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Figure 1: Transforming an exemplar into an 8D appearance space E′  improves synthesis quality and enables new real-time functionalities.
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Figure 2: Overview of synthesis using exemplar transformation.

The traditional approach in texture synthesis is to compare color 
neighborhoods with those of an exemplar.  We show that quality 
is greatly improved if pointwise colors are replaced by appearance 
vectors that incorporate nonlocal information such as feature and 
radiance-transfer data.  We perform dimensionality reduction on 
these vectors prior to synthesis, to create a new appearance-space 
exemplar.  Unlike a texton space, our appearance space is low-
dimensional and Euclidean.  Synthesis in this information-rich 
space lets us reduce runtime neighborhood vectors from 5×5 grids 
to just 4 locations.  Building on this unifying framework, we 
introduce novel techniques for coherent anisometric synthesis, 
surface texture synthesis directly in an ordinary atlas, and texture 
advection.  Remarkably, we achieve all these functionalities in 
real-time, or 3 to 4 orders of magnitude faster than prior work. 

Keywords:  exemplar-based synthesis, surface textures, feature-based 
synthesis, anisometric synthesis, dimensionality reduction, RTT synthesis. 

1. Introduction 

We describe a new framework for exemplar-based texture synthe-
sis (Figure 1).  Our main idea is to transform an exemplar image E 
from the traditional space of pixel colors to a space of appearance 
vectors, and then perform synthesis in this transformed space 
(Figure 2).  Specifically, we compute a high-dimensional appear-
ance vector at each pixel to form an appearance-space image E′, 
and map E′ onto a low-dimensional transformed exemplar E′  
using principal component analysis (PCA) or nonlinear dimen-
sionality reduction.  Using E′  as the exemplar, we synthesize an 
image S of exemplar coordinates.  Finally, we return E[S] which 
accesses the original exemplar, rather than . [ ]E S′

The idea of exemplar transformation is simple, but has broad 
implications.  As we shall see, it improves synthesis quality and 
enables new functionalities while maintaining fast performance. 

Several prior synthesis schemes use appearance vectors.  Heeger 
and Bergen [1995], De Bonet [1997], and Portilla and Simoncelli 
[2000] evaluate steerable filters on image pyramids.  Malik et al 
[1999] use multiscale Gaussian derivative filters, and apply 
clustering to form discrete textons.  Tong et al [2002] and Magda 
and Kriegman [2003] synthesize texture by examining inter-

texton distances.  However, textons have two drawbacks: the 
clustering introduces discretization errors, and the distance metric  
requires costly access to a large inner-product matrix.  In contrast, 
our approach defines an appearance space that is continuous, low-
dimensional, and has a trivial Euclidean metric. 

The appearance vector at an image pixel should capture the local 
structure of the texture, so that each pixel of the transformed 
exemplar E′  provides an information-rich encoding for effective 
synthesis (Section 3).  We form the appearance vector using: 

• Neighborhood information, to encode not just pointwise attrib-
utes but local spatial patterns including gradients. 

• Feature information, to faithfully recover structural texture 
elements not captured by local L2 error. 

• Radiance transfer, to synthesize material with consistent meso-
scale self-shadowing properties. 

Because exemplar transformation is a preprocess, incorporating 
the neighborhood, feature, and radiance-transfer information has 
little cost.  Moreover, the dimensionality reduction encodes all the 
information concisely using exemplar-adapted basis functions, 
rather than generic steerable filters. 

In addition we present the following contributions: 

• We show that exemplar transformation permits parallel pixel-
based synthesis using a runtime neighborhood vector of just 4 
spatial points (Section 4), whereas prior schemes require at least 
5×5 neighborhoods (and often larger for complex textures). 

• We design a scheme for high-quality anisometric synthesis.  
The key idea is to maintain texture coherence by only accessing 
immediate pixel neighbors, and to transform their synthesized 
coordinates according to a desired Jacobian field (Section 5). 

 

• We create surface texture by performing anisometric synthesis 
directly in the parametric domain of an ordinary texture atlas.  
Because our synthesis algorithm accesses only immediate pixel 
neighbors, we can jump across atlas charts using an indirection 
map to form seamless texture.  Prior state-of-the-art schemes 

 



 

[e.g. Sloan et al 2003; Zhang et al 2003] require expensive per-
vertex synthesis on irregular meshes with millions of vertices, 
and subsequently resample these signals into a texture atlas.  Our 
technique is more elegant and practical, as it operates completely 
in the image space of the atlas domain, never marching over a 
mesh during synthesis (Section 6). 

