated to 580 nm. In addition, we simplify calculations
by treating our square-wave stimuli as sine waves. We
use the chromatic aberration data from Wald and Griffin2 9

and from Bedford and Wsyzecki30 to estimate the defocus
at each incident wavelength. From photographs we mea-
sured our subjects' pupil size diameter under our experi-
mental conditions (5.5 mm). We selected other model eye
parameters to match the average human eye.27

To discount the effects of axial chromatic aberration,
we must estimate the retinal image. We begin with the
spectral power distribution of the input signal, which we
treat as the sum of monochromatic sinusoids at the same
frequency as the square-wave stimulus. The optical
transfer function defines the amplitude reduction of each
monochromatic sinusoid, yielding the estimated retinal
image. We assume that the retinal image is absorbed by
the photoreceptors and inert pigments in the usual way,
and thus we obtain an estimate of the cone contrasts cor-
rected for axial chromatic aberration.

Figure 11 shows the spectral and spatial tuning func-
tions that arise when we fit the pattern-color-separable
model by using our estimate of the cone contrast stimulat-
ing the retina. These spectral functions are similar to
those shown in Fig. 9; we again find one spectrally broad-
band function and two spectrally opponent.

After correction for axial chromatic aberration, the
pattern-sensitivity functions show only a two-tenths
(blue-yellow mechanism) or three-tenths (red-green
mechanism) log unit roll-off at our highest frequency. We
conclude that the pattern-sensitivity loss that we observe
for the whole observer is due mainly to optical factors.
Since axial chromatic aberration is due largely to the pres-
ence of water in the eye, this factor is likely to be impor-
tant across species and observers.17

C. Related Literature

Appearance Measures
Georgeson and Sullivan3 ' asked subjects to match the con-
trast of sinusoidal patterns at different spatial frequencies
and stimulus strengths. The color direction, determined
by the oscilloscope phosphor, was the same for both the
5-c/deg standard frequency and the various test frequen-
cies. We test for homogeneity of their data by plotting the
contrast of the standard frequency versus the matching
contrast of the test frequency in linear coordinates and
finding the best-fitting straight line through the origin
and data points. We restrict our analysis to stimulus con-
ditions in which the standard grating contrast is 5% or

Table 2. Color matrices C for the Best-Fitting Pattern-Color-Separable Modela

Subject Function L M S Graph-Curve Type

JL W-B 0.962 0.004 -0.272 Solid

R-G -0.658 0.751 -0.049 Dashed
B-Y 0.095 -0.589 0.802 Dotted

AW W-B 0.999 0.009 0.000 Solid

R-G -0.694 0.719 0.039 Dashed
B-Y 0.397 -0.751 0.528 Dotted

JL and AW W-B 0.990 -0.106 -0.094 Solid
R-G -0.669 0.742 -0.027 Dashed

B-Y -0.212 -0.354 0.911 Dotted

aEach row lists the normalized cone weights used to construct the spectral functions shown in Figs. 7 and 9. The rows are required to be unit length. To
create, say, the red-green spectral function for subject AW plot (-0.694L + 0.719M + 0.039S) as a function of wavelength, where L, M, and S are the
Smith-Pokorny cone fundamentals, each normalized to a peak value of 1.0. W-B, white-black; R-G, red-green; B-Y, blue-yellow.
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Table 3. Values in Matrices Df for the Best-Fitting Pattern-Color-Separable Modela

Subject Frequency W-B (Solid) R-G (Dashed) B-Y (Dotted)

JL Uniform 0.873 0.841 0.826

1 c/deg 0.850 0.539 0.511

2 c/deg 0.797 0.542 0.413

4 c/deg 0.706 0.466 0.359

8 c/deg 0.513 0.345 0.079

AW Uniform 0.975 0.921 0.933

1 c/deg 1.192 0.675 0.645

2 c/deg 1.180 0.527 0.527

4 c/deg 1.142 0.457 0.387

8 c/deg 0.859 0.176 0.095

JL and AW Uniform 0.916 0.873 0.872

1 c/deg 1.025 0.590 0.604

2 c/deg 0.987 0.559 0.485

4 c/deg 0.926 0.464 0.388

8 c/deg 0.703 0.263 0.096

aEach column lists the scale factors for a specified spectral function that are used to construct the spatial scale functions shown in Figs. 7 and 9. W-B,
white-black; R-G red-green; B-Y, blue-yellow.
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Fig. 10. Color (top) and pattern (bottom) tuning functions for four other color representations. The color sensitivities were taken from
the literature, and the pattern sensitivities were determined from a best fit of the pattern-color-separable model. The functions drawn
with the same type of curve (solid, dashed, or dotted) belong to common putative pathways.

greater. The test grating spatial frequency is 0.25, 0.5,
1.0, 2.0, 5.0, 10.0, 15.0, 20.0 or 25.0 c/deg.

