

Appearance-Space Texture Synthesis

Sylvain Lefebvre Hugues Hoppe

Microsoft Research

Exemplar E Transformed E′ Isometric synthesis Anisometric synthesis Synthesis in atlas domain Textured surface Radiance-transfer syn.

Figure 1: Transforming an exemplar into an 8D appearance space E′ improves synthesis quality and enables new real-time functionalities.

Abstract

Exemplar E

Color space

E′

Appearance space

E′
dim. red. Transformed

exemplar

S

texture synthesis

[]E S

appearance
vectors

Synthesized
coordinates

Synthesized
texture

Figure 2: Overview of synthesis using exemplar transformation.

The traditional approach in texture synthesis is to compare color
neighborhoods with those of an exemplar. We show that quality
is greatly improved if pointwise colors are replaced by appearance
vectors that incorporate nonlocal information such as feature and
radiance-transfer data. We perform dimensionality reduction on
these vectors prior to synthesis, to create a new appearance-space
exemplar. Unlike a texton space, our appearance space is low-
dimensional and Euclidean. Synthesis in this information-rich
space lets us reduce runtime neighborhood vectors from 5×5 grids
to just 4 locations. Building on this unifying framework, we
introduce novel techniques for coherent anisometric synthesis,
surface texture synthesis directly in an ordinary atlas, and texture
advection. Remarkably, we achieve all these functionalities in
real-time, or 3 to 4 orders of magnitude faster than prior work.

Keywords: exemplar-based synthesis, surface textures, feature-based
synthesis, anisometric synthesis, dimensionality reduction, RTT synthesis.

1. Introduction

We describe a new framework for exemplar-based texture synthe-
sis (Figure 1). Our main idea is to transform an exemplar image E
from the traditional space of pixel colors to a space of appearance
vectors, and then perform synthesis in this transformed space
(Figure 2). Specifically, we compute a high-dimensional appear-
ance vector at each pixel to form an appearance-space image E′,
and map E′ onto a low-dimensional transformed exemplar E′
using principal component analysis (PCA) or nonlinear dimen-
sionality reduction. Using E′ as the exemplar, we synthesize an
image S of exemplar coordinates. Finally, we return E[S] which
accesses the original exemplar, rather than . []E S′

The idea of exemplar transformation is simple, but has broad
implications. As we shall see, it improves synthesis quality and
enables new functionalities while maintaining fast performance.

Several prior synthesis schemes use appearance vectors. Heeger
and Bergen [1995], De Bonet [1997], and Portilla and Simoncelli
[2000] evaluate steerable filters on image pyramids. Malik et al
[1999] use multiscale Gaussian derivative filters, and apply
clustering to form discrete textons. Tong et al [2002] and Magda
and Kriegman [2003] synthesize texture by examining inter-

texton distances. However, textons have two drawbacks: the
clustering introduces discretization errors, and the distance metric
requires costly access to a large inner-product matrix. In contrast,
our approach defines an appearance space that is continuous, low-
dimensional, and has a trivial Euclidean metric.

The appearance vector at an image pixel should capture the local
structure of the texture, so that each pixel of the transformed
exemplar E′ provides an information-rich encoding for effective
synthesis (Section 3). We form the appearance vector using:

• Neighborhood information, to encode not just pointwise attrib-
utes but local spatial patterns including gradients.

• Feature information, to faithfully recover structural texture
elements not captured by local L2 error.

• Radiance transfer, to synthesize material with consistent meso-
scale self-shadowing properties.

Because exemplar transformation is a preprocess, incorporating
the neighborhood, feature, and radiance-transfer information has
little cost. Moreover, the dimensionality reduction encodes all the
information concisely using exemplar-adapted basis functions,
rather than generic steerable filters.

In addition we present the following contributions:

• We show that exemplar transformation permits parallel pixel-
based synthesis using a runtime neighborhood vector of just 4
spatial points (Section 4), whereas prior schemes require at least
5×5 neighborhoods (and often larger for complex textures).

• We design a scheme for high-quality anisometric synthesis.
The key idea is to maintain texture coherence by only accessing
immediate pixel neighbors, and to transform their synthesized
coordinates according to a desired Jacobian field (Section 5).

• We create surface texture by performing anisometric synthesis
directly in the parametric domain of an ordinary texture atlas.
Because our synthesis algorithm accesses only immediate pixel
neighbors, we can jump across atlas charts using an indirection
map to form seamless texture. Prior state-of-the-art schemes

[e.g. Sloan et al 2003; Zhang et al 2003] require expensive per-
vertex synthesis on irregular meshes with millions of vertices,
and subsequently resample these signals into a texture atlas. Our
technique is more elegant and practical, as it operates completely
in the image space of the atlas domain, never marching over a
mesh during synthesis (Section 6).

• Finally, we describe an efficient scheme for advecting the
texture over a given flow field while maintaining temporal co-
herence (Section 7). Our results exhibit less blurring than related
work by [Kwatra et al 2005].