• Finally, we describe an efficient scheme for advecting the 
texture over a given flow field while maintaining temporal co-
herence (Section 7).  Our results exhibit less blurring than related 
work by [Kwatra et al 2005]. 

Previous work in these various areas required minutes of compu-
tation time for a static synthesis result.  Remarkably, appearance-
space synthesis lets us perform all the above functionalities 
together in tens of milliseconds on a GPU, i.e. 

feature-preserving synthesis and advection of consistent radi-
ance-transfer texture anisometrically mapped onto an arbitrary 
atlas-parameterized surface, in real-time. 

Because we can synthesize the texture from scratch every frame, 
the user may interactively adjust all synthesis parameters, includ-
ing randomness controls, direction fields, and feature scaling.  
Moreover, by computing the Jacobian map on the GPU, even the 
surface geometry itself can be deformed without any CPU load. 

2. Background on texture synthesis 

Our pixel-based neighborhood-matching synthesis scheme builds 
on a long sequence of earlier papers, which we can only briefly 
review here.  The traditional approach is to generate texture 
sequentially in scanline order, comparing partially synthesized 
neighborhoods with exemplar neighborhoods to identify the best 
matching pixel [Garber 1981; Efros and Leung 1999].  Improve-
ments include hierarchical synthesis [Popat and Picard 1993; De 
Bonet 1997; Wei and Levoy 2000], coherent synthesis 
[Ashikhmin 2001], precomputed similarity sets [Tong et al 2002], 
and order-independent synthesis [Wei and Levoy 2003]. 

We extend the parallel approach of [Lefebvre and Hoppe 2005], 
in which synthesis is realized as a sequence of GPU rasterization 
passes, namely upsampling, jitter, and correction.  All passes 
operate on an image pyramid S of exemplar coordinates rather 
than directly on exemplar colors (Figure 3).  The key step of 
interest to us is the correction pass, in which each S[p] is assigned 
the exemplar coordinate u whose 5×5 neighborhood NE(u) best 
matches the currently synthesized neighborhood NS(p). 
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Figure 3: Review of parallel texture synthesis. 

3. Definition of appearance vector 

3.1 Spatial neighborhood 

To compare a synthesized neighborhood NS(p) and exemplar 
neighborhood NE(u), distance is typically measured by summing 
squared color differences.  Because each pixel only contributes 
information at one point, large neighborhoods are often necessary 
to accurately recreate the original texture structure.  Such large 
neighborhoods are a runtime bottleneck, as they require both 
many memory references and an expensive search process. 

The runtime search can be accelerated by recognizing that the set 
of image neighborhoods typically lies near a lower-dimensional 
subspace.  One technique is to project neighborhoods using PCA 
[Hertzmann et al 2001; Liang et al 2001; Lefebvre and Hoppe 
2005].  The runtime-projected S SN PN=  is compared against the 
precomputed E EN P N= .  However, note the apparent ineffi-
ciency of the overall process – a large vector NS must be gathered 
from memory and multiplied by a large matrix P, to then only 
yield a low-dimensional vector SN . 

Our insight is to apply neighborhood projection on the exemplar 
itself as a precomputation, and then perform synthesis using this 
transformed exemplar.  While we still perform PCA to accelerate 
runtime neighborhood matching (Section 4), our contribution is to 
redefine the signal contained in the neighborhood itself! 

More concretely, let the Gaussian-weighted 5×5 neighborhoods of 
an RGB exemplar E define a 75D appearance-space exemplar E′.  
We then project the exemplar using PCA to obtain a 3D trans-
formed exemplar E′ .  Note in Figure 4 how E′  has a greater 
“information density” than E.  The figure also demonstrates that 
synthesis using E′  has higher quality than using E even though 
both have 3 channels and hence the same synthesis cost.  (Here 
we use the synthesis scheme described later in Section 4) 

Generally, we let the transformed exemplar E′  be 8D rather than 
3D to further improve synthesis quality (Figure 4).  The additional 
spatial bases are especially useful to encode feature and radiance-
transfer data as introduced in the next sections.  Note that for 
many color textures, a 4D transformed exemplar is sufficient, as 
shown in the supplemental material and in Figure 14. 
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Figure 4: Benefit of using exemplar transformation with spatial 
neighborhood as appearance vector. 