In Fig. 12 we show the observed versus the predicted
contrast settings from the homogeneous models that are
best-fitting to the Georgeson-Sullivan data. As in Fig. 6,
were the model to fit perfectly, all the points would fall
upon the solid diagonal line of slope one. We see that the
homogeneous model serves well to predict these contrast
match settings. Evidently, the nonlinearities observed by
Georgeson and Sullivan are restricted to threshold and
near-threshold measurements.

A number of investigators have studied color appearance
by using a hue-cancellation paradigm.3 2 3 5 Several of
these studies evaluated the linearity of the mechanisms
with a variety of techniques. Our experimental para-
digm differs greatly from that of hue cancellation in that
we require our subjects to make complete appearance
matches; thus our results are not directly comparable.
Instead, we stress the qualitative similarity between our
derived spectral functions and those determined by the
hue-cancellation paradigm, which by its nature pre-
supposes opponency.
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Fig. 11. Pattern-color-separable tuning curves derived from the
fit to combined subject data that are corrected for axial chromatic
aberration. The curves of the color functions (top) are similar to
the curves derived without correction for chromatic aberration
(see Fig. 9). The pattern sensitivities (bottom) fall off more
slowly with frequency, suggesting that the loss of resolution is due
largely to optical factors.

Threshold Measures
Much of what we have learned about pattern and color
sensitivity comes from threshold experiments.3 9 4 6

Generally, threshold measurements of the pattern sensi-
tivity of putative color pathways begin with two assump-
tions. First, experimenters often assume that the color
sensitivities of the mechanisms are known before the ex-
periment or that these properties can be measured with
procedures such as flicker photometry. Second, the ex-
perimenter assumes that the pattern and color sensitivi-
ties are separable. This assumption is implicit in the act
of measurement since, if separability fails, then the pat-
tern and color-sensitivity curves are intertwined and we
learn very little from an individual tuning curve.

Our experiments begin with the premise that it is
important to test both of these assumptions. The color-
appearance experiments that we report here are formu-
lated to test separability and estimate pattern and color
tuning. We report elsewhere4 7 on similar tests that use
threshold data.

5. CONCLUSION

When observers match the color appearance of low- and
moderate-spatial-frequency square waves with uniform
patches, the matching transformation satisfies color ho-
mogeneity and color superposition. Examination of the
data reveals clearly that these asymmetric color matches
are not photoreceptor matches. Rather, the matches de-
pend on an equivalence established at more central sites.

To understand the properties of the signals at these cen-
tral sites, we analyzed the matching transformation,
using a pattern-color-separable model. We used the data
to derive, from first principles, the separable pattern and
color sensitivities of three central site mechanisms.

predicted contrast

1.00 

-1.00

ved contrast

1.00

-1.00 L

Fig. 12. Observed contrast matches versus contrast matches
predicted from homogeneous models fitted to data given by
Georgeson and Sullivan.3 1 We restrict our analysis to stimulus
conditions in which the standard grating contrast is 5 or
greater. The test grating spatial frequency is 0.25, 0.5, 1.0, 2.0,
5.0, 10.0, 15.0, 20.0, or 25.0 c/deg. Data points are reflected
through the origin. Were the homogeneous model perfect, all the
points would fall upon the diagonal line of slope 1.0.

APPENDIX A: UNIQUENESS

The pattern-color-separable model recovers a collection of
matrices that determine the spectral and spatial tuning
curves of the putative mechanisms. We call these matri-
ces Df and C. For each spatial pattern f the mechanism
matrices are related to the empirically determined matrix
that maps the color of the test input to the observed match
by the formula Tf = C -'Df C. What are the uniqueness
properties in our estimate of C and Df?

Consider an alternative solution based on a new color
matrix C' = LC and a new diagonal pattern matrix Df'.
The new pair of matrices must yield the same Tf. We
evaluate the uniqueness of our results by constraining the
matrix L.

First, notice that, when L is a diagonal matrix,

Tf = C-'Df C = C'-1Df'C',

C-'Df C = (LC)'-Df'LC,

C-1 DfC = C-'L-'Df'LC,

Df = L-Df'L,

Df Df'.

It follows that any diagonal transformation of C is per-
missible and leads to the same diagonal matrix Df.
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Now, consider a proof of the converse, i.e., that only
diagonal transformations are permissible. Begin by not-
ing that

Tf = C'Df C = C 1 UL'Df'LC,

Df = L'Df'L,

LDf = Df'L. (Al)

From inspection of Eq. (Al) we see that the columns of
L are eigenvectors of the diagonal transformation Df.
The eigenvectors of a diagonal matrix are the unit vectors
(1, 0, 0), (0,1, 0) and (0, 0,1); thus it follows that L must be a

diagonal matrix. 48

We state our uniqueness results to show that when we
recover a pair of matrices C and Df, LC and Df are also
solutions only when L is a diagonal matrix. Hence our
estimates of Df are unique; our estimates of C are unique
up to three independent scale factors. These scale factors
set the overall sensitivity of each appearance mechanism.
Intuitively this makes sense; alteration of the scale of any
of the three color-tuning functions will preserve the
match. We have shown that these scale factors are the
only freedom left in the pattern-color-separable solution.
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