Previous work in these various areas required minutes of compu-
tation time for a static synthesis result. Remarkably, appearance-
space synthesis lets us perform all the above functionalities
together in tens of milliseconds on a GPU, i.e.

feature-preserving synthesis and advection of consistent radi-
ance-transfer texture anisometrically mapped onto an arbitrary
atlas-parameterized surface, in real-time.

Because we can synthesize the texture from scratch every frame,
the user may interactively adjust all synthesis parameters, includ-
ing randomness controls, direction fields, and feature scaling.
Moreover, by computing the Jacobian map on the GPU, even the
surface geometry itself can be deformed without any CPU load.

2. Background on texture synthesis

Our pixel-based neighborhood-matching synthesis scheme builds
on a long sequence of earlier papers, which we can only briefly
review here. The traditional approach is to generate texture
sequentially in scanline order, comparing partially synthesized
neighborhoods with exemplar neighborhoods to identify the best
matching pixel [Garber 1981; Efros and Leung 1999]. Improve-
ments include hierarchical synthesis [Popat and Picard 1993; De
Bonet 1997; Wei and Levoy 2000], coherent synthesis
[Ashikhmin 2001], precomputed similarity sets [Tong et al 2002],
and order-independent synthesis [Wei and Levoy 2003].

We extend the parallel approach of [Lefebvre and Hoppe 2005],
in which synthesis is realized as a sequence of GPU rasterization
passes, namely upsampling, jitter, and correction. All passes
operate on an image pyramid S of exemplar coordinates rather
than directly on exemplar colors (Figure 3). The key step of
interest to us is the correction pass, in which each S[p] is assigned
the exemplar coordinate u whose 5×5 neighborhood NE(u) best
matches the currently synthesized neighborhood NS(p).

Exemplar E Coordinates u

S0 S1 … SL

E[S0] E[S1] E[SL]

Figure 3: Review of parallel texture synthesis.

3. Definition of appearance vector

3.1 Spatial neighborhood

To compare a synthesized neighborhood NS(p) and exemplar
neighborhood NE(u), distance is typically measured by summing
squared color differences. Because each pixel only contributes
information at one point, large neighborhoods are often necessary
to accurately recreate the original texture structure. Such large
neighborhoods are a runtime bottleneck, as they require both
many memory references and an expensive search process.

The runtime search can be accelerated by recognizing that the set
of image neighborhoods typically lies near a lower-dimensional
subspace. One technique is to project neighborhoods using PCA
[Hertzmann et al 2001; Liang et al 2001; Lefebvre and Hoppe
2005]. The runtime-projected S SN PN= is compared against the
precomputed E EN P N= . However, note the apparent ineffi-
ciency of the overall process – a large vector NS must be gathered
from memory and multiplied by a large matrix P, to then only
yield a low-dimensional vector SN .

Our insight is to apply neighborhood projection on the exemplar
itself as a precomputation, and then perform synthesis using this
transformed exemplar. While we still perform PCA to accelerate
runtime neighborhood matching (Section 4), our contribution is to
redefine the signal contained in the neighborhood itself!

More concretely, let the Gaussian-weighted 5×5 neighborhoods of
an RGB exemplar E define a 75D appearance-space exemplar E′.
We then project the exemplar using PCA to obtain a 3D trans-
formed exemplar E′ . Note in Figure 4 how E′ has a greater
“information density” than E. The figure also demonstrates that
synthesis using E′ has higher quality than using E even though
both have 3 channels and hence the same synthesis cost. (Here
we use the synthesis scheme described later in Section 4)

Generally, we let the transformed exemplar E′ be 8D rather than
3D to further improve synthesis quality (Figure 4). The additional
spatial bases are especially useful to encode feature and radiance-
transfer data as introduced in the next sections. Note that for
many color textures, a 4D transformed exemplar is sufficient, as
shown in the supplemental material and in Figure 14.

Using 3D E Using 3D E′ Using 8D E′ E &

3D E′ Result of texture synthesis

Figure 4: Benefit of using exemplar transformation with spatial
neighborhood as appearance vector.

3.2 Feature distance

Small spatial neighborhoods cannot encode large texture features.
More importantly, simple color differences often fail to recognize
semantic structure (e.g. mortar between nonhomogeneous stones).
Wu and Yu [2004] introduce the notion of a feature mask to help
guide the synthesis process. Their patch-based scheme applies
local warping to align texture edges. We next show how their
idea can be easily incorporated within our pixel-based scheme.

Given a user-provided binary feature mask, we compute a signed-
distance field, and include this distance as an additional image
channel prior to the neighborhood analysis of Section 3.1. Thus
the new appearance vector has 5×5×4=100 dimensions, but is still
projected using PCA into 8D. For some textures, we find it
beneficial to apply a simple remapping function to the distance.
For example, clamping the distance magnitude to some maximum
helps suppress singularities along the feature medial axis.