 



 

3.2 Feature distance 

Small spatial neighborhoods cannot encode large texture features.  
More importantly, simple color differences often fail to recognize 
semantic structure (e.g. mortar between nonhomogeneous stones).  
Wu and Yu [2004] introduce the notion of a feature mask to help 
guide the synthesis process.  Their patch-based scheme applies 
local warping to align texture edges.  We next show how their 
idea can be easily incorporated within our pixel-based scheme. 

Given a user-provided binary feature mask, we compute a signed-
distance field, and include this distance as an additional image 
channel prior to the neighborhood analysis of Section 3.1.  Thus 
the new appearance vector has 5×5×4=100 dimensions, but is still 
projected using PCA into 8D.  For some textures, we find it 
beneficial to apply a simple remapping function to the distance.  
For example, clamping the distance magnitude to some maximum 
helps suppress singularities along the feature medial axis.   

Note that unlike [Wu and Yu 2004], we need not consider feature 
tangent direction explicitly, because it is derived automatically in 
the spatial neighborhood analysis.  (The PCA transformation may 
even detect feature curvature.)  Moreover, “tangent consistency” 
is also captured within the appearance-space Euclidean metric.  In 
fact, we obtain preservation of texture features without any 
change whatsoever to the runtime synthesis algorithm. 

Figure 5 compares synthesis results before and after inclusion of 
feature distance in the appearance vector.  The weight w given to 
the feature-distance channel can be varied as shown in Figure 6.  
The tradeoff is that a larger weight w downplays color differences, 
eventually resulting in synthesis noise. 

Another scheme with the same goal of feature preservation is the 
two-pass approach of [Zhang et al 2003], which first synthesizes a 
binary texton mask by matching large hierarchical neighborhoods 
(with 152+112+72+32=305 samples), and then uses this binary 
mask as a prior for color synthesis.  In comparison, our approach 
involves a single synthesis pass with much smaller neighborhood 
comparisons (4 samples), and runs 4 orders of magnitude faster. 
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Figure 5: Inclusion of feature signed-distance in the appearance 
vector, to better preserve semantic texture structures. 
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Figure 6: Effect of feature channel weight on synthesis quality. 

3.3 Radiance transfer 

Realistic rendering of complex materials requires not only point-
wise attributes but also mesoscale effects like self-shadowing and 
parallax occlusion.  Tong et al [2002] synthesize a bidirectional 
texture function (BTF) to capture surface appearance under all 
view and light directions.  They cluster the high-dim. reflectance 
vectors onto a discrete set of 3D textons [Leung and Malik 2001].  
BTFs represent reflectance using directional bases for both view 
and light, and are therefore ideal for point light sources. 

We chose to represent a radiance transfer texture (RTT) which 
instead uses spherical harmonics bases appropriate for low-
frequency lighting environments [Sloan et al 2003].  To simplify 
our system, we implement the diffuse special case which omits 
view-dependence but still retains self-shadowing.  The RTT is 
computed from a given patch of exemplar geometry using ray 
tracing [Sloan et al 2003].  For accurate shadows, we use spheri-
cal harmonics of degree 6, so each RTT pixel is 36-dimensional. 

We redefine the appearance vector as a 5×5 neighborhood of the 
RTT texture, i.e. a vector of dimension 52·36=900.  As before 
these are PCA-projected into an 8D appearance-space exemplar.  
For efficient PCA computation, we skip the covariance matrix by 
instead using iterative expectation maximization [Roweis 1997].  
Again, the runtime synthesis algorithm is unchanged. 

Even though the 8D transformed exemplar loses ~30-50% of the 
appearance-space variance (Section 9), the mesoscale texture 
structure is sufficiently well captured to allow accurate RTT 
synthesis.  As can be seen in Figure 7 and in the video, we obtain 
consistent self-shadowing under a changing lighting environment. 

 

 
Using a height-field as exemplar results in inconsistent RTT shading 
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Figure 7: Diffuse radiance transfer as appearance vector, to 
obtain consistent self-shadowing during RTT shading. 

 



 

4. Isometric synthesis 

Having created an 8D appearance-space exemplar, we can apply 
any pixel-based synthesis algorithm, e.g. evaluating a 5×5 
neighborhood error by summing squared differences (in 8D rather 
than 3D).  But in fact, the greater information density permits 
synthesis using a more compact runtime neighborhood. 

In adapting our earlier parallel synthesis algorithm [Lefebvre and 
Hoppe 2005], we find that a runtime neighborhood of just 4 
diagonal points is sufficient: 

 

p

 

    , i.e. [ ] ( )1
( ) [ ]

1SN p E S p
⎧ ⎫±′= + ∆ ∆ =⎨ ⎬±⎩ ⎭

′
′

.

However, the parallel synthesis correction algorithm operates as a 
sequence of subpasses, and all 4 diagonal points belong to the 
same subpass, resulting in poor convergence.  To improve con-
vergence without increasing the size of the neighborhood vector 
N(p), we use the following observation.  For any pixel p′, a nearby 
synthesized pixel  can predict the synthesized coordinate 
at p′ as .  Thus, for each point , we average 
together the predicted appearance vectors from 3 synthesized 
pixels used in different subpasses.  Specifically, we use the 
combination 

p′ + ∆
[ ]S p′ ′+ ∆ − ∆ p + ∆
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where ( ) ( ) ({ }0 0 1 0 0 0
, ,

0 0 0 0 0 1
=M  accesses the 

neighboring pixels shown inset.  Although we 

now read a total of 12 pixels, the neighborhood 

vector NS(p) still only has dimension 4·8=32.  For 

the anisometric synthesis scheme described in the 

next section, we find it useful to re-express the neighborhood 

using the equivalent formula 

[ ]1
3 ,
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N p E S p′′∆ =∆+ ∆ ∈
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⎤⎦  

Then, we compare the synthesized neighborhood vector NS(p) 
with precomputed vectors NE(u) in the exemplar to find the best-
matching exemplar pixel: 

( )[ ] : argmin ( ) ( )u p S ES p N p N u∈= −
C

. 

As in [Tong et al 2002], we limit the search to a set of k-coherent 
candidates 

( ) ( ){ }[ ] 1 ,ip C S p i k= + ∆ − ∆ = ∆C … 2< , 

where the precomputed similarity set { }1 ( )k…  identifies other 
pixels with neighborhoods similar to that of u.  (We use k=2.) 

C u

As in [Lefebvre and Hoppe 2005], we speed up runtime neighbor-

hood comparisons by applying PCA projection (not to be 

confused with the PCA used in exemplar transformation).  Spe-

cifically, we project the 32D exemplar neighborhoods to 8D as 

E EN P N′=  where P′ is a 8×32 matrix.  And, we use the same 

projection SSN P N′= at runtime, so that evaluating the distance 
2( ) ( )S EN p N u−  requires just three GPU instructions. 

To summarize, the preprocess performs two successive PCA 

projections, E E′ → ′ ′ and .  All our results derive 

from this basic scheme. 

( ) ( )N E N E′ →

Synthesis quality is greatly improved over [Lefebvre and Hoppe 
2005] as can be seen in Figure 1 and in our supplemental material, 
available at http://research.microsoft.com/projects/AppTexSyn/. 

5. Anisometric synthesis 

In this section we generalize synthesis to allow local rotation and 
scaling of the texture according to a Jacobian field J.  Rather than 
defining multiple versions of the exemplar texture under different 
deformations [Taponecco and Alexa 2004], we anisometrically 
warp the synthesized neighborhood NS prior to neighborhood 
matching, as in Ying et al [2001].  One advantage is the ability to 
reproduce arbitrary affine deformations, including shears and 
nonuniform scales.  In our setting, the method of Ying et al would 
define the warped synthesized neighborhood as  