Note that unlike [Wu and Yu 2004], we need not consider feature
tangent direction explicitly, because it is derived automatically in
the spatial neighborhood analysis. (The PCA transformation may
even detect feature curvature.) Moreover, “tangent consistency”
is also captured within the appearance-space Euclidean metric. In
fact, we obtain preservation of texture features without any
change whatsoever to the runtime synthesis algorithm.

Figure 5 compares synthesis results before and after inclusion of
feature distance in the appearance vector. The weight w given to
the feature-distance channel can be varied as shown in Figure 6.
The tradeoff is that a larger weight w downplays color differences,
eventually resulting in synthesis noise.

Another scheme with the same goal of feature preservation is the
two-pass approach of [Zhang et al 2003], which first synthesizes a
binary texton mask by matching large hierarchical neighborhoods
(with 152+112+72+32=305 samples), and then uses this binary
mask as a prior for color synthesis. In comparison, our approach
involves a single synthesis pass with much smaller neighborhood
comparisons (4 samples), and runs 4 orders of magnitude faster.

No feature distance With feature distance
E

Feature

mask

Feature

distance Texture synthesis with 8D E′

Figure 5: Inclusion of feature signed-distance in the appearance
vector, to better preserve semantic texture structures.

E w=0 w=1 (best) w=3

Figure 6: Effect of feature channel weight on synthesis quality.

3.3 Radiance transfer

Realistic rendering of complex materials requires not only point-
wise attributes but also mesoscale effects like self-shadowing and
parallax occlusion. Tong et al [2002] synthesize a bidirectional
texture function (BTF) to capture surface appearance under all
view and light directions. They cluster the high-dim. reflectance
vectors onto a discrete set of 3D textons [Leung and Malik 2001].
BTFs represent reflectance using directional bases for both view
and light, and are therefore ideal for point light sources.

We chose to represent a radiance transfer texture (RTT) which
instead uses spherical harmonics bases appropriate for low-
frequency lighting environments [Sloan et al 2003]. To simplify
our system, we implement the diffuse special case which omits
view-dependence but still retains self-shadowing. The RTT is
computed from a given patch of exemplar geometry using ray
tracing [Sloan et al 2003]. For accurate shadows, we use spheri-
cal harmonics of degree 6, so each RTT pixel is 36-dimensional.

We redefine the appearance vector as a 5×5 neighborhood of the
RTT texture, i.e. a vector of dimension 52·36=900. As before
these are PCA-projected into an 8D appearance-space exemplar.
For efficient PCA computation, we skip the covariance matrix by
instead using iterative expectation maximization [Roweis 1997].
Again, the runtime synthesis algorithm is unchanged.

Even though the 8D transformed exemplar loses ~30-50% of the
appearance-space variance (Section 9), the mesoscale texture
structure is sufficiently well captured to allow accurate RTT
synthesis. As can be seen in Figure 7 and in the video, we obtain
consistent self-shadowing under a changing lighting environment.

Using a height-field as exemplar results in inconsistent RTT shading

Shadings of RTT exemplar Shadings of RTT synthesis (and close-up)

Figure 7: Diffuse radiance transfer as appearance vector, to
obtain consistent self-shadowing during RTT shading.

4. Isometric synthesis

Having created an 8D appearance-space exemplar, we can apply
any pixel-based synthesis algorithm, e.g. evaluating a 5×5
neighborhood error by summing squared differences (in 8D rather
than 3D). But in fact, the greater information density permits
synthesis using a more compact runtime neighborhood.

In adapting our earlier parallel synthesis algorithm [Lefebvre and
Hoppe 2005], we find that a runtime neighborhood of just 4
diagonal points is sufficient:

p

 , i.e. [] ()1
() []

1SN p E S p
⎧ ⎫±′= + ∆ ∆ =⎨ ⎬±⎩ ⎭

′
′

.

However, the parallel synthesis correction algorithm operates as a
sequence of subpasses, and all 4 diagonal points belong to the
same subpass, resulting in poor convergence. To improve con-
vergence without increasing the size of the neighborhood vector
N(p), we use the following observation. For any pixel p′, a nearby
synthesized pixel can predict the synthesized coordinate
at p′ as . Thus, for each point , we average
together the predicted appearance vectors from 3 synthesized
pixels used in different subpasses. Specifically, we use the
combination

p′ + ∆
[]S p′ ′+ ∆ − ∆ p + ∆

[]1
3 ,

(;)S M M
N p E S p′∆ = ∆ ∈

′ ′⎡∆ = + ∆ + ∆ − ∆⎣∑ M
′⎤⎦

)

where () () ({ }0 0 1 0 0 0
, ,

0 0 0 0 0 1
=M accesses the

neighboring pixels shown inset. Although we

now read a total of 12 pixels, the neighborhood

vector NS(p) still only has dimension 4·8=32. For

the anisometric synthesis scheme described in the

next section, we find it useful to re-express the neighborhood

using the equivalent formula

[]1
3 ,

(;) .S M M
N p E S p′′∆ =∆+ ∆ ∈

′ ′′ ′′⎡∆ = + ∆ − ∆ + ∆⎣∑ M
⎤⎦

Then, we compare the synthesized neighborhood vector NS(p)
with precomputed vectors NE(u) in the exemplar to find the best-
matching exemplar pixel:

()[] : argmin () ()u p S ES p N p N u∈= −
C

.

As in [Tong et al 2002], we limit the search to a set of k-coherent
candidates

() (){ }[] 1 ,ip C S p i k= + ∆ − ∆ = ∆C … 2< ,

where the precomputed similarity set { }1 ()k… identifies other
pixels with neighborhoods similar to that of u. (We use k=2.)

C u

As in [Lefebvre and Hoppe 2005], we speed up runtime neighbor-

hood comparisons by applying PCA projection (not to be

confused with the PCA used in exemplar transformation). Spe-

cifically, we project the 32D exemplar neighborhoods to 8D as

E EN P N′= where P′ is a 8×32 matrix. And, we use the same

projection SSN P N′= at runtime, so that evaluating the distance
2() ()S EN p N u− requires just three GPU instructions.

To summarize, the preprocess performs two successive PCA

projections, E E′ → ′ ′ and . All our results derive

from this basic scheme.

() ()N E N E′ →

Synthesis quality is greatly improved over [Lefebvre and Hoppe
2005] as can be seen in Figure 1 and in our supplemental material,
available at http://research.microsoft.com/projects/AppTexSyn/.

5. Anisometric synthesis

In this section we generalize synthesis to allow local rotation and
scaling of the texture according to a Jacobian field J. Rather than
defining multiple versions of the exemplar texture under different
deformations [Taponecco and Alexa 2004], we anisometrically
warp the synthesized neighborhood NS prior to neighborhood
matching, as in Ying et al [2001]. One advantage is the ability to
reproduce arbitrary affine deformations, including shears and
nonuniform scales. In our setting, the method of Ying et al would
define the warped synthesized neighborhood as

[](; ())SN p E S p ϕ′ ⎡ ⎤∆ = + ∆⎣ ⎦ , with 1(()) J pϕ −∆ = ∆ ,

where differences from the isometric scheme are colored blue.
That is, the sampling pattern in synthesis space is transformed by
the inverse Jacobian at the current point. However, such a trans-
formation requires filtered resampling since the samples no longer
lie on the original grid. More significantly, if the Jacobian has
stretch (i.e. spectral norm greater than unity), the warped samples
become discontiguous, resulting in a breakdown in texture coher-
ence. Ying et al [2001] also describe a coherent scheme that
warps neighborhoods in exemplar space, but this inhibits search
acceleration techniques such as our neighborhood PCA . N

Instead, we seek to estimate an anisometrically warped neighbor-
hood vector NS(p) by only accessing immediate neighbors of p.
Our idea is to use the direction of each offset vectors ϕ(∆) to infer
which neighboring pixel to access, and then to use the full offset
vector ϕ(∆) to transform the neighbor’s synthesized coordinate.

p

More precisely, we gather the appearance vector (;)SN p ∆ for

each neighbor ∆ as follows. We normalize the Jacobian-

transformed offset as () () / () 0.5δ ϕ ϕ ϕ⎢ ⎥= ∆ = ∆ ∆ +⎣ ⎦ , which

keeps its rotation but removes any scaling. Thus p δ+ always

references one of the 8 immediate neighbors of pixel p. We

retrieve the synthesized coordinate [S p]δ+ , and use it to predict

the synthesized coordinate at p as [] ()S p J pδ δ+ − , much as in

Section 4 but adjusting for anisometry. Finally, we offset this

predicted synthesized coordinate by the original exemplar-space

neighbor vector ∆. As before, we compute the appearance vector

as a combination of 3 pixels. The final formula is

[]1

()),(3
()(;)S M M

N p E S Jp pϕ ϕδ δ δ′′= ∆ + ∆ ∈
′′ ′′⎡ ⎤∆ = +⎣ ⎦− + ∆∑ M

.

Also, we redefine the k-coherent candidate set as

() (){ }[] 1 , 2[] ()iS p Cp S p ip kJ= + ∆ −′+ ∆ = <∆ + ∆C …

to account for anisometry. Because the Jacobian-transformed
offsets introduce continuous deformations, the synthesized coor-
dinates S[p] are no longer quantized to pixel locations of the
exemplar. Therefore, to preserve this fine-scale positioning of
synthesized coordinates, we re-express the precomputed similarity
sets as offset vectors rather than absolute positions. Because the
synthesized coordinates are continuous values, exemplar accesses
like []E u involve bilinear interpolation, but this interpolation is
inexpensive in the hardware texture sampler.