[ ]( ; ( ))SN p E S p ϕ′ ⎡ ⎤∆ = + ∆⎣ ⎦ ,  with  1(( )) J pϕ −∆ = ∆ , 

where differences from the isometric scheme are colored blue.  
That is, the sampling pattern in synthesis space is transformed by 
the inverse Jacobian at the current point.  However, such a trans-
formation requires filtered resampling since the samples no longer 
lie on the original grid.  More significantly, if the Jacobian has 
stretch (i.e. spectral norm greater than unity), the warped samples 
become discontiguous, resulting in a breakdown in texture coher-
ence.  Ying et al [2001] also describe a coherent scheme that 
warps neighborhoods in exemplar space, but this inhibits search 
acceleration techniques such as our neighborhood PCA . N

Instead, we seek to estimate an anisometrically warped neighbor-
hood vector NS(p) by only accessing immediate neighbors of p.  
Our idea is to use the direction of each offset vectors ϕ(∆) to infer 
which neighboring pixel to access, and then to use the full offset 
vector ϕ(∆) to transform the neighbor’s synthesized coordinate. 

p

More precisely, we gather the appearance vector ( ; )SN p ∆  for 

each neighbor ∆ as follows.  We normalize the Jacobian-

transformed offset as ( ) ( ) / ( ) 0.5δ ϕ ϕ ϕ⎢ ⎥= ∆ = ∆ ∆ +⎣ ⎦ , which 

keeps its rotation but removes any scaling.  Thus p δ+  always 

references one of the 8 immediate neighbors of pixel p.  We 

retrieve the synthesized coordinate [S p ]δ+ , and use it to predict 

the synthesized coordinate at p as [ ] ( )S p J pδ δ+ − , much as in 

Section 4 but adjusting for anisometry.  Finally, we offset this 

predicted synthesized coordinate by the original exemplar-space 

neighbor vector ∆.  As before, we compute the appearance vector 

as a combination of 3 pixels.  The final formula is 

[ ]1

( ) ),(3
( )( ; )S M M

N p E S Jp pϕ ϕδ δ δ′′= ∆ + ∆ ∈
′′ ′′⎡ ⎤∆ = +⎣ ⎦− + ∆∑ M

. 

Also, we redefine the k-coherent candidate set as 

( ) ( ){ }[ ] 1 , 2[ ] ( )iS p Cp S p ip kJ= + ∆ −′+ ∆ = <∆ + ∆C …  

to account for anisometry.  Because the Jacobian-transformed 
offsets introduce continuous deformations, the synthesized coor-
dinates S[p] are no longer quantized to pixel locations of the 
exemplar.  Therefore, to preserve this fine-scale positioning of 
synthesized coordinates, we re-express the precomputed similarity 
sets as offset vectors rather than absolute positions.  Because the 
synthesized coordinates are continuous values, exemplar accesses 
like [ ]E u  involve bilinear interpolation, but this interpolation is 
inexpensive in the hardware texture sampler. 

Finally, we maintain texture coherence during coarse-to-fine 
synthesis by modifying the upsampling pass to account for the 
anisometry.  Each child pixel inherits the parent synthesized 
coordinate, offset by the Jacobian times the relative child location: 

( )1 1/2 1/2[ ] : [ (] ) , T
l l J pS p S p− ± ±= − ∆ + ∆ ∆ = . 

Figure 8 shows some example results.  Our accompanying video 
shows interactive drawing of texture orientation and scaling, 
which is an exciting new tool for artists. 
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Figure 8: Results of anisometric synthesis. 

6. Surface texture synthesis 

Anisometric synthesis is important for creating surface texture.  
Approaches include per-vertex methods [e.g. Turk 2001; Wei and 
Levoy 2001] and patch-based ones [e.g. Neyret and Cani 1999; 
Praun et al 2000; Magda and Kriegman 2003].  To allow efficient 
parallel evaluation, we directly synthesize pixels in the parametric 
domain of the surface, like Ying et al [2001].  But whereas they 
construct overlapping charts on a subdivision surface, we consider 
ordinary texture atlases on arbitrary triangle meshes. 

Surface tangential field.  The user specifies a surface field t,b of 
tangent and binormal vectors (Figure 9).  This field can be inter-
polated from a few user constraints [Praun et al 2000] or obtained 
with a global optimization [Hertzmann and Zorin 2000]. 