Finally, we maintain texture coherence during coarse-to-fine
synthesis by modifying the upsampling pass to account for the
anisometry. Each child pixel inherits the parent synthesized
coordinate, offset by the Jacobian times the relative child location:

()1 1/2 1/2[] : [(]) , T
l l J pS p S p− ± ±= − ∆ + ∆ ∆ = .

Figure 8 shows some example results. Our accompanying video
shows interactive drawing of texture orientation and scaling,
which is an exciting new tool for artists.

http://research.microsoft.com/projects/AppTexSyn/

Figure 8: Results of anisometric synthesis.

6. Surface texture synthesis

Anisometric synthesis is important for creating surface texture.
Approaches include per-vertex methods [e.g. Turk 2001; Wei and
Levoy 2001] and patch-based ones [e.g. Neyret and Cani 1999;
Praun et al 2000; Magda and Kriegman 2003]. To allow efficient
parallel evaluation, we directly synthesize pixels in the parametric
domain of the surface, like Ying et al [2001]. But whereas they
construct overlapping charts on a subdivision surface, we consider
ordinary texture atlases on arbitrary triangle meshes.

Surface tangential field. The user specifies a surface field t,b of
tangent and binormal vectors (Figure 9). This field can be inter-
polated from a few user constraints [Praun et al 2000] or obtained
with a global optimization [Hertzmann and Zorin 2000].

Anisometry. Our goal is to synthesize texture anisometrically in

the parametric domain such that the surface vectors t,b are locally

identified with the standard axes ˆ ˆ,x yu u of the exemplar. From

Figure 9 we see that () , where Jf is the 3×2 Jaco-

bian of the surface parameterization

1
ft b J J I−=

:f D M→ , and J is the

desired 2×2 Jacobian for the synthesized map . Thus, :S D E→

() () ()() ()
1

T T

f fJ t b J t b t b t b J
−+= = ,

where “+” denotes matrix pseudoinverse. If (t b) is orthonormal,
then . The parameterization is piecewise linear, so
the Jacobian Jf is piecewise constant within each triangle. In
contrast, the tangential frame (t b) varies per-pixel.

() ()Tt b t b+ =

We compute the Jacobian map J on the GPU by rasterizing the
surface mesh over its texture domain. The pixel shader evaluates

()ddx() ddy()fJ f f= using derivative instructions, which is
exact since Jf is constant during the rasterization of each triangle.

Indirection map. To form seamless texture over a discontinuous
atlas, the synthesis neighborhoods for pixels near chart boundaries
must include samples from other charts. Here we exploit the
property that our anisometric correction scheme accesses a
neighborhood of fixed extent. We read samples across charts
using a per-level indirection map I, by replacing each access S[p]
with S[I[p]]. These indirection maps depend only the surface
parameterization, and are precomputed by marching across chart
boundaries. We reserve space for the necessary 2-pixel band of
indirection pointers around each chart during atlas construction.
Because all resolution levels use the same atlas parameterization,
extra gutter space is reserved at the finest level (Figure 10). We
avoid running the correction shader on the inter-chart gutter pixels
by creating a depth mask and using early z culling.

Parametric domain D

f
ˆ xp

ˆ yp

p

Exemplar E

u

ˆyu
b

t

ˆxu
ˆ xp

ˆ yp
b

t
p

S

ˆ y

f

p

∂
∂

ˆ x

f

p

∂
∂

()f p

()f p

Surface M

Synthesized texture

Jacobian Jf

Tangent frame

Surface parameterization

Figure 9: For surfaces, the synthesis Jacobian involves both the
surface parameterization and a specified surface tangential field.

Figure 10: Levels 1-6 of the multiresolution synthesis pyramid.

Textured surface No magnif.; 12.3 fps With magnif.; 11.7 fps

Figure 11: Surface texture synthesis with magnification.

color

RTT E′

Figure 12: Results of surface texture synthesis. The first column is an example of color texture, while the next four columns show
radiance-transfer textures. As in other figures, we visualize only the first 3 channels of the 8D transformed exemplar E′ .

Anisometric synthesis magnification. One difficulty in synthe-
sizing texture within an atlas is that some parameterization
distortion is usually inevitable and leads to undersampled regions.
We are able to hide the sampling nonuniformity using synthesis
magnification [Lefebvre and Hoppe 2005]. The idea is to use the
synthesized coordinates S to access a higher-resolution exemplar
EH. Specifically, the pixel value at a continuous coordinate p is
obtained by combining the 4 nearest synthesized pixels as

[]() () () (){ }0 1 0 1
, , ,

0 0 1 1
,

Mag () () []
HE Hp p

p w Eδ δ∆= − − ∈⎢ ⎥⎣ ⎦
= ∆ S p −∑ ∆ + ∆ ,

where () x y are bilinear interpolation weights. We
modify synthesis magnification to account for anisometry by
accessing the Jacobian map:

w ∆ = ∆ ⋅ ∆

[]
,

Mag () () [] ()
HE Hp p

Jp w p pE Sδ δ∆= − − ∈⎢ ⎥⎣ ⎦
= ∆ − ∆ −+ ∆∆∑ … .

Anisometric synthesis magnification is performed in the surface
shader at rendering time and thus adds little cost (Figure 11).
Additional results are presented in Figure 12, including four
examples of radiance-transfer textures (discussed in Section 3.3).

7. Texture advection

Texture can be synthesized in space-time with a nonzero velocity
field. Applications include texture-based flow visualization and
textured animated fluids (e.g. water, foam, or lava). The chal-
lenge is to maintain spatial and temporal continuity without
introducing blurring or ghosting. Neyret [2003] blends several
advecting layers of texture regenerated periodically out-of-phase,
and reduces ghosting by adapting the blend weights to the accu-
mulated texture deformation. Kwatra et al [2005] cast synthesis
as a global optimization over an overlapping set of blended
neighborhoods. They achieve advection by warping the result of
the previous frame with the flow field, and using the warped
image as a soft constraint when optimizing the current frame.

 [Kwatra 2005]

Figure 13: Results of texture advection in 2D and on surfaces.
Paradoxically, static frames from an ideal result may reveal little
about the underlying flow field. So, seeing the video is crucial.

Our approach combines ideas from both these prior techniques.
Given a velocity field V(p) in domain D, by default we simply
advect the synthesized coordinates of the previous frame t−1 to
obtain the result at the current frame t. We replace the synthe-
sized coordinates in-place as . 1[] : [] () ()t tS p S p J p V p−= +

Although transforming the synthesized coordinates creates a
temporally smooth result, the texture gradually distorts in areas of
flow divergence. Therefore, we must “regenerate” the texture
using synthesis correction. However, achieving coherent synthe-
sis requires upsampling parent pixels within the coarse-to-fine
pyramid, which can increase temporal discontinuities. As a
tradeoff between temporal coherence and exemplar fidelity, we
upsample from the coarser level only in areas where the distortion
of the synthesized texture exceeds a threshold. We measure
distortion as the Frobenius norm

2SJ Jξ = − between the

observed Jacobian ()ddx() ddy()SJ S S=

.

 of the synthesized
texture and the desired anisometric Jacobian J (defined in Sec-
tions 5-6). Thus, the upsampling pass becomes

1

1

[] () () , ()
[] :

[] () ,

t
t l
l t

l

S p J p V p p c
S p

S p J p otherwise

ξ−

−

⎧ + <⎪= ⎨
− ∆ + ∆⎪⎩

As an optimization, we find that obtaining good advection results
only requires processing the 3-4 finest synthesis levels.

Compared to [Kwatra et al 2005], our advecting textures can
conform to an anisometric field to allow flow of undistorted
features over an arbitrary surface. Semantic features such as the
keys and pustules in Figure 13 advect without blurring. And,
synthesis is 3 orders of magnitude faster.

8. Nonlinear dimensionality reduction

Because exemplar transformation is a preprocess, we can replace
linear PCA by nonlinear dimensionality reduction without affect-
ing the performance of runtime synthesis. We have explored two
such techniques: isomaps [Tenenbaum et al 2000] and locally
linear embedding (LLE) [Roweis and Saul 2000].

Both isomaps and LLE aim to parameterize the data over a
nonlinear manifold. They approximate the local structure of this
manifold by building a weighted graph on the points using either a
global distance threshold or k-nearest neighborhoods. We have
found this graph construction to be challenging in our problem
setting. Distance thresholds become unstable in high-dimensional
spaces due to low variance in distances. And, k-neighborhoods
behave poorly due to the presence of dense degenerate clusters.
These clusters are in fact textons – groups of points with similar
neighborhoods [Malik et al 1999]. Therefore, we perform fine
clustering as a preprocess to collapse degenerate clusters, prior to
constructing a k=70 neighborhood graph on this regularized data.

We experiment with 4D transformed exemplars to emphasize
differences (Figure 14). We find that isomaps lead to better
texture synthesis results than LLE. One explanation is that
isomaps are less likely to map dissimilar neighborhoods to nearby
points in the transformed exemplar space, because they preserve
geodesic distances between all pairs of points, whereas LLE
preserves the geometry of local neighborhoods.

So far, isomap results are comparable to those of PCA, perhaps
with a slight improvement. We think there is unique opportunity
to further adapt and extend sophisticated nonlinear dimensionality
reduction techniques to improve neighborhood comparisons while
still enabling real-time synthesis.

E′
(4D)

PCA isomaps LLE

Figure 14: Comparison of appearance-space dimensionality
reduction using PCA, isomaps, and LLE, and resulting synthesis.

9. Discussion and additional results

Recall that we perform PCA projection twice: for appearance-
space dimensionality reduction E E′ → ′ and for runtime
neighborhoods () ()N E N E′ ′→ . We can quantify the effective-
ness of these projections by computing their fractional residual
variance. Figure 15 plots appearance-space residual variance as a
function of the dimension of the transformed exemplar E′ . Each
curve corresponds to a different level of coarse-to-fine synthesis
(6 is finest) on the Figure 3 exemplar. For this dataset, the most
challenging level is 3, where the 8D transformed exemplar loses
21% of the total variance. In some sense, this resolution level has
the most complex spatial structure.