Anisometry.  Our goal is to synthesize texture anisometrically in 

the parametric domain such that the surface vectors t,b are locally 

identified with the standard axes ˆ ˆ,x yu u  of the exemplar.  From 

Figure 9 we see that ( ) , where Jf is the 3×2 Jaco-

bian of the surface parameterization

1
ft b J J I−=

:f D M→ , and J is the 

desired 2×2 Jacobian for the synthesized map .  Thus, :S D E→

( ) ( ) ( )( ) ( )
1

T T

f fJ t b J t b t b t b J
−+= = , 

where “+” denotes matrix pseudoinverse.  If (t b) is orthonormal, 
then .  The parameterization is piecewise linear, so 
the Jacobian Jf is piecewise constant within each triangle.  In 
contrast, the tangential frame (t b) varies per-pixel. 

( ) ( )Tt b t b+ =

We compute the Jacobian map J on the GPU by rasterizing the 
surface mesh over its texture domain. The pixel shader evaluates 

( )ddx( ) ddy( )fJ f f=  using derivative instructions, which is 
exact since Jf is constant during the rasterization of each triangle. 

Indirection map.  To form seamless texture over a discontinuous 
atlas, the synthesis neighborhoods for pixels near chart boundaries 
must include samples from other charts.  Here we exploit the 
property that our anisometric correction scheme accesses a 
neighborhood of fixed extent.  We read samples across charts 
using a per-level indirection map I, by replacing each access S[p] 
with S[I[p]].  These indirection maps depend only the surface 
parameterization, and are precomputed by marching across chart 
boundaries.  We reserve space for the necessary 2-pixel band of 
indirection pointers around each chart during atlas construction.  
Because all resolution levels use the same atlas parameterization, 
extra gutter space is reserved at the finest level (Figure 10).  We 
avoid running the correction shader on the inter-chart gutter pixels 
by creating a depth mask and using early z culling. 
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Figure 9: For surfaces, the synthesis Jacobian involves both the 
surface parameterization and a specified surface tangential field. 

   

   

Figure 10: Levels 1-6 of the multiresolution synthesis pyramid. 
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Figure 11: Surface texture synthesis with magnification. 
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Figure 12: Results of surface texture synthesis.   The first column is an example of color texture, while the next four columns show
radiance-transfer textures.  As in other figures, we visualize only the first 3 channels of the 8D transformed exemplar E′ . 

Anisometric synthesis magnification.  One difficulty in synthe-
sizing texture within an atlas is that some parameterization 
distortion is usually inevitable and leads to undersampled regions.  
We are able to hide the sampling nonuniformity using synthesis 
magnification [Lefebvre and Hoppe 2005].  The idea is to use the 
synthesized coordinates S to access a higher-resolution exemplar 
EH.  Specifically, the pixel value at a continuous coordinate p is 
obtained by combining the 4 nearest synthesized pixels as 

[ ]( ) ( ) ( ) ( ){ }0 1 0 1
, , ,

0 0 1 1
,

Mag ( ) ( ) [ ]
HE Hp p

p w Eδ δ∆= − − ∈⎢ ⎥⎣ ⎦
= ∆ S p −∑ ∆ + ∆ , 

where ( ) x y  are bilinear interpolation weights.  We 
modify synthesis magnification to account for anisometry by 
accessing the Jacobian map: 

w ∆ = ∆ ⋅ ∆

[ ]
,

Mag ( ) ( ) [ ] ( )
HE Hp p

Jp w p pE Sδ δ∆= − − ∈⎢ ⎥⎣ ⎦
= ∆ − ∆ −+ ∆∆∑ … . 

Anisometric synthesis magnification is performed in the surface 
shader at rendering time and thus adds little cost (Figure 11).  
Additional results are presented in Figure 12, including four 
examples of radiance-transfer textures (discussed in Section 3.3). 

7. Texture advection 

Texture can be synthesized in space-time with a nonzero velocity 
field.  Applications include texture-based flow visualization and 
textured animated fluids (e.g. water, foam, or lava).  The chal-
lenge is to maintain spatial and temporal continuity without 
introducing blurring or ghosting.  Neyret [2003] blends several 
advecting layers of texture regenerated periodically out-of-phase, 
and reduces ghosting by adapting the blend weights to the accu-
mulated texture deformation.  Kwatra et al [2005] cast synthesis 
as a global optimization over an overlapping set of blended 
neighborhoods.  They achieve advection by warping the result of 
the previous frame with the flow field, and using the warped 
image as a soft constraint when optimizing the current frame. 

 [Kwatra 2005] 

 

Figure 13: Results of texture advection in 2D and on surfaces.  
Paradoxically, static frames from an ideal result may reveal little 
about the underlying flow field.  So, seeing the video is crucial. 

Our approach combines ideas from both these prior techniques.  
Given a velocity field V(p) in domain D, by default we simply 
advect the synthesized coordinates of the previous frame t−1 to 
obtain the result at the current frame t.  We replace the synthe-
sized coordinates in-place as . 1[ ] : [ ] ( ) ( )t tS p S p J p V p−= +

Although transforming the synthesized coordinates creates a 
temporally smooth result, the texture gradually distorts in areas of 
flow divergence.  Therefore, we must “regenerate” the texture 
using synthesis correction.  However, achieving coherent synthe-
sis requires upsampling parent pixels within the coarse-to-fine 
pyramid, which can increase temporal discontinuities.  As a 
tradeoff between temporal coherence and exemplar fidelity, we 
upsample from the coarser level only in areas where the distortion 
of the synthesized texture exceeds a threshold.  We measure 
distortion as the Frobenius norm 

2SJ Jξ = −  between the 
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 of the synthesized 
texture and the desired anisometric Jacobian J (defined in Sec-
tions 5-6).  Thus, the upsampling pass becomes 
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As an optimization, we find that obtaining good advection results 
only requires processing the 3-4 finest synthesis levels. 

Compared to [Kwatra et al 2005], our advecting textures can 
conform to an anisometric field to allow flow of undistorted 
features over an arbitrary surface.  Semantic features such as the 
keys and pustules in Figure 13 advect without blurring.  And, 
synthesis is 3 orders of magnitude faster. 

8. Nonlinear dimensionality reduction 

Because exemplar transformation is a preprocess, we can replace 
linear PCA by nonlinear dimensionality reduction without affect-
ing the performance of runtime synthesis.  We have explored two 
such techniques: isomaps [Tenenbaum et al 2000] and locally 
linear embedding (LLE) [Roweis and Saul 2000]. 

Both isomaps and LLE aim to parameterize the data over a 
nonlinear manifold.  They approximate the local structure of this 
manifold by building a weighted graph on the points using either a 
global distance threshold or k-nearest neighborhoods.  We have 
found this graph construction to be challenging in our problem 
setting.  Distance thresholds become unstable in high-dimensional 
spaces due to low variance in distances.  And, k-neighborhoods 
behave poorly due to the presence of dense degenerate clusters.  
These clusters are in fact textons – groups of points with similar 
neighborhoods [Malik et al 1999].  Therefore, we perform fine 
clustering as a preprocess to collapse degenerate clusters, prior to 
constructing a k=70 neighborhood graph on this regularized data. 

We experiment with 4D transformed exemplars to emphasize 
differences (Figure 14).  We find that isomaps lead to better 
texture synthesis results than LLE.  One explanation is that 
isomaps are less likely to map dissimilar neighborhoods to nearby 
points in the transformed exemplar space, because they preserve 
geodesic distances between all pairs of points, whereas LLE 
preserves the geometry of local neighborhoods. 

So far, isomap results are comparable to those of PCA, perhaps 
with a slight improvement.  We think there is unique opportunity 
to further adapt and extend sophisticated nonlinear dimensionality 
reduction techniques to improve neighborhood comparisons while 
still enabling real-time synthesis. 

E′
(4D)

 

        

   

  
PCA isomaps LLE 

Figure 14: Comparison of appearance-space dimensionality 
reduction using PCA, isomaps, and LLE, and resulting synthesis. 

9. Discussion and additional results 

Recall that we perform PCA projection twice: for appearance-
space dimensionality reduction E E′ → ′  and for runtime 
neighborhoods ( ) ( )N E N E′ ′→ .  We can quantify the effective-
ness of these projections by computing their fractional residual 
variance.  Figure 15 plots appearance-space residual variance as a 
function of the dimension of the transformed exemplar E′ .  Each 
curve corresponds to a different level of coarse-to-fine synthesis 
(6 is finest) on the Figure 3 exemplar.  For this dataset, the most 
challenging level is 3, where the 8D transformed exemplar loses 
21% of the total variance.  In some sense, this resolution level has 
the most complex spatial structure. 