Figure 16 compares such curves for a simple color texture, a
texture with a signed-distance feature channel, and a radiance-
transfer texture. As expected, these texture types have appear-
ance-space distributions that are progressively more complex.
Table 1 summarizes this for the textures we have tested.

The results suggest that appearance-space dimensionality reduc-
tion can lose significant information and still permit effective
texture synthesis. It is interesting to put this in the context of
traditional synthesis schemes, in which appearance at an exemplar
location is estimated by just point-sampling color. Intuitively,
these schemes provide a constant-color approximation in our
appearance space. We find empirically that this constant-color
approximation has a mean squared error that is about 5-12 times
larger than our 8D PCA residual variance. In effect, the larger
runtime neighborhood comparisons used in earlier synthesis
schemes helped compensate for this missing information.

Pixel-based schemes often use a parameter κ to artificially favor
coherent patches [Hertzmann et al 2001]. We find that this bias
becomes much less important in appearance-space synthesis. The
bias is only beneficial in extreme cases such as undersampled
surface regions and areas of rapidly changing Jacobian.

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2

2

2

2

2

2
2

2
2 2 2 2 2 2 2 2 2 2 2 2 2

3

3

3

3

3
3

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3

4

4

4

4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5

5

5

5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

6

6

6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 60

20

40

60

80

100

0 5 10 15 20
Number of dimensions d

R
e

s
id

u
a

l
v
a

ri
a

n
c
e

 (
%

) 1

2

3

4

5

6

Figure 15: Appearance-space variance unaccounted by the larg-
est d=1…20 principal components, for synthesis levels 1-6.

0

20

40

60

80

100

0 5 10 15 20

Number of dimensions d

R
e

s
id

u
a

l
v
a

ri
a

n
c
e

 (
%

) RTT (viscous) (level 2)

Feature (weave) (level 1)

Color (greencells) (level 3)

Figure 16: Comparison of appearance-space residual variance for
a color texture, a texture with feature distance, and an RTT.

PCA residual variance (max over levels)

8D E′ 8D ()N E ′ Data type E′ dim.

mean sdv mean sdv

RGB color 75 26% 9% 25% 11%

RGB + feature 100 30% 10% 27% 12%

RTT 900 36% 16% 19% 12%

Table 1: Fraction of variance lost in the two PCA projections,
expressed as mean and standard deviation over all datasets.

Synthesis rate (frames/sec)

Synthesis mode
Standard size

E:642, S:2562

Large size

E:1282, S:5122

2D isometric 48.3 8.4

2D anisometric 40.4 8.1

Surface atlas 54.7 13.1

Advection over surface 88.6 19.7

Table 2: Runtime performance in frames per second, including
synthesis and rendering with magnification.

All results are obtained with Microsoft DirectX 9 on an NVIDIA
GeForce 7800 with 256MB memory. Texture atlases are created
using DirectX UVAtlas. For 2D isometric synthesis, the number
of pixel shader instructions in the upsampling and correction
passes is 45 and 383 respectively. When including all functional-
ities (anisometry, atlas indirection, advection), these increase to
52 and 516 instructions respectively. For each pyramid synthesis
level, we perform 2 correction passes, each with 4 subpasses.

Table 2 summarizes runtime synthesis performance for different
exemplar and output sizes. As demonstrated on the video, we can
manipulate all synthesis parameters interactively since the texture
is regenerated every frame.

10. Summary and future work

We transform an exemplar into an appearance space prior to
texture synthesis. This appearance space is low-dimensional (8D)
and Euclidean, so we avoid the large (e.g. 4002) inner-product
matrices of texton schemes, as well as any noise due to discrete
texton quantization. By including spatial neighborhood, semantic
features, and radiance-transfer into the appearance vectors, we
achieve results similar to earlier specialized schemes, but with a
simpler, unifying framework that is several orders of magnitude
faster and extends easily to anisometric synthesis and advection.

Pixel-based approaches are often perceived as inherently limited
due to narrow neighborhoods and lack of global optimization. In
this regard, results such as Figure 8 have unexpected quality. The
robustness of appearance-space synthesis is most evident in our
advection results, where the added constraint of temporal coher-
ence makes synthesis particularly challenging.

There are a number of avenues for future work:

• Consider other appearance-space attributes, such as foreground-
background segmentation in multi-layer textures.

• Synthesize view-dependent RTT or BTF. We believe that this
should still be possible with an 8D transformed exemplar be-
cause the texture mesostructure is already captured accurately.

• Further explore nonlinear dimensionality reduction.

• Consider spatiotemporal neighborhoods for video textures.