Figure 16 compares such curves for a simple color texture, a 
texture with a signed-distance feature channel, and a radiance-
transfer texture.  As expected, these texture types have appear-
ance-space distributions that are progressively more complex.  
Table 1 summarizes this for the textures we have tested. 

The results suggest that appearance-space dimensionality reduc-
tion can lose significant information and still permit effective 
texture synthesis.  It is interesting to put this in the context of 
traditional synthesis schemes, in which appearance at an exemplar 
location is estimated by just point-sampling color.  Intuitively, 
these schemes provide a constant-color approximation in our 
appearance space.  We find empirically that this constant-color 
approximation has a mean squared error that is about 5-12 times 
larger than our 8D PCA residual variance.  In effect, the larger 
runtime neighborhood comparisons used in earlier synthesis 
schemes helped compensate for this missing information. 

Pixel-based schemes often use a parameter κ to artificially favor 
coherent patches [Hertzmann et al 2001].  We find that this bias 
becomes much less important in appearance-space synthesis.  The 
bias is only beneficial in extreme cases such as undersampled 
surface regions and areas of rapidly changing Jacobian. 
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Figure 15: Appearance-space variance unaccounted by the larg-
est d=1…20 principal components, for synthesis levels 1-6. 
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Figure 16: Comparison of appearance-space residual variance for 
a color texture, a texture with feature distance, and an RTT. 

 



 

PCA residual variance (max over levels)

8D E′  8D ( )N E ′  Data type E′ dim. 

mean sdv mean sdv 

RGB color 75 26% 9% 25% 11% 

RGB + feature 100 30% 10% 27% 12% 

RTT 900 36% 16% 19% 12% 

Table 1: Fraction of variance lost in the two PCA projections, 
expressed as mean and standard deviation over all datasets. 

Synthesis rate (frames/sec) 

Synthesis mode 
Standard size 

E:642,  S:2562 

Large size 

E:1282,  S:5122

2D isometric 48.3 8.4 

2D anisometric 40.4 8.1 

Surface atlas 54.7 13.1 

Advection over surface  88.6 19.7 

Table 2: Runtime performance in frames per second, including 
synthesis and rendering with magnification. 

All results are obtained with Microsoft DirectX 9 on an NVIDIA 
GeForce 7800 with 256MB memory.  Texture atlases are created 
using DirectX UVAtlas.  For 2D isometric synthesis, the number 
of pixel shader instructions in the upsampling and correction 
passes is 45 and 383 respectively.  When including all functional-
ities (anisometry, atlas indirection, advection), these increase to 
52 and 516 instructions respectively.  For each pyramid synthesis 
level, we perform 2 correction passes, each with 4 subpasses. 

Table 2 summarizes runtime synthesis performance for different 
exemplar and output sizes.  As demonstrated on the video, we can 
manipulate all synthesis parameters interactively since the texture 
is regenerated every frame. 

10. Summary and future work 

We transform an exemplar into an appearance space prior to 
texture synthesis.  This appearance space is low-dimensional (8D) 
and Euclidean, so we avoid the large (e.g. 4002) inner-product 
matrices of texton schemes, as well as any noise due to discrete 
texton quantization.  By including spatial neighborhood, semantic 
features, and radiance-transfer into the appearance vectors, we 
achieve results similar to earlier specialized schemes, but with a 
simpler, unifying framework that is several orders of magnitude 
faster and extends easily to anisometric synthesis and advection. 

Pixel-based approaches are often perceived as inherently limited 
due to narrow neighborhoods and lack of global optimization.  In 
this regard, results such as Figure 8 have unexpected quality.  The 
robustness of appearance-space synthesis is most evident in our 
advection results, where the added constraint of temporal coher-
ence makes synthesis particularly challenging. 

There are a number of avenues for future work: 

• Consider other appearance-space attributes, such as foreground-
background segmentation in multi-layer textures. 

• Synthesize view-dependent RTT or BTF.  We believe that this 
should still be possible with an 8D transformed exemplar be-
cause the texture mesostructure is already captured accurately. 

• Further explore nonlinear dimensionality reduction. 

• Consider spatiotemporal neighborhoods for video textures. 
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