Acknowledgments

We thank Ben Luna, Peter-Pike Sloan, and John Snyder for
providing the RTT datasets and libraries.

References

ASHIKHMIN, M. 2001. Synthesizing natural textures. Symposium on

Interactive 3D Graphics, 217-226.

DE BONET, J. 1997. Multiresolution sampling procedure for analysis and

synthesis of texture images. ACM SIGGRAPH, 361-368.

EFROS, A., AND LEUNG, T. 1999. Texture synthesis by non-parametric

sampling. ICCV, 1033-1038.

GARBER, D. 1981. Computational models for texture analysis and texture

synthesis. PhD Dissertation, University of Southern California.

HEEGER, D., AND BERGEN, J. 1995. Pyramid-based texture analy-

sis/synthesis. ACM SIGGRAPH, 229-238.

HERTZMANN, A., JACOBS, C., OLIVER, N., CURLESS, B., AND SALESIN, D.

2001. Image analogies. ACM SIGGRAPH, 327-340.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth surfaces.

ACM SIGGRAPH, 517-526.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005. Texture

optimization for example-based synthesis. SIGGRAPH, 795-802.

LEFEBVRE, S., AND HOPPE, H. 2005. Parallel controllable texture synthe-

sis. ACM SIGGRAPH, 777-786.

LEUNG, T., AND MALIK, J. 2001. Representing and recognizing the visual

appearance of materials using 3D textons. IJCV 43(1), 29-44.

LIANG, L., LIU, C., XU, Y., GUO, B., AND SHUM, H.-Y. 2001. Real-time

texture synthesis by patch-based sampling. ACM TOG 20(3), 127-150.

MAGDA, S., AND KRIEGMAN, D. 2003. Fast texture synthesis on arbitrary

meshes. Eurographics Symposium on Rendering, 82-89.

MALIK, J., BELONGIE, S., SHI, J., AND LEUNG, T. 1999. Textons, contours

and regions: Cue integration in image segmentation. ICCV, 918-925.

NEYRET, F., AND CANI, M.-P. 1999. Pattern-based texturing revisited.

ACM SIGGRAPH, 235-242.

NEYRET, F. 2003. Advected textures. Symposium on computer anima-

tion, 147-153.

POPAT, K., AND PICARD, R. 1993. Novel cluster-based probability model

for texture synthesis, classification, and compression. Visual Commu-

nications and Image Processing, 756-768.

PORTILLA, J., AND SIMONCELLI, E. 2000. A parametric texture model

based on joint statistics of complex wavelet coefficients. IJCV (40)1.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped textures.

ACM SIGGRAPH, 465-470.

ROWEIS, S. 1997. EM algorithms for PCA and SPCA. NIPS, 626-632.

ROWEIS, S., AND SAUL, L. 2000. Nonlinear dimensionality reduction by

locally linear embedding. Science, 290:2323-2326.

SLOAN, P.-P., LIU, X., SHUM, H.-Y., AND SNYDER, J. 2003. Bi-scale

radiance transfer. ACM SIGGRAPH, 370-375.

TAPONECCO, F., AND ALEXA, M. 2004. Steerable texture synthesis.

Eurographics Conference.

TENENBAUM, J., DE SILVA, V., AND LANGFORD, J. 2000. A global

geometric framework for nonlinear dimensionality reduction. Science,

290:2319-2323.

TONG, X., ZHANG, J., LIU, L., WANG, X., GUO, B., AND SHUM, H.-Y.

2002. Synthesis of bidirectional texture functions on arbitrary sur-

faces. ACM SIGGRAPH, 665-672.

TURK, G. 2001. Texture synthesis on surfaces. SIGGRAPH, 347-354.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using tree-

structured vector quantization. ACM SIGGRAPH, 479-488.

WEI, L.-Y., AND LEVOY, M. 2001. Texture synthesis over arbitrary

manifold surfaces. ACM SIGGRAPH, 355-360.

WEI, L.-Y., AND LEVOY, M. 2003. Order-independent texture synthesis.

http://graphics.stanford.edu/papers/texture-synthesis-sig03/.

WU, Q., AND YU, Y. 2004. Feature matching and deformation for texture

synthesis. ACM SIGGRAPH, 362-365.

YING, L., HERTZMANN, A., BIERMANN, H., AND ZORIN, D. 2001. Texture

and shape synthesis on surfaces. Symposium on Rendering, 301-312.

ZHANG, J., ZHOU, K., VELHO, L., GUO, B., AND SHUM, H.-Y. 2003.

Synthesis of progressively-variant textures on arbitrary surfaces. ACM

SIGGRAPH, 295-302.

	Introduction
	Background on texture synthesis
	Definition of appearance vector
	Spatial neighborhood
	Feature distance
	Radiance transfer

	Isometric synthesis
	Anisometric synthesis
	Surface texture synthesis
	Texture advection
	Nonlinear dimensionality reduction
	Discussion and additional results
	Summary and future work
	Acknowledgments
	